Articles | Volume 16, issue 24
https://doi.org/10.5194/acp-16-15619-2016
https://doi.org/10.5194/acp-16-15619-2016
Research article
 | 
20 Dec 2016
Research article |  | 20 Dec 2016

Antarctic ozone depletion between 1960 and 1980 in observations and chemistry–climate model simulations

Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke

Related authors

Assessment of the 11-year solar cycle signals in the middle atmosphere in multiple-model ensemble simulations
Wenjuan Huo, Tobias Spiegl, Sebastian Wahl, Katja Matthes, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1288,https://doi.org/10.5194/egusphere-2024-1288, 2024
Short summary
A critical evaluation of decadal solar cycle imprints in the MiKlip historical ensemble simulations
Tobias C. Spiegl, Ulrike Langematz, Holger Pohlmann, and Jürgen Kröger
Weather Clim. Dynam., 4, 789–807, https://doi.org/10.5194/wcd-4-789-2023,https://doi.org/10.5194/wcd-4-789-2023, 2023
Short summary
Quantifying uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: Annual mean response in heating rates, temperature, and ozone
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020,https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
On the representation of major stratospheric warmings in reanalyses
Blanca Ayarzagüena, Froila M. Palmeiro, David Barriopedro, Natalia Calvo, Ulrike Langematz, and Kiyotaka Shibata
Atmos. Chem. Phys., 19, 9469–9484, https://doi.org/10.5194/acp-19-9469-2019,https://doi.org/10.5194/acp-19-9469-2019, 2019
Short summary
No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI
Blanca Ayarzagüena, Lorenzo M. Polvani, Ulrike Langematz, Hideharu Akiyoshi, Slimane Bekki, Neal Butchart, Martin Dameris, Makoto Deushi, Steven C. Hardiman, Patrick Jöckel, Andrew Klekociuk, Marion Marchand, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke D. Oman, David A. Plummer, Laura Revell, Eugene Rozanov, David Saint-Martin, John Scinocca, Andrea Stenke, Kane Stone, Yousuke Yamashita, Kohei Yoshida, and Guang Zeng
Atmos. Chem. Phys., 18, 11277–11287, https://doi.org/10.5194/acp-18-11277-2018,https://doi.org/10.5194/acp-18-11277-2018, 2018
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
On the atmospheric budget of 1,2-dichloroethane and its impact on stratospheric chlorine and ozone (2002–2020)
Ryan Hossaini, David Sherry, Zihao Wang, Martyn P. Chipperfield, Wuhu Feng, David E. Oram, Karina E. Adcock, Stephen A. Montzka, Isobel J. Simpson, Andrea Mazzeo, Amber A. Leeson, Elliot Atlas, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 13457–13475, https://doi.org/10.5194/acp-24-13457-2024,https://doi.org/10.5194/acp-24-13457-2024, 2024
Short summary
The return to 1980 stratospheric halogen levels: a moving target in ozone assessments from 2006 to 2022
Megan J. Lickley, John S. Daniel, Laura A. McBride, Ross J. Salawitch, and Guus J. M. Velders
Atmos. Chem. Phys., 24, 13081–13099, https://doi.org/10.5194/acp-24-13081-2024,https://doi.org/10.5194/acp-24-13081-2024, 2024
Short summary
The impact of dehydration and extremely low HCl values in the Antarctic stratospheric vortex in mid-winter on ozone loss in spring
Yiran Zhang-Liu, Rolf Müller, Jens-Uwe Grooß, Sabine Robrecht, Bärbel Vogel, Abdul Mannan Zafar, and Ralph Lehmann
Atmos. Chem. Phys., 24, 12557–12574, https://doi.org/10.5194/acp-24-12557-2024,https://doi.org/10.5194/acp-24-12557-2024, 2024
Short summary
Beyond self-healing: stabilizing and destabilizing photochemical adjustment of the ozone layer
Aaron Match, Edwin P. Gerber, and Stephan Fueglistaler
Atmos. Chem. Phys., 24, 10305–10322, https://doi.org/10.5194/acp-24-10305-2024,https://doi.org/10.5194/acp-24-10305-2024, 2024
Short summary
Solar FTIR measurements of NOx vertical distributions – Part 2: Experiment-based scaling factors describing the daytime variation in stratospheric NOx
Pinchas Nürnberg, Sarah A. Strode, and Ralf Sussmann
Atmos. Chem. Phys., 24, 10001–10012, https://doi.org/10.5194/acp-24-10001-2024,https://doi.org/10.5194/acp-24-10001-2024, 2024
Short summary

Cited articles

Bodeker, G. E., and Waugh, D. W. (Lead Authors), Akiyoshi, H., Braesicke, P., Eyring, V., Fahey, D. W., Manzini, E., Newchurch, M. J., Portmann, R. W., Robock, A., Shine, K. P., Steinbrecht, W., and Weatherhead, E. C.: The Ozone Layer in the 21st Century, in: chap. 6 in Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project – Report No. 50, World Meteorological Organization, Geneva, Switzerland, 2007.
Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615, https://doi.org/10.5194/acp-5-2603-2005, 2005.
Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, N. L., Archibald, A., Telford, P., and Pyle, J. A.: Circulation anomalies in the Southern Hemisphere and ozone changes, Atmos. Chem. Phys., 13, 10677–10688, https://doi.org/10.5194/acp-13-10677-2013, 2013.
Download
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
Altmetrics
Final-revised paper
Preprint