Articles | Volume 16, issue 13
Atmos. Chem. Phys., 16, 8447–8460, 2016
https://doi.org/10.5194/acp-16-8447-2016
Atmos. Chem. Phys., 16, 8447–8460, 2016
https://doi.org/10.5194/acp-16-8447-2016

Research article 12 Jul 2016

Research article | 12 Jul 2016

On the climatological probability of the vertical propagation of stationary planetary waves

Khalil Karami et al.

Related authors

Modelled thermal and dynamical responses of the middle atmosphere to EPP-induced ozone changes
K. Karami, P. Braesicke, M. Kunze, U. Langematz, M. Sinnhuber, and S. Versick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33283-2015,https://doi.org/10.5194/acpd-15-33283-2015, 2015
Revised manuscript has not been submitted

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022,https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Specified dynamics scheme impacts on wave-mean flow dynamics, convection, and tracer transport in CESM2 (WACCM6)
Nicholas A. Davis, Patrick Callaghan, Isla R. Simpson, and Simone Tilmes
Atmos. Chem. Phys., 22, 197–214, https://doi.org/10.5194/acp-22-197-2022,https://doi.org/10.5194/acp-22-197-2022, 2022
Short summary
Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021,https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Observation and modeling of high-7Be concentration events at the surface in northern Europe associated with the instability of the Arctic polar vortex in early 2003
Erika Brattich, Hongyu Liu, Bo Zhang, Miguel Ángel Hernández-Ceballos, Jussi Paatero, Darko Sarvan, Vladimir Djurdjevic, Laura Tositti, and Jelena Ajtić
Atmos. Chem. Phys., 21, 17927–17951, https://doi.org/10.5194/acp-21-17927-2021,https://doi.org/10.5194/acp-21-17927-2021, 2021
Short summary
Eastward-propagating planetary waves in the polar middle atmosphere
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021,https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary

Cited articles

Andrews, D. G., Leovy, C. B., and Holton, J. R.: Middle Atmosphere Dynamics, Academic Press, San Diego, 1987.
Castanheira, J. M. and Graf, H.-F.: North Pacific-North Atlantic relationships under stratospheric control?, J. Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754, 2003.
Charney, J. G. and Drazin, P. G.: Propagation of planetary scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, 1961.
Chen, P. C. and Robinson, W. A.: propagation of planetary waves between the troposphere and stratosphere, J. Atmos. Sci., 49, 2533–2545, 1992.
Dickinson, R. E.: Planetary Rossby waves propagating vertically through weak westerly wind wave guides, J. Atmos. Sci., 25, 984–1002, 1969.
Download
Short summary
We introduce a diagnostic tool to assess in a climatological framework the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR reanalysis data we demonstrate several problematic features of the refractive index of Rossby waves. We introduced the Rossby waves membership value function to calculate the optimal propagation conditions for Rossby waves. Sensitivity of our diagnostic tool to strong and weak vortex regimes are examined.
Altmetrics
Final-revised paper
Preprint