Articles | Volume 14, issue 2
https://doi.org/10.5194/acp-14-939-2014
https://doi.org/10.5194/acp-14-939-2014
Research article
 | 
27 Jan 2014
Research article |  | 27 Jan 2014

Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions

A. Mues, J. Kuenen, C. Hendriks, A. Manders, A. Segers, Y. Scholz, C. Hueglin, P. Builtjes, and M. Schaap

Related authors

Observation and analysis of spatiotemporal characteristics of surface ozone and carbon monoxide at multiple sites in the Kathmandu Valley, Nepal
Khadak Singh Mahata, Maheswar Rupakheti, Arnico Kumar Panday, Piyush Bhardwaj, Manish Naja, Ashish Singh, Andrea Mues, Paolo Cristofanelli, Deepak Pudasainee, Paolo Bonasoni, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 14113–14132, https://doi.org/10.5194/acp-18-14113-2018,https://doi.org/10.5194/acp-18-14113-2018, 2018
Short summary
Variations in surface ozone and carbon monoxide in the Kathmandu Valley and surrounding broader regions during SusKat-ABC field campaign: role of local and regional sources
Piyush Bhardwaj, Manish Naja, Maheswar Rupakheti, Aurelia Lupascu, Andrea Mues, Arnico Kumar Panday, Rajesh Kumar, Khadak Singh Mahata, Shyam Lal, Harish C. Chandola, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 11949–11971, https://doi.org/10.5194/acp-18-11949-2018,https://doi.org/10.5194/acp-18-11949-2018, 2018
Short summary
WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley
Andrea Mues, Axel Lauer, Aurelia Lupascu, Maheswar Rupakheti, Friderike Kuik, and Mark G. Lawrence
Geosci. Model Dev., 11, 2067–2091, https://doi.org/10.5194/gmd-11-2067-2018,https://doi.org/10.5194/gmd-11-2067-2018, 2018
Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model
Astrid M. M. Manders, Peter J. H. Builtjes, Lyana Curier, Hugo A. C. Denier van der Gon, Carlijn Hendriks, Sander Jonkers, Richard Kranenburg, Jeroen J. P. Kuenen, Arjo J. Segers, Renske M. A. Timmermans, Antoon J. H. Visschedijk, Roy J. Wichink Kruit, W. Addo J. van Pul, Ferd J. Sauter, Eric van der Swaluw, Daan P. J. Swart, John Douros, Henk Eskes, Erik van Meijgaard, Bert van Ulft, Peter van Velthoven, Sabine Banzhaf, Andrea C. Mues, Rainer Stern, Guangliang Fu, Sha Lu, Arnold Heemink, Nils van Velzen, and Martijn Schaap
Geosci. Model Dev., 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017,https://doi.org/10.5194/gmd-10-4145-2017, 2017
Short summary
Investigation of the mixing layer height derived from ceilometer measurements in the Kathmandu Valley and implications for local air quality
Andrea Mues, Maheswar Rupakheti, Christoph Münkel, Axel Lauer, Heiko Bozem, Peter Hoor, Tim Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 17, 8157–8176, https://doi.org/10.5194/acp-17-8157-2017,https://doi.org/10.5194/acp-17-8157-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimating the variability in NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025,https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025,https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025,https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary
Anthropogenic emission controls reduce summertime ozone–temperature sensitivity in the United States
Shuai Li, Haolin Wang, and Xiao Lu
Atmos. Chem. Phys., 25, 2725–2743, https://doi.org/10.5194/acp-25-2725-2025,https://doi.org/10.5194/acp-25-2725-2025, 2025
Short summary
Investigating the response of China's surface ozone concentration to the future changes of multiple factors
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025,https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary

Cited articles

AIRBASE: European Topic Centre on Air and Climate Change, available at: http://acm.eionet.europa.eu/databases/airbase (last access: April 2013), 2012.
Amann, M., Bertok, I., Cabala, R., Cofala, J., Heyes, C., Gyarfas, F., Klimont, Z., Schöpp, W., and Wagner, F.: A further emission control scenario for the Clean Air For Europe (CAFE) programme, International Institute for Applied Systems Analysis (IIASA), http://ec.europa.eu/environment/archives/cafe/activities/pdf/cafe_scenario_report_7.pdf, (last access: January 2014), 2005.
Banzhaf, S., Schaap, M., Kerschbaumer, A., Reimer, E., Stern, R., van der Swaluw, E., and Builtjes, P. J. H.: Implementation and evaluation of pH-dependent cloud chemistry and wet deposition in the chemical transport model REM-Calgrid, Atmos. Environ., 49, 378–390, 2012.
Bessagnet, B., Terrenoire, E., Tognet, F., Rouïl, L., Colette, A., Letinois, L., and Malherbe, L. (eds.): The CHIMERE Atmospheric Model, EC4MACS Modelling Methodology, Report, 2012.
Builtjes, P. J. H., van Loon, M., Schaap, M., Teeuwisse, S., Visschedijk, A. J. H., and Bloos, J. P.: Project on the modelling and verification of ozone reduction strategies: contribution of TNOMEP, TNO-report, MEP-R2003/166, Apeldoorn, the Netherlands, 2003.
Download
Share
Altmetrics
Final-revised paper
Preprint