Articles | Volume 18, issue 7
https://doi.org/10.5194/acp-18-5147-2018
https://doi.org/10.5194/acp-18-5147-2018
Research article
 | 
17 Apr 2018
Research article |  | 17 Apr 2018

The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

Andrew E. Dessler, Thorsten Mauritsen, and Bjorn Stevens

Related authors

The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021,https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
The response of stratospheric water vapor to climate change driven by different forcing agents
Xun Wang and Andrew E. Dessler
Atmos. Chem. Phys., 20, 13267–13282, https://doi.org/10.5194/acp-20-13267-2020,https://doi.org/10.5194/acp-20-13267-2020, 2020
Short summary
Influence of convection on stratospheric water vapor in the North American monsoon region
Wandi Yu, Andrew E. Dessler, Mijeong Park, and Eric J. Jensen
Atmos. Chem. Phys., 20, 12153–12161, https://doi.org/10.5194/acp-20-12153-2020,https://doi.org/10.5194/acp-20-12153-2020, 2020
Short summary
Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer
Xun Wang, Andrew E. Dessler, Mark R. Schoeberl, Wandi Yu, and Tao Wang
Atmos. Chem. Phys., 19, 14621–14636, https://doi.org/10.5194/acp-19-14621-2019,https://doi.org/10.5194/acp-19-14621-2019, 2019
Short summary
Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor
Hao Ye, Andrew E. Dessler, and Wandi Yu
Atmos. Chem. Phys., 18, 4425–4437, https://doi.org/10.5194/acp-18-4425-2018,https://doi.org/10.5194/acp-18-4425-2018, 2018
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
A colorful look at climate sensitivity
Bjorn Stevens and Lukas Kluft
Atmos. Chem. Phys., 23, 14673–14689, https://doi.org/10.5194/acp-23-14673-2023,https://doi.org/10.5194/acp-23-14673-2023, 2023
Short summary
Sensitivity of cirrus and contrail radiative effect on cloud microphysical and environmental parameters
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 23, 14003–14037, https://doi.org/10.5194/acp-23-14003-2023,https://doi.org/10.5194/acp-23-14003-2023, 2023
Short summary
Evaluation of downward and upward solar irradiances simulated by the Integrated Forecasting System of ECMWF using airborne observations above Arctic low-level clouds
Hanno Müller, André Ehrlich, Evelyn Jäkel, Johannes Röttenbacher, Benjamin Kirbus, Michael Schäfer, Robin J. Hogan, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2023-2443,https://doi.org/10.5194/egusphere-2023-2443, 2023
Short summary
Evaluation of liquid cloud albedo susceptibility in E3SM using coupled eastern North Atlantic surface and satellite retrievals
Adam C. Varble, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Shuaiqi Tang, and Jerome Fast
Atmos. Chem. Phys., 23, 13523–13553, https://doi.org/10.5194/acp-23-13523-2023,https://doi.org/10.5194/acp-23-13523-2023, 2023
Short summary
Constraints on simulated past Arctic amplification and lapse rate feedback from observations
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023,https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary

Cited articles

Aldrin, M., Holden, M., Guttorp, P., Skeie, R. B., Myhre, G., and Berntsen, T. K.: Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content, Environmetrics, 23, 253–271, https://doi.org/10.1002/env.2140, 2012. 
Andrews, T. and Webb, M. J.: The dependence of global cloud and lapse rate feedbacks on the spatial structure of Tropical Pacific warming, J. Climate, 31, 641–654, https://doi.org/10.1175/jcli-d-17-0087.1, 2018. 
Andrews, T., Gregory, J. M., and Webb, M. J.: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models, J. Climate, 28, 1630–1648, https://doi.org/10.1175/JCLI-D-14-00545.1, 2015. 
Annan, J. D. and Hargreaves, J. C.: Using multiple observationally-based constraints to estimate climate sensitivity, Geophys. Res. Lett., 33, L06704, https://doi.org/10.1029/2005gl025259, 2006. 
Armour, K. C.: Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks, Nat. Clim. Change, 7, 331–335, https://doi.org/10.1038/nclimate3278, 2017. 
Download
Short summary
One of the most important parameters in climate science is the equilibrium climate sensitivity (ECS). Estimates of this quantity based on 20th-century observations suggest low values of ECS (below 2 °C). We show that these calculations may be significantly in error. Together with other recent work on this problem, it seems probable that the ECS is larger than suggested by the 20th-century observations.
Altmetrics
Final-revised paper
Preprint