Articles | Volume 16, issue 13
https://doi.org/10.5194/acp-16-8559-2016
https://doi.org/10.5194/acp-16-8559-2016
Research article
 | 
14 Jul 2016
Research article |  | 14 Jul 2016

Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car

Panu Karjalainen, Hilkka Timonen, Erkka Saukko, Heino Kuuluvainen, Sanna Saarikoski, Päivi Aakko-Saksa, Timo Murtonen, Matthew Bloss, Miikka Dal Maso, Pauli Simonen, Erik Ahlberg, Birgitta Svenningsson, William Henry Brune, Risto Hillamo, Jorma Keskinen, and Topi Rönkkö

Related authors

Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle
Hilkka Timonen, Panu Karjalainen, Erkka Saukko, Sanna Saarikoski, Päivi Aakko-Saksa, Pauli Simonen, Timo Murtonen, Miikka Dal Maso, Heino Kuuluvainen, Matthew Bloss, Erik Ahlberg, Birgitta Svenningsson, Joakim Pagels, William H. Brune, Jorma Keskinen, Douglas R. Worsnop, Risto Hillamo, and Topi Rönkkö
Atmos. Chem. Phys., 17, 5311–5329, https://doi.org/10.5194/acp-17-5311-2017,https://doi.org/10.5194/acp-17-5311-2017, 2017
Short summary
A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources
Pauli Simonen, Erkka Saukko, Panu Karjalainen, Hilkka Timonen, Matthew Bloss, Päivi Aakko-Saksa, Topi Rönkkö, Jorma Keskinen, and Miikka Dal Maso
Atmos. Meas. Tech., 10, 1519–1537, https://doi.org/10.5194/amt-10-1519-2017,https://doi.org/10.5194/amt-10-1519-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The lifetimes and potential change in planetary albedo owing to the oxidation of thin surfactant organic films extracted from atmospheric aerosol by hydroxyl (OH) radicals at the air–water interface of particles
Rosalie H. Shepherd, Martin D. King, Andrew D. Ward, Edward J. Stuckey, Rebecca J. L. Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
Atmos. Chem. Phys., 25, 2569–2588, https://doi.org/10.5194/acp-25-2569-2025,https://doi.org/10.5194/acp-25-2569-2025, 2025
Short summary
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025,https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025,https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025,https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary
Enhanced sulfate formation in mixed biomass burning and sea-salt interactions mediated by photosensitization: effects of chloride, nitrogen-containing compounds, and atmospheric aging
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
Atmos. Chem. Phys., 25, 425–439, https://doi.org/10.5194/acp-25-425-2025,https://doi.org/10.5194/acp-25-425-2025, 2025
Short summary

Cited articles

Aakko, P. and Nylund, N.-O.: Particle Emissions at Moderate and Cold Temperatures Using Different Fuels, Soc. Automot. Eng., SP-1809(724), 279–296, https://doi.org/10.4271/2003-01-3285, 2003.
Aakko-Saksa, P., Rantanen-Kolehmainen, L., and Skyttä, E.: Ethanol, Isobutanol, and Biohydrocarbons as Gasoline Components in Relation to Gaseous Emissions and Particulate Matter, Environ. Sci. Technol. 48, 10489–10496, https://doi.org/10.1021/es501381h, 2014.
Alkidas, A. C.: Combustion advancements in gasoline engines, Energy Convers. Manag., 48, 2751–2761, https://doi.org/10.1016/j.enconman.2007.07.027, 2007.
Arffman, A., Yli-Ojanperä, J., Kalliokoski, J., Harra, J., Pirjola, L., Karjalainen, P., Rönkkö, T., and Keskinen, J.: High-resolution low-pressure cascade impactor, J. Aerosol Sci., 78, 97–109, https://doi.org/10.1016/j.jaerosci.2014.08.006, 2014.
Download
Short summary
We characterized time-resolved primary particulate emissions and secondary particle formation from a modern gasoline passenger car. In mass terms, the amount of secondary particles was 13 times the amount of primary particles. The highest emissions were observed after a cold start when the engine and catalyst performance were suboptimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in the exhaust.
Share
Altmetrics
Final-revised paper
Preprint