Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 17, issue 15
Atmos. Chem. Phys., 17, 9347–9364, 2017
https://doi.org/10.5194/acp-17-9347-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Twenty-five years of operations of the Network for the Detection...

Atmos. Chem. Phys., 17, 9347–9364, 2017
https://doi.org/10.5194/acp-17-9347-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 04 Aug 2017

Research article | 04 Aug 2017

Trends and annual cycles in soundings of Arctic tropospheric ozone

Bo Christiansen et al.

Related authors

Identifying robust bias adjustment methods for extreme precipitation in a pseudo-reality setting
Torben Schmith, Peter Thejll, Peter Berg, Fredrik Boberg, Ole Bøssing Christensen, Bo Christiansen, Jens Hesselbjerg Christensen, Christian Steger, and Marianne Sloth Madsen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-318,https://doi.org/10.5194/hess-2020-318, 2020
Preprint under review for HESS

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Measurement report: Leaf-scale gas exchange of atmospheric reactive trace species (NO2, NO, O3) at a northern hardwood forest in Michigan
Wei Wang, Laurens Ganzeveld, Samuel Rossabi, Jacques Hueber, and Detlev Helmig
Atmos. Chem. Phys., 20, 11287–11304, https://doi.org/10.5194/acp-20-11287-2020,https://doi.org/10.5194/acp-20-11287-2020, 2020
Short summary
A dedicated flask sampling strategy developed for Integrated Carbon Observation System (ICOS) stations based on CO2 and CO measurements and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling
Ingeborg Levin, Ute Karstens, Markus Eritt, Fabian Maier, Sabrina Arnold, Daniel Rzesanke, Samuel Hammer, Michel Ramonet, Gabriela Vítková, Sebastien Conil, Michal Heliasz, Dagmar Kubistin, and Matthias Lindauer
Atmos. Chem. Phys., 20, 11161–11180, https://doi.org/10.5194/acp-20-11161-2020,https://doi.org/10.5194/acp-20-11161-2020, 2020
Short summary
Ozone affected by a succession of four landfall typhoons in the Yangtze River Delta, China: major processes and health impacts
Chenchao Zhan, Min Xie, Chongwu Huang, Tijian Wang, Jane Liu, Meng Xu, Chaoqun Ma, Jianwei Yu, Yumeng Jiao, Mengmeng Li, Shu Li, Bingliang Zhuang, Ming Zhao, and Dongyang Nie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-554,https://doi.org/10.5194/acp-2020-554, 2020
Revised manuscript accepted for ACP
Short summary
The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF6)
Peter G. Simmonds, Matthew Rigby, Alistair J. Manning, Sunyoung Park, Kieran M. Stanley, Archie McCulloch, Stephan Henne, Francesco Graziosi, Michela Maione, Jgor Arduini, Stefan Reimann, Martin K. Vollmer, Jens Mühle, Simon O'Doherty, Dickon Young, Paul B. Krummel, Paul J. Fraser, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Mi-Kyung Park, Hyeri Park, Tim Arnold, Chris Rennick, L. Paul Steele, Blagoj Mitrevski, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 20, 7271–7290, https://doi.org/10.5194/acp-20-7271-2020,https://doi.org/10.5194/acp-20-7271-2020, 2020
Short summary
Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO)
Santiago Botía, Christoph Gerbig, Julia Marshall, Jost V. Lavric, David Walter, Christopher Pöhlker, Bruna Holanda, Gilberto Fisch, Alessandro Carioca de Araújo, Marta O. Sá, Paulo R. Teixeira, Angélica F. Resende, Cleo Q. Dias-Junior, Hella van Asperen, Pablo S. Oliveira, Michel Stefanello, and Otávio C. Acevedo
Atmos. Chem. Phys., 20, 6583–6606, https://doi.org/10.5194/acp-20-6583-2020,https://doi.org/10.5194/acp-20-6583-2020, 2020
Short summary

Cited articles

Aldrin, M., Holden, M., Guttorp, P., Skeie, R. B., Myhre, G., and Berntsen, T. K.: Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content, Environmetrics, 23, 253–271, 2012.
Ancellet, G., Daskalakis, N., Raut, J. C., Tarasick, D., Hair, J., Quennehen, B., Ravetta, F., Schlager, H., Weinheimer, A. J., Thompson, A. M., Johnson, B., Thomas, J. L., and Law, K. S.: Analysis of the latitudinal variability of tropospheric ozone in the Arctic using the large number of aircraft and ozonesonde observations in early summer 2008, Atmos. Chem. Phys., 16, 13341–13358, https://doi.org/10.5194/acp-16-13341-2016, 2016.
Berliner, L. M., Wikle, C. K., and Cressie, N.: Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling, J. Climate, 13, 3953–3968, 2000.
Brooks, S., Gelman, A., Jones, G., and Meng, X.-L.: Handbook of Markov Chain Monte Carlo: Methods and Applications, Chapman & Hall, Boca Raton, 2011.
Publications Copernicus
Download
Short summary
Ozone soundings in the troposphere from nine Arctic stations covering the period 1984–2014 have been analyzed. Stations with the best data coverage show a consistent and significant temporal variation with a maximum near 2005 followed by a decrease. Some significant changes are found in the annual cycle in agreement with the notion that the ozone summer maximum is appearing earlier in the year. Such changes in Arctic ozone in the free troposphere have not been reported before.
Ozone soundings in the troposphere from nine Arctic stations covering the period 1984–2014 have...
Citation
Altmetrics
Final-revised paper
Preprint