Articles | Volume 14, issue 19
https://doi.org/10.5194/acp-14-10619-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-10619-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Air quality in Delhi during the Commonwealth Games
P. Marrapu
Department of Chemical and Biochemical Engineering, University of Iowa, Iowa city, USA
Center for Global and Regional Environmental Research, University of Iowa, Iowa city, USA
Center for Global and Regional Environmental Research, University of Iowa, Iowa city, USA
Multiphase Chemistry Department, Max Planck Institute Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
G. Beig
Indian Institute of Tropical Meteorology (Ministry of Earth Sciences, Govt. of India) Dr. Homi Bhabha Road, Pashan, Pune, India
S. Sahu
Forschungszentrum Julich Gmbh, IEk-8:Troposphere, 52425 Julich, Germany
R. Srinivas
Indian Institute of Tropical Meteorology (Ministry of Earth Sciences, Govt. of India) Dr. Homi Bhabha Road, Pashan, Pune, India
G. R. Carmichael
Department of Chemical and Biochemical Engineering, University of Iowa, Iowa city, USA
Center for Global and Regional Environmental Research, University of Iowa, Iowa city, USA
Related authors
No articles found.
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024, https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Short summary
A new long-term inversed emission inventory for Chinese air quality (CAQIEI) is developed in this study, which contains constrained monthly emissions of NOx, SO2, CO, PM2.5, PM10, and NMVOCs in China from 2013 to 2020 with a horizontal resolution of 15 km. Emissions of different air pollutants and their changes during 2013–2020 were investigated and compared with previous emission inventories, which sheds new light on the complex variations of air pollutant emissions in China.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Markku Kulmala, Diego Aliaga, Santeri Tuovinen, Runlong Cai, Heikki Junninen, Chao Yan, Federico Bianchi, Yafang Cheng, Aijun Ding, Douglas R. Worsnop, Tuukka Petäjä, Katrianne Lehtipalo, Pauli Paasonen, and Veli-Matti Kerminen
Aerosol Research, 2, 49–58, https://doi.org/10.5194/ar-2-49-2024, https://doi.org/10.5194/ar-2-49-2024, 2024
Short summary
Short summary
Atmospheric new particle formation (NPF), together with secondary production of particulate matter in the atmosphere, dominates aerosol particle number concentrations and submicron particle mass loads in many environments globally. In this opinion paper, we describe the paradigm shift to understand NPF in a continuous way instead of using traditional binary event–non-event analysis.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Najin Kim, Hang Su, Nan Ma, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 16, 2771–2780, https://doi.org/10.5194/amt-16-2771-2023, https://doi.org/10.5194/amt-16-2771-2023, 2023
Short summary
Short summary
We propose a multiple-charging correction algorithm for a broad-supersaturation scanning cloud condensation nuclei (BS2-CCN) system which can obtain high time-resolution aerosol hygroscopicity and CCN activity. The correction algorithm aims at deriving the activation fraction's true value for each particle size. The meaningful differences between corrected and original κ values (single hygroscopicity parameter) emphasize the correction algorithm's importance for ambient aerosol measurement.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Ting Lei, Hang Su, Nan Ma, Ulrich Pöschl, Alfred Wiedensohler, and Yafang Cheng
Atmos. Chem. Phys., 23, 4763–4774, https://doi.org/10.5194/acp-23-4763-2023, https://doi.org/10.5194/acp-23-4763-2023, 2023
Short summary
Short summary
We investigate the hygroscopic behavior of levoglucosan and D-glucose nanoparticles using a nano-HTDMA. There is a weak size dependence of the hygroscopic growth factor of levoglucosan and D-glucose with diameters down to 20 nm, while a strong size dependence of the hygroscopic growth factor of D-glucose has been clearly observed in the size range 6 to 20 nm. The use of the DKA method leads to good agreement with the hygroscopic growth factor of glucose nanoparticles with diameters down to 6 nm.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Shujun Zhong, Shuang Chen, Junjun Deng, Yanbing Fan, Qiang Zhang, Qiaorong Xie, Yulin Qi, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Jialei Zhu, Xin Wang, Di Liu, Xiaole Pan, Yele Sun, Zifa Wang, Yisheng Xu, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 2061–2077, https://doi.org/10.5194/acp-23-2061-2023, https://doi.org/10.5194/acp-23-2061-2023, 2023
Short summary
Short summary
This study investigated the role of the secondary organic aerosol (SOA) loading on the molecular composition of wintertime urban aerosols by ultrahigh-resolution mass spectrometry. Results demonstrate that the SOA loading is an important factor associated with the oxidation degree, nitrate group content, and chemodiversity of nitrooxy–organosulfates. Our study also found that the hydrolysis of nitrooxy–organosulfates is a possible pathway for the formation of organosulfates.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Guo Li, Hang Su, Meng Li, Uwe Kuhn, Guangjie Zheng, Lei Han, Fengxia Bao, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 15, 6433–6446, https://doi.org/10.5194/amt-15-6433-2022, https://doi.org/10.5194/amt-15-6433-2022, 2022
Short summary
Short summary
A large fraction of previous work using dynamic flow chambers was to quantify gas exchange in terms of flux or deposition/emission rate. Here, we extended the usage of this technique to examine uptake kinetics on sample surfaces. The good performance of the chamber system was validated. This technique can be further used for liquid samples and real atmospheric aerosol samples without complicated coating procedures, which complements the existing techniques in atmospheric kinetic studies.
Min Zhou, Guangjie Zheng, Hongli Wang, Liping Qiao, Shuhui Zhu, DanDan Huang, Jingyu An, Shengrong Lou, Shikang Tao, Qian Wang, Rusha Yan, Yingge Ma, Changhong Chen, Yafang Cheng, Hang Su, and Cheng Huang
Atmos. Chem. Phys., 22, 13833–13844, https://doi.org/10.5194/acp-22-13833-2022, https://doi.org/10.5194/acp-22-13833-2022, 2022
Short summary
Short summary
The trend of aerosol pH and its drivers is crucial in understanding the multiphase formation pathways of aerosols. We reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China. Although significant variations of aerosol compositions were observed from 2011 to 2019, the aerosol pH estimated by model only slightly declined by 0.24. Our work shows that the opposite effects of SO42− and non-volatile cation changes play key roles in determining the moderate pH trend.
Wenjie Wang, David D. Parrish, Siwen Wang, Fengxia Bao, Ruijing Ni, Xin Li, Suding Yang, Hongli Wang, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 8935–8949, https://doi.org/10.5194/acp-22-8935-2022, https://doi.org/10.5194/acp-22-8935-2022, 2022
Short summary
Short summary
Tropospheric ozone is an air pollutant that is detrimental to human health, vegetation and ecosystem productivity. A comprehensive characterisation of the spatial and temporal distribution of tropospheric ozone is critical to our understanding of these issues. Here we summarise this distribution over China from the available observational records to the extent possible. This study provides insights into efficient future ozone control strategies in China.
Jingnan Shi, Juan Hong, Nan Ma, Qingwei Luo, Yao He, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Shuang Han, Long Peng, Linhong Xie, Guangsheng Zhou, Wanyun Xu, Yele Sun, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 4599–4613, https://doi.org/10.5194/acp-22-4599-2022, https://doi.org/10.5194/acp-22-4599-2022, 2022
Short summary
Short summary
In this study, we investigated the hygroscopicity of submicron aerosols at a rural site in the North China Plain during the winter of 2018, using a HTDMA and a CV-ToF-ACSM. We observed differences in aerosol hygroscopicity during two distinct episodes with different primary emissions and secondary aerosol formation processes. These results provide an improved understanding of the complex influence of sources and aerosol evolution processes on their hygroscopicity.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Shuang Han, Juan Hong, Qingwei Luo, Hanbing Xu, Haobo Tan, Qiaoqiao Wang, Jiangchuan Tao, Yaqing Zhou, Long Peng, Yao He, Jingnan Shi, Nan Ma, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3985–4004, https://doi.org/10.5194/acp-22-3985-2022, https://doi.org/10.5194/acp-22-3985-2022, 2022
Short summary
Short summary
We present the hygroscopicity of 23 organic species with different physicochemical properties using a hygroscopicity tandem differential mobility analyzer (HTDMA) and compare the results with previous studies. Based on the hygroscopicity parameter κ, the influence of different physicochemical properties that potentially drive hygroscopicity, such as the functionality, water solubility, molar volume, and O : C ratio of organics, are examined separately.
Xiajie Yang, Qiaoqiao Wang, Nan Ma, Weiwei Hu, Yang Gao, Zhijiong Huang, Junyu Zheng, Bin Yuan, Ning Yang, Jiangchuan Tao, Juan Hong, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3743–3762, https://doi.org/10.5194/acp-22-3743-2022, https://doi.org/10.5194/acp-22-3743-2022, 2022
Short summary
Short summary
We use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for N2O5 + Cl chemistry to investigate the impacts of chlorine chemistry on air quality in China. Our study not only significantly improves the model's performance but also demonstrates the importance of non-sea-salt chlorine sources as well as an appropriate parameterization for N2O5 + Cl chemistry to the impact of chlorine chemistry in China.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Guangjie Zheng, Hang Su, Siwen Wang, Andrea Pozzer, and Yafang Cheng
Atmos. Chem. Phys., 22, 47–63, https://doi.org/10.5194/acp-22-47-2022, https://doi.org/10.5194/acp-22-47-2022, 2022
Short summary
Short summary
The recently proposed multiphase buffer theory provides a framework to reconstruct long-term trends and spatial variations in aerosol pH, while non-ideality is a major limitation for its broad applications. Here we proposed a parameterization method to estimate the impact of non-ideality and validated it against long-term observations and global simulations. With this method, the multiphase buffer theory can reproduce well aerosol pH variations estimated by comprehensive thermodynamic models.
Najin Kim, Yafang Cheng, Nan Ma, Mira L. Pöhlker, Thomas Klimach, Thomas F. Mentel, Ovid O. Krüger, Ulrich Pöschl, and Hang Su
Atmos. Meas. Tech., 14, 6991–7005, https://doi.org/10.5194/amt-14-6991-2021, https://doi.org/10.5194/amt-14-6991-2021, 2021
Short summary
Short summary
A broad supersaturation scanning CCN (BS2-CCN) system, in which particles are exposed to a range of supersaturation simultaneously, can measure a broad range of CCN activity distribution with a high time resolution. We describe how the BS2-CCN system can be effectively calibrated and which factors can affect the calibration curve. Intercomparison experiments between typical DMA-CCN and BS2-CCN measurements to evaluate the BS2-CCN system showed high correlation and good agreement.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Nils Friedrich, Philipp Eger, Justin Shenolikar, Nicolas Sobanski, Jan Schuladen, Dirk Dienhart, Bettina Hottmann, Ivan Tadic, Horst Fischer, Monica Martinez, Roland Rohloff, Sebastian Tauer, Hartwig Harder, Eva Y. Pfannerstill, Nijing Wang, Jonathan Williams, James Brooks, Frank Drewnick, Hang Su, Guo Li, Yafang Cheng, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 21, 7473–7498, https://doi.org/10.5194/acp-21-7473-2021, https://doi.org/10.5194/acp-21-7473-2021, 2021
Short summary
Short summary
This paper uses NOx and NOz measurements from the 2017 AQABA ship campaign in the Mediterranean Sea and around the Arabian Peninsula to examine the influence e.g. of emissions from shipping and oil and gas production. Night-time losses of NOx dominated in the Arabian Gulf and in the Red Sea, whereas daytime losses were more important in the Mediterranean Sea. Nitric acid and organic nitrates were the most prevalent components of NOz.
Jiangchuan Tao, Ye Kuang, Nan Ma, Juan Hong, Yele Sun, Wanyun Xu, Yanyan Zhang, Yao He, Qingwei Luo, Linhong Xie, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 21, 7409–7427, https://doi.org/10.5194/acp-21-7409-2021, https://doi.org/10.5194/acp-21-7409-2021, 2021
Short summary
Short summary
The mechanism of secondary aerosol (SA) formation can be affected by relative humidity (RH) and has different influences on the particle CCN activity under different RH conditions. In the North China Plain, we find different responses of CCN activity and enhancements of CCN number concentration to SA formation under different RH conditions. In addition, variations of aerosol mixing state due to SA formation contribute some of the largest uncertainties in predicting CCN number concentration.
Yan Xiang, Tianshu Zhang, Chaoqun Ma, Lihui Lv, Jianguo Liu, Wenqing Liu, and Yafang Cheng
Atmos. Chem. Phys., 21, 7023–7037, https://doi.org/10.5194/acp-21-7023-2021, https://doi.org/10.5194/acp-21-7023-2021, 2021
Short summary
Short summary
For the first time, a vertical observation network consisting of 13 aerosol lidars and more than 1000 ground observation stations were combined with a data assimilation technique to reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations during extreme heavy aerosol pollution on the North China Plain.
Behrooz Roozitalab, Gregory R. Carmichael, and Sarath K. Guttikunda
Atmos. Chem. Phys., 21, 2837–2860, https://doi.org/10.5194/acp-21-2837-2021, https://doi.org/10.5194/acp-21-2837-2021, 2021
Short summary
Short summary
We used air quality modeling to study an extreme pollution episode in November 2017 in India. We found both local and regional emissions contribute to high pollution levels. The extreme pollution values were the result of agricultural fires in the northwest of India. Ozone should be considered in future air quality management strategies.
Weigang Wang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu
Atmos. Chem. Phys., 21, 2179–2190, https://doi.org/10.5194/acp-21-2179-2021, https://doi.org/10.5194/acp-21-2179-2021, 2021
Short summary
Short summary
Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. However, there are few studies attempting to investigate their interactions with water molecules. Here, we investigated the effect of organic coatings on the hygroscopic behavior of the inorganic core.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Chuchu Chen, Xiaoxiang Wang, Kurt Binder, Mohammad Mehdi Ghahremanpour, David van der Spoel, Ulrich Pöschl, Hang Su, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1329, https://doi.org/10.5194/acp-2020-1329, 2021
Publication in ACP not foreseen
Short summary
Short summary
Size dependence of succinic acid solvation in the nanoparticles is investigated based on the molecular dynamics (MD) simulation and energetic analysis. The results show a stronger surface preference and a weaker internal bulk volume solvation of succinic acid in the smaller droplets, which may explain the previously observed size-dependent phase-state of aerosol nanoparticles containing organic molecules, fundamentally promoting a better understanding of atmospheric aerosols.
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020, https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary
Short summary
We utilized a novel online mass spectrometry method to measure the total concentration of higher alkanes at each carbon number at two different sites in China, allowing us to take into account SOA contributions from all isomers for higher alkanes. We found that higher alkanes account for significant fractions of SOA formation at the two sites. The contributions are comparable to or even higher than single-ring aromatics, the most-recognized SOA precursors in urban air.
Guo Li, Hang Su, Nan Ma, Guangjie Zheng, Uwe Kuhn, Meng Li, Thomas Klimach, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 13, 6053–6065, https://doi.org/10.5194/amt-13-6053-2020, https://doi.org/10.5194/amt-13-6053-2020, 2020
Short summary
Short summary
Aerosol acidity plays an important role in regulating the chemistry, health, and ecological effect of aerosol particles. However, a direct measurement of aerosol pH is very challenging because of its fast transition and equilibrium with adjacent environments. Therefore, most early studies have to use modeled pH, resulting in intensive debates about model uncertainties. Here we developed an optimized approach to measure aerosol pH by using pH-indicator papers combined with RGB-based colorimetry.
Lixia Liu, Yafang Cheng, Siwen Wang, Chao Wei, Mira L. Pöhlker, Christopher Pöhlker, Paulo Artaxo, Manish Shrivastava, Meinrat O. Andreae, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020, https://doi.org/10.5194/acp-20-13283-2020, 2020
Short summary
Short summary
This modeling paper reveals how aerosol–cloud interactions (ACIs) and aerosol–radiation interactions (ARIs) induced by biomass burning (BB) aerosols act oppositely on radiation, cloud, and precipitation in the Amazon during the dry season. The varying relative significance of ACIs and ARIs with BB aerosol concentration leads to a nonlinear dependence of the total climate response on BB aerosol loading and features the growing importance of ARIs at high aerosol loading.
Ting Lei, Nan Ma, Juan Hong, Thomas Tuch, Xin Wang, Zhibin Wang, Mira Pöhlker, Maofa Ge, Weigang Wang, Eugene Mikhailov, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Alfred Wiedensohler, and Yafang Cheng
Atmos. Meas. Tech., 13, 5551–5567, https://doi.org/10.5194/amt-13-5551-2020, https://doi.org/10.5194/amt-13-5551-2020, 2020
Short summary
Short summary
We present the design of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. We further introduce comprehensive methods for system calibration and validation of the performance of the system. We then study the size dependence of the deliquescence and the efflorescence of aerosol nanoparticles for sizes down to 6 nm.
Wei Tao, Hang Su, Guangjie Zheng, Jiandong Wang, Chao Wei, Lixia Liu, Nan Ma, Meng Li, Qiang Zhang, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 20, 11729–11746, https://doi.org/10.5194/acp-20-11729-2020, https://doi.org/10.5194/acp-20-11729-2020, 2020
Short summary
Short summary
We simulated the thermodynamic and multiphase reactions in aerosol water during a wintertime haze event over the North China Plain. It was found that aerosol pH exhibited a strong spatiotemporal variability, and multiple oxidation pathways were predominant for particulate sulfate formation in different locations. Sensitivity tests further showed that ammonia, crustal particles, and dissolved transition metal ions were important factors for multiphase chemistry during haze episodes.
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
Qiaorong Xie, Sihui Su, Shuang Chen, Yisheng Xu, Dong Cao, Jing Chen, Lujie Ren, Siyao Yue, Wanyu Zhao, Yele Sun, Zifa Wang, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, Guibin Jiang, Cong-Qiang Liu, and Pingqing Fu
Atmos. Chem. Phys., 20, 6803–6820, https://doi.org/10.5194/acp-20-6803-2020, https://doi.org/10.5194/acp-20-6803-2020, 2020
Short summary
Short summary
Current knowledge on firework-related organic aerosols is very limited. Here the detailed molecular composition of organics in urban aerosols was characterized using ultrahigh-resolution FT-ICR mass spectrometry. Our findings highlight that firework emission leads to a sharp increase in CHO, CHNO, and CHOS containing high-molecular-weight species, particularly aromatic-like substances, which affect the physicochemical properties such as the light absorption and health effects of urban aerosols.
Shengzhen Zhou, Luolin Wu, Junchen Guo, Weihua Chen, Xuemei Wang, Jun Zhao, Yafang Cheng, Zuzhao Huang, Jinpu Zhang, Yele Sun, Pingqing Fu, Shiguo Jia, Jun Tao, Yanning Chen, and Junxia Kuang
Atmos. Chem. Phys., 20, 6435–6453, https://doi.org/10.5194/acp-20-6435-2020, https://doi.org/10.5194/acp-20-6435-2020, 2020
Short summary
Short summary
In this work, measurements of size-segregated aerosols were conducted at three altitudes (ground level, 118 m, and 488 m) on the 610 m high Canton Tower in southern China. Vertical variations of PM and size-segregated chemical compositions were investigated. The results indicated that meteorological parameters and atmospheric aqueous and heterogeneous reactions together led to aerosol formation and haze episodes in the Pearl River Delta region during the measurement periods.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Shaofeng Xu, Lujie Ren, Yunchao Lang, Shengjie Hou, Hong Ren, Lianfang Wei, Libin Wu, Junjun Deng, Wei Hu, Xiaole Pan, Yele Sun, Zifa Wang, Hang Su, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 20, 3623–3644, https://doi.org/10.5194/acp-20-3623-2020, https://doi.org/10.5194/acp-20-3623-2020, 2020
Short summary
Short summary
Current knowledge on the size distribution of biogenic primary organic aerosols in urban regions with heavy haze pollution is very limited. Here we performed a year-round study focusing on the organic molecular composition of size-segregated aerosol samples collected in urban Beijing during haze and non-haze days to elucidate the seasonal contributions of biomass burning, fungal spores, and plant debris to organic carbon as well as the influences from local emissions and long-range transport.
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy
Atmos. Chem. Phys., 20, 1497–1505, https://doi.org/10.5194/acp-20-1497-2020, https://doi.org/10.5194/acp-20-1497-2020, 2020
Short summary
Short summary
We quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Meteorological conditions over the study period would have led to an increase of haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate.
Meng Gao, Zhiwei Han, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Meng Li, Jung-Hun Woo, Qiang Zhang, Yafang Cheng, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 1147–1161, https://doi.org/10.5194/acp-20-1147-2020, https://doi.org/10.5194/acp-20-1147-2020, 2020
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the models.
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020, https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Short summary
A new method was developed to calculate hygroscopicity parameter κ of organic aerosols (κOA) based on aerosol light-scattering measurements and bulk aerosol chemical-composition measurements. Derived high-time-resolution κOA varied in a wide range (near 0 to 0.25), and the organic aerosol oxidation degree significantly impacts variations in κOA. Distinct diurnal variation in κOA is found, and its relationship with oxygenated organic aerosol is discussed.
Ying Chen, Yafang Cheng, Nan Ma, Chao Wei, Liang Ran, Ralf Wolke, Johannes Größ, Qiaoqiao Wang, Andrea Pozzer, Hugo A. C. Denier van der Gon, Gerald Spindler, Jos Lelieveld, Ina Tegen, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 771–786, https://doi.org/10.5194/acp-20-771-2020, https://doi.org/10.5194/acp-20-771-2020, 2020
Short summary
Short summary
Particulate nitrate is one of the most important climate cooling agents. Our results show that interaction with sea-salt aerosol can shift nitrate to larger sized particles (redistribution effect), weakening its direct cooling effect. The modelling results indicate strong redistribution over coastal and offshore regions worldwide as well as continental Europe. Improving the consideration of the redistribution effect in global models fosters a better understanding of climate change.
Ying Chen, Oliver Wild, Edmund Ryan, Saroj Kumar Sahu, Douglas Lowe, Scott Archer-Nicholls, Yu Wang, Gordon McFiggans, Tabish Ansari, Vikas Singh, Ranjeet S. Sokhi, Alex Archibald, and Gufran Beig
Atmos. Chem. Phys., 20, 499–514, https://doi.org/10.5194/acp-20-499-2020, https://doi.org/10.5194/acp-20-499-2020, 2020
Short summary
Short summary
PM2.5 and O3 are two major air pollutants. Some mitigation strategies focusing on reducing PM2.5 may lead to substantial increase in O3. We use statistical emulation combined with atmospheric transport model to perform thousands of sensitivity numerical studies to identify the major sources of PM2.5 and O3 and to develop strategies targeted at both pollutants. Our scientific evidence suggests that regional coordinated emission control is required to mitigate PM2.5 whilst preventing O3 increase.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Jie Li, Tatsuya Nagashima, Lei Kong, Baozhu Ge, Kazuyo Yamaji, Joshua S. Fu, Xuemei Wang, Qi Fan, Syuichi Itahashi, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Meigen Zhang, Zhining Tao, Mizuo Kajino, Hong Liao, Meng Li, Jung-Hun Woo, Jun-ichi Kurokawa, Zhe Wang, Qizhong Wu, Hajime Akimoto, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 19, 12993–13015, https://doi.org/10.5194/acp-19-12993-2019, https://doi.org/10.5194/acp-19-12993-2019, 2019
Short summary
Short summary
This study evaluated and intercompared 14 CTMs with ozone observations in East Asia, within the framework of the Model Inter-Comparison Study for ASIA Phase III (MICS-Asia III). Potential causes of the discrepancies between model results and observation were investigated by assessing the planetary boundary layer heights, emission fluxes, dry deposition, chemistry and vertical transport among models. Finally, a multi-model estimate of pollution distributions was provided.
Meng Li, Hang Su, Guo Li, Nan Ma, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 19, 10981–11011, https://doi.org/10.5194/acp-19-10981-2019, https://doi.org/10.5194/acp-19-10981-2019, 2019
Short summary
Short summary
Aerosols and the ground provide two kinds of surfaces for multiphase reactions in the planetary boundary layer. However, the relative importance of these two surfaces for gas uptake has not been quantified. We compare the uptake fluxes of aerosols and the ground surface for reactive trace gases under various conditions. More studies regarding O3 uptake on liquid organic aerosols and H2O2 uptakes on various aerosols are needed considering their potential important roles in atmospheric chemistry.
Yuxuan Zhang, Meng Li, Yafang Cheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Xin Li, Dan Tong, Nana Wu, Xin Zhang, Bo Zheng, Yixuan Zheng, Yu Bo, Hang Su, and Qiang Zhang
Atmos. Chem. Phys., 19, 9663–9680, https://doi.org/10.5194/acp-19-9663-2019, https://doi.org/10.5194/acp-19-9663-2019, 2019
Short summary
Short summary
In this work, we developed a new approach to simulate BC mixing state based on an emissions inventory and back-trajectory analysis. The model tracks the evolution of BC aging degree during atmospheric transport. Our simulations identified the important roles of extensive emission regions in the BC aging process during atmospheric transport, which provided more clues for improving air pollution and climate change.
Meng Li, Qiang Zhang, Bo Zheng, Dan Tong, Yu Lei, Fei Liu, Chaopeng Hong, Sicong Kang, Liu Yan, Yuxuan Zhang, Yu Bo, Hang Su, Yafang Cheng, and Kebin He
Atmos. Chem. Phys., 19, 8897–8913, https://doi.org/10.5194/acp-19-8897-2019, https://doi.org/10.5194/acp-19-8897-2019, 2019
Short summary
Short summary
A long-term non-methane volatile organic compound (NMVOC) emission inventory is crucial for air quality management but still absent in China. We estimated China’s NMVOCs during 1990–2017 with speciation based on updated databases and investigated the trend of ozone formation potential (OFP) for the same period. Persistent growth of emissions and OFP highlights the need of control measures for solvent use and industrial sources and the importance of designing multi-pollutant control strategies.
Zainab Q. Hakim, Scott Archer-Nicholls, Gufran Beig, Gerd A. Folberth, Kengo Sudo, Nathan Luke Abraham, Sachin Ghude, Daven K. Henze, and Alexander T. Archibald
Atmos. Chem. Phys., 19, 6437–6458, https://doi.org/10.5194/acp-19-6437-2019, https://doi.org/10.5194/acp-19-6437-2019, 2019
Short summary
Short summary
Surface ozone is an important air pollutant and recent work has calculated that large numbers of people die prematurely because of exposure to high levels of surface ozone in India. However, these calculations require model simulations of ozone as key inputs.
Here we perform the most thorough evaluation of global model surface ozone over India to date. These analyses of model simulations and observations highlight some successes and shortcomings and the need for further process-based studies.
Philipp Porada, Alexandra Tamm, Jose Raggio, Yafang Cheng, Axel Kleidon, Ulrich Pöschl, and Bettina Weber
Biogeosciences, 16, 2003–2031, https://doi.org/10.5194/bg-16-2003-2019, https://doi.org/10.5194/bg-16-2003-2019, 2019
Short summary
Short summary
The trace gases NO and HONO are crucial for atmospheric chemistry. It has been suggested that biological soil crusts in drylands contribute substantially to global NO and HONO emissions, based on empirical upscaling of laboratory and field observations. Here we apply an alternative, process-based modeling approach to predict these emissions. We find that biological soil crusts emit globally significant amounts of NO and HONO, which also vary depending on the type of biological soil crust.
Guo Li, Yafang Cheng, Uwe Kuhn, Rongjuan Xu, Yudong Yang, Hannah Meusel, Zhibin Wang, Nan Ma, Yusheng Wu, Meng Li, Jonathan Williams, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Hang Su
Atmos. Chem. Phys., 19, 2209–2232, https://doi.org/10.5194/acp-19-2209-2019, https://doi.org/10.5194/acp-19-2209-2019, 2019
Short summary
Short summary
VOCs play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs at ambient air conditions of an urban background site in Beijing.
Xiaoxiang Wang, Chuchu Chen, Kurt Binder, Uwe Kuhn, Ulrich Pöschl, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 18, 17077–17086, https://doi.org/10.5194/acp-18-17077-2018, https://doi.org/10.5194/acp-18-17077-2018, 2018
Short summary
Short summary
The surface tension of aqueous NaCl (σ) is investigated by molecular dynamics simulations from dilute to highly supersaturated solutions. The linear approximation of concentration dependence of σ at molality scale can be extended to the supersaturated NaCl solution until the solute mass fraction (xNaCl) of ~0.39. After that, the σ remains almost unchanged until an xNaCl of ~0.47. Then the σ gradually regains the growing momentum with a tendency to approach the surface tension of molten NaCl.
Juan Hong, Hanbing Xu, Haobo Tan, Changqing Yin, Liqing Hao, Fei Li, Mingfu Cai, Xuejiao Deng, Nan Wang, Hang Su, Yafang Cheng, Lin Wang, Tuukka Petäjä, and Veli-Matti Kerminen
Atmos. Chem. Phys., 18, 14079–14094, https://doi.org/10.5194/acp-18-14079-2018, https://doi.org/10.5194/acp-18-14079-2018, 2018
Short summary
Short summary
In this manuscript, we provide the results of the hygroscopicity of a more anthropogenically influenced aerosol in a suburban site in China. Organic material in the current type of aerosols showed moderate hygroscopicity, and it appeared to be less sensitive towards the variation of its oxidation level, which suggests different characteristics of the oxidation products in secondary organic aerosols (SOA) under the suburban/urban atmosphere in China when compared to other background environments.
Jorge Saturno, Bruna A. Holanda, Christopher Pöhlker, Florian Ditas, Qiaoqiao Wang, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Jeannine Ditas, Thorsten Hoffmann, Isabella Hrabe de Angelis, Tobias Könemann, Jošt V. Lavrič, Nan Ma, Jing Ming, Hauke Paulsen, Mira L. Pöhlker, Luciana V. Rizzo, Patrick Schlag, Hang Su, David Walter, Stefan Wolff, Yuxuan Zhang, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 12817–12843, https://doi.org/10.5194/acp-18-12817-2018, https://doi.org/10.5194/acp-18-12817-2018, 2018
Short summary
Short summary
Biomass burning emits light-absorbing aerosol particles that warm the atmosphere. One of them is the primarily emitted black carbon, which strongly absorbs radiation in the visible and UV spectral regions. Another one is the so-called brown carbon, a fraction of organic aerosol particles that are able to absorb radiation, especially in the UV spectral region. The contribution of both kinds of aerosol particles to light absorption over the Amazon rainforest is studied in this paper.
Mira L. Pöhlker, Florian Ditas, Jorge Saturno, Thomas Klimach, Isabella Hrabě de Angelis, Alessandro C. Araùjo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Bruna A. Holanda, Konrad Kandler, Jürgen Kesselmeier, Tobias Könemann, Ovid O. Krüger, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Luciana V. Rizzo, Diana Rose, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, https://doi.org/10.5194/acp-18-10289-2018, 2018
Short summary
Short summary
This paper presents the aerosol and cloud condensation nuclei (CCN) variability for characteristic atmospheric states – such as biomass burning, long-range transport, and pristine rain forest conditions – in the vulnerable and climate-relevant Amazon Basin. It summarizes the key properties of aerosol and CCN and, thus, provides a basis for an in-depth analysis of aerosol–cloud interactions in the Amazon region.
Yuxuan Zhang, Xin Li, Meng Li, Yixuan Zheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Dan Tong, Xin Zhang, Yafang Cheng, Hang Su, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 18, 10275–10287, https://doi.org/10.5194/acp-18-10275-2018, https://doi.org/10.5194/acp-18-10275-2018, 2018
Short summary
Short summary
When emission controls were implemented during APEC, we found that the reduction in BC light absorption was driven by simultaneously reducing the mass concentration and light-absorption capability of BC. The weakening of BC light-absorption capability could be attributed to less coating material on BC surfaces due to the decreased chemical production of secondary aerosols. Our results imply that a synergetic reduction in multiple-pollutant emissions could benefit both air quality and climate.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Haiyan Li, Meng Li, Xin Zhang, Aijun Ding, and Kebin He
Atmos. Chem. Phys., 18, 9879–9896, https://doi.org/10.5194/acp-18-9879-2018, https://doi.org/10.5194/acp-18-9879-2018, 2018
Short summary
Short summary
The light absorption of BC-containing particles strongly depends on their aging process in the atmosphere. Whether and how the aging degree and light absorption capability of BC-containing particles will change with air pollution development is still unclear. Our results reveal that under a more polluted environment, the BC-containing particles are characterized not only by higher BC mass concentrations but also by more coating materials on BC surfaces and thus higher light absorption capacity.
Jiaping Wang, Wei Nie, Yafang Cheng, Yicheng Shen, Xuguang Chi, Jiandong Wang, Xin Huang, Yuning Xie, Peng Sun, Zheng Xu, Ximeng Qi, Hang Su, and Aijun Ding
Atmos. Chem. Phys., 18, 9061–9074, https://doi.org/10.5194/acp-18-9061-2018, https://doi.org/10.5194/acp-18-9061-2018, 2018
Short summary
Short summary
An optimized segregation method is applied to estimate light absorption of brown carbon (BrC) in Nanjing. This study highlights the considerable contribution of BrC to light absorption in the Yangtze River Delta region, China, and depicts its long-term profile in this region for the first time. Lagrangian modeling and the chemical signature observed at the site suggested that open biomass burning and residential emissions are the dominant sources influencing BrC in the two highest BrC seasons.
Pengzhen He, Becky Alexander, Lei Geng, Xiyuan Chi, Shidong Fan, Haicong Zhan, Hui Kang, Guangjie Zheng, Yafang Cheng, Hang Su, Cheng Liu, and Zhouqing Xie
Atmos. Chem. Phys., 18, 5515–5528, https://doi.org/10.5194/acp-18-5515-2018, https://doi.org/10.5194/acp-18-5515-2018, 2018
Short summary
Short summary
We use observations of the oxygen isotopic composition of sulfate aerosol as a fingerprint to quantify various sulfate formation mechanisms during pollution events in Beijing, China. We found that heterogeneous reactions on aerosols dominated sulfate production in general; however, in-cloud reactions would dominate haze sulfate production when cloud liquid water content was high. The findings also suggest the heterogeneity of aerosol acidity should be parameterized in models.
Meng Gao, Zhiwei Han, Zirui Liu, Meng Li, Jinyuan Xin, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Yafang Cheng, Yuesi Wang, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Jung-Hun Woo, Qiang Zhang, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, https://doi.org/10.5194/acp-18-4859-2018, 2018
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design is presented.
Guo Li, Hang Su, Uwe Kuhn, Hannah Meusel, Markus Ammann, Min Shao, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 18, 2669–2686, https://doi.org/10.5194/acp-18-2669-2018, https://doi.org/10.5194/acp-18-2669-2018, 2018
Short summary
Short summary
Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. In previous applications, the effects of coating surface roughness on flow conditions were not well quantified. In this study, a criterion is proposed to eliminate/minimize the potential effects of coating surface roughness on laminar flow in coated-wall flow tube experiments and validate the applications of diffusion correction methods.
Ting Lei, Andreas Zuend, Yafang Cheng, Hang Su, Weigang Wang, and Maofa Ge
Atmos. Chem. Phys., 18, 1045–1064, https://doi.org/10.5194/acp-18-1045-2018, https://doi.org/10.5194/acp-18-1045-2018, 2018
Short summary
Short summary
Measurements and thermodynamic equilibrium predictions for organic–inorganic aerosols related to components from biomass burning emissions demonstrate a diversity of hygroscopic growth and shrinking behavior, which we observed using a hygroscopicity tandem differential mobility analyzer (HTDMA). Controlled laboratory experiments with single solutes and/or with mixed organic–inorganic systems of known phase state will be useful to constrain model parameters of thermodynamic equilibrium models.
Hannah Meusel, Alexandra Tamm, Uwe Kuhn, Dianming Wu, Anna Lena Leifke, Sabine Fiedler, Nina Ruckteschler, Petya Yordanova, Naama Lang-Yona, Mira Pöhlker, Jos Lelieveld, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Bettina Weber, and Yafang Cheng
Atmos. Chem. Phys., 18, 799–813, https://doi.org/10.5194/acp-18-799-2018, https://doi.org/10.5194/acp-18-799-2018, 2018
Short summary
Short summary
The photolysis of nitrous acid (HONO) forms the OH radical. However, not all sources are known. Recent studies showed that HONO can be emitted from soil but they did not evaluate the importance to the HONO budget. In this work HONO emissions from 43 soil and biological soil crust samples from Cyprus were measured in a dynamic chamber and extrapolated to the real atmosphere. A large fraction of the local missing source (published earlier; Meusel et al., 2016) could be assigned to soil emissions.
Ying Chen, Ralf Wolke, Liang Ran, Wolfram Birmili, Gerald Spindler, Wolfram Schröder, Hang Su, Yafang Cheng, Ina Tegen, and Alfred Wiedensohler
Atmos. Chem. Phys., 18, 673–689, https://doi.org/10.5194/acp-18-673-2018, https://doi.org/10.5194/acp-18-673-2018, 2018
Short summary
Short summary
The heterogeneous hydrolysis of N2O5 on particle surfaces is crucial for the nitrogen cycle in the atmosphere. The reaction rate is determined by meteorological and particle properties, but its parameterization in previous 3-D modelling studies did not comprehensively consider these parameters. We propose a parameterization to take these into account and improve nitrate prediction; we report that the organic coating suppression on the N2O5 reaction is not as important as expected in the EU.
Amit Sharma, Narendra Ojha, Andrea Pozzer, Kathleen A. Mar, Gufran Beig, Jos Lelieveld, and Sachin S. Gunthe
Atmos. Chem. Phys., 17, 14393–14413, https://doi.org/10.5194/acp-17-14393-2017, https://doi.org/10.5194/acp-17-14393-2017, 2017
Short summary
Short summary
We evaluate the numerical simulations of surface ozone during pre-monsoon season against a network of stations including clean, rural and polluted urban environments in the south Asian region. Significant effects of the employed emission inventory and chemical mechanism on the simulated ozone are found during the noon hours of intense photochemistry. The presented evaluation on the diurnal timescale would have implications for assessing ozone buildup and impacts on human health and crop yields.
Qing Mu, Gerhard Lammel, Christian N. Gencarelli, Ian M. Hedgecock, Ying Chen, Petra Přibylová, Monique Teich, Yuxuan Zhang, Guangjie Zheng, Dominik van Pinxteren, Qiang Zhang, Hartmut Herrmann, Manabu Shiraiwa, Peter Spichtinger, Hang Su, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 17, 12253–12267, https://doi.org/10.5194/acp-17-12253-2017, https://doi.org/10.5194/acp-17-12253-2017, 2017
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants with the largest emissions in East Asia. The regional WRF-Chem-PAH model has been developed to reflect the state-of-the-art understanding of current PAHs studies with several new or updated features. It is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions.
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017, https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
Short summary
In this study we investigated protein nitration and decomposition by light in the presence of NO2 via flow tube measurements. Nitrated proteins have an enhanced allergenic potential but so far nitration was only studied in dark conditions. Under irradiated conditions we found that proteins predominantly decompose while forming nitrous acid (HONO) an important precursor of the OH radical. Unlike other studies on heterogeneous NO2 conversion we found a stable HONO formation over a long period.
Jorge Saturno, Christopher Pöhlker, Dario Massabò, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Florian Ditas, Isabella Hrabě de Angelis, Daniel Morán-Zuloaga, Mira L. Pöhlker, Luciana V. Rizzo, David Walter, Qiaoqiao Wang, Paulo Artaxo, Paolo Prati, and Meinrat O. Andreae
Atmos. Meas. Tech., 10, 2837–2850, https://doi.org/10.5194/amt-10-2837-2017, https://doi.org/10.5194/amt-10-2837-2017, 2017
Short summary
Short summary
Different Aethalometer correction schemes were compared to a multi-wavelength absorption reference measurement. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for aerosol scattering properties in the correction is crucial to retrieve the proper absorption Ångström exponent (AAE). We found that the raw AAE of uncompensated Aethalometer attenuation significantly correlates with a measured reference AAE.
Yuxuan Zhang, Hang Su, Simonas Kecorius, Zhibin Wang, Min Hu, Tong Zhu, Kebin He, Alfred Wiedensohler, Qiang Zhang, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-222, https://doi.org/10.5194/acp-2017-222, 2017
Revised manuscript not accepted
Short summary
Short summary
The light absorption of black carbon (BC) strongly depends on their mixing state. By now, the BC mixing state in the atmosphere is still unclear. In this work, we have investigated the comprehensive characterization of BC mixing state at a polluted regional background site of the North China Plain (NCP) based on in site measurements. we found that BC aerosols of the NCP were fully aged, suggesting a strong optical and climate effect of BC on the regional scale in northern China.
Zhibin Wang, Yafang Cheng, Nan Ma, Eugene Mikhailov, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-253, https://doi.org/10.5194/acp-2017-253, 2017
Revised manuscript has not been submitted
Stefano Galmarini, Brigitte Koffi, Efisio Solazzo, Terry Keating, Christian Hogrefe, Michael Schulz, Anna Benedictow, Jan Jurgen Griesfeller, Greet Janssens-Maenhout, Greg Carmichael, Joshua Fu, and Frank Dentener
Atmos. Chem. Phys., 17, 1543–1555, https://doi.org/10.5194/acp-17-1543-2017, https://doi.org/10.5194/acp-17-1543-2017, 2017
Short summary
Short summary
We present an overview of the coordinated global numerical modelling experiments performed during 2012–2016 by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), the regional experiments by the Air Quality Model Evaluation International Initiative (AQMEII) over Europe and North America, and the Model Intercomparison Study for Asia (MICS-Asia). Given the organizational complexity of bringing together these three initiatives, the experiment organization is presented.
Meng Li, Qiang Zhang, Jun-ichi Kurokawa, Jung-Hun Woo, Kebin He, Zifeng Lu, Toshimasa Ohara, Yu Song, David G. Streets, Gregory R. Carmichael, Yafang Cheng, Chaopeng Hong, Hong Huo, Xujia Jiang, Sicong Kang, Fei Liu, Hang Su, and Bo Zheng
Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, https://doi.org/10.5194/acp-17-935-2017, 2017
Short summary
Short summary
An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. The total Asian emissions in 2010 are estimated as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.5 Tg CO, 67.0 Tg NMVOC, 28.7 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2.
Mira L. Pöhlker, Christopher Pöhlker, Florian Ditas, Thomas Klimach, Isabella Hrabe de Angelis, Alessandro Araújo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Jürgen Kesselmeier, Tobias Könemann, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Diana Rose, Jorge Saturno, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, and Ulrich Pöschl
Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, https://doi.org/10.5194/acp-16-15709-2016, 2016
Short summary
Short summary
The paper presents a systematic characterization of cloud condensation nuclei (CCN) concentration in the central Amazonian atmosphere. Our results show that the CCN population in this globally important ecosystem follows a pollution-related seasonal cycle, in which it mainly depends on changes in total aerosol size distribution and to a minor extent in the aerosol chemical composition. Our results allow an efficient modeling and prediction of the CCN population based on a novel approach.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Hang Su, Yafang Cheng, Nan Ma, Zhibin Wang, Xiaoxiang Wang, Mira L. Pöhlker, Björn Nillius, Alfred Wiedensohler, and Ulrich Pöschl
Atmos. Meas. Tech., 9, 5183–5192, https://doi.org/10.5194/amt-9-5183-2016, https://doi.org/10.5194/amt-9-5183-2016, 2016
Short summary
Short summary
In cloud condensation nuclei (CCN) measurements, the supersaturation scan is often time-consuming and limits the temporal resolution of CCN measurements. Here we present a new concept, termed the broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned, resulting in fast measurements of CCN activity.
Ying Chen, Yafang Cheng, Nan Ma, Ralf Wolke, Stephan Nordmann, Stephanie Schüttauf, Liang Ran, Birgit Wehner, Wolfram Birmili, Hugo A. C. Denier van der Gon, Qing Mu, Stefan Barthel, Gerald Spindler, Bastian Stieger, Konrad Müller, Guang-Jie Zheng, Ulrich Pöschl, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 12081–12097, https://doi.org/10.5194/acp-16-12081-2016, https://doi.org/10.5194/acp-16-12081-2016, 2016
Short summary
Short summary
Sea salt aerosol (SSA) is important for primary and secondary aerosols on a global scale. During 10–20 September 2013, the SSA mass concentration was overestimated by a factor of 8–20 over central Europe by WRF-Chem model, stem from the uncertainty of its emission scheme. This could facilitate the coarse-mode nitrate formation (~ 140 % but inhibit the fine-mode nitrate formation (~−20 %). A special long-range transport mechanism could broaden this influence of SSA to a larger downwind region.
Meng Gao, Gregory R. Carmichael, Pablo E. Saide, Zifeng Lu, Man Yu, David G. Streets, and Zifa Wang
Atmos. Chem. Phys., 16, 11837–11851, https://doi.org/10.5194/acp-16-11837-2016, https://doi.org/10.5194/acp-16-11837-2016, 2016
Short summary
Short summary
The WRF-Chem model was used to examine how the winter PM2.5 concentrations change in response to changes in emissions and meteorology in North China from 1960 to 2010. The discussions in this study indicate that dramatic changes in emissions are the main cause of increasing haze events in North China, and long-term trends in atmospheric circulations maybe another important cause. We also found aerosol feedbacks have been significantly enhanced from 1960 to 2010, due to higher aerosol loadings.
Xiawei Yu, Zhibin Wang, Minghui Zhang, Uwe Kuhn, Zhouqing Xie, Yafang Cheng, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 16, 11337–11348, https://doi.org/10.5194/acp-16-11337-2016, https://doi.org/10.5194/acp-16-11337-2016, 2016
Guo Li, Hang Su, Xin Li, Uwe Kuhn, Hannah Meusel, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Yafang Cheng
Atmos. Chem. Phys., 16, 10299–10311, https://doi.org/10.5194/acp-16-10299-2016, https://doi.org/10.5194/acp-16-10299-2016, 2016
Short summary
Short summary
Indoor and outdoor formaldehyde (HCHO) are both of considerable concern because of its health effects and its role in atmospheric chemistry. The heterogeneous reactions between gaseous HCHO with soils can pose important impact on both HCHO budget and soil ecosystem. Our results confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions. Soil and soil-derived airborne particles can either act as a source or a sink for HCHO.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Simonas Kecorius, Zhibin Wang, Zhijun Wu, Min Hu, Tong Zhu, Alfred Wiedensohler, and Kebin He
Atmos. Meas. Tech., 9, 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, https://doi.org/10.5194/amt-9-1833-2016, 2016
Short summary
Short summary
We develop a novel method in this work for in situ measurements of the morphology and effective density of ambient In-BC cores using a volatility tandem differential mobility analyzer and a single-particle soot photometer. We find that In-BC cores hardly transform the morphology of BC into a void-free sphere. Taking the morphology and density of ambient In-BC cores into account, our work provides a new insight into the enhancement of light absorption for In-BC particles in the atmosphere.
Ying Chen, Ya-Fang Cheng, Stephan Nordmann, Wolfram Birmili, Hugo A. C. Denier van der Gon, Nan Ma, Ralf Wolke, Birgit Wehner, Jia Sun, Gerald Spindler, Qing Mu, Ulrich Pöschl, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 16, 1823–1835, https://doi.org/10.5194/acp-16-1823-2016, https://doi.org/10.5194/acp-16-1823-2016, 2016
Short summary
Short summary
We evaluated the EC point sources in Germany with high-resolution simulation by WRF-Chem, and find out that point sources contribute too much EC in the coarse mode aerosol mass. The area emissions in Eastern Europe and Russia also allocate too much EC emission in coarse mode in the EUCAARI EC emission inventory. Because of the shorter life time of coarse mode EC, about 20–40 % less EC can be transported to Melpitz from Eastern Europe. Size segregation information is important for EC inventories.
M. Gao, G. R. Carmichael, Y. Wang, P. E. Saide, M. Yu, J. Xin, Z. Liu, and Z. Wang
Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, https://doi.org/10.5194/acp-16-1673-2016, 2016
Short summary
Short summary
The WRF-Chem model was applied to study the 2010 winter haze in North China. Air pollutants outside Beijing contributed about 64.5 % to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, Relative Humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn.
D. Chang, Y. Cheng, P. Reutter, J. Trentmann, S. M. Burrows, P. Spichtinger, S. Nordmann, M. O. Andreae, U. Pöschl, and H. Su
Atmos. Chem. Phys., 15, 10325–10348, https://doi.org/10.5194/acp-15-10325-2015, https://doi.org/10.5194/acp-15-10325-2015, 2015
L. Zhang, D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, O. Torres, C. Ahn, Z. Lu, J. Cao, and Y. Mao
Atmos. Chem. Phys., 15, 10281–10308, https://doi.org/10.5194/acp-15-10281-2015, https://doi.org/10.5194/acp-15-10281-2015, 2015
Short summary
Short summary
We attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Despite the limitations and uncertainties, using OMI AAOD to constrain BC sources we are able to improve model representation of BC distributions, particularly over China.
H. S. Chen, Z. F. Wang, J. Li, X. Tang, B. Z. Ge, X. L. Wu, O. Wild, and G. R. Carmichael
Geosci. Model Dev., 8, 2857–2876, https://doi.org/10.5194/gmd-8-2857-2015, https://doi.org/10.5194/gmd-8-2857-2015, 2015
Short summary
Short summary
A new global nested atmospheric mercury transport model was developed and introduced. Model performance was found significantly better in North America and Europe than in East Asia. Nested simulation has been conducted in East Asia and shows improved skill at capturing the high spatial variability of Hg concentrations and deposition. The trans-boundary transport of Chinese primary anthropogenic mercury emissions was quantified for the first time.
Z. Wang, H. Su, X. Wang, N. Ma, A. Wiedensohler, U. Pöschl, and Y. Cheng
Atmos. Meas. Tech., 8, 2161–2172, https://doi.org/10.5194/amt-8-2161-2015, https://doi.org/10.5194/amt-8-2161-2015, 2015
R. Kumar, M. C. Barth, V. S. Nair, G. G. Pfister, S. Suresh Babu, S. K. Satheesh, K. Krishna Moorthy, G. R. Carmichael, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, https://doi.org/10.5194/acp-15-5415-2015, 2015
Short summary
Short summary
We examine differences in the surface BC between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identify dominant sources of BC in South Asia during ICARB. Anthropogenic emissions were the main source of BC during ICARB and had about 5 times stronger influence on the BoB compared to the AS. Regional-scale transport contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions.
G. J. Zheng, F. K. Duan, H. Su, Y. L. Ma, Y. Cheng, B. Zheng, Q. Zhang, T. Huang, T. Kimoto, D. Chang, U. Pöschl, Y. F. Cheng, and K. B. He
Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, https://doi.org/10.5194/acp-15-2969-2015, 2015
S. Kulkarni, N. Sobhani, J. P. Miller-Schulze, M. M. Shafer, J. J. Schauer, P. A. Solomon, P. E. Saide, S. N. Spak, Y. F. Cheng, H. A. C. Denier van der Gon, Z. Lu, D. G. Streets, G. Janssens-Maenhout, C. Wiedinmyer, J. Lantz, M. Artamonova, B. Chen, S. Imashev, L. Sverdlik, J. T. Deminter, B. Adhikary, A. D'Allura, C. Wei, and G. R. Carmichael
Atmos. Chem. Phys., 15, 1683–1705, https://doi.org/10.5194/acp-15-1683-2015, https://doi.org/10.5194/acp-15-1683-2015, 2015
Short summary
Short summary
This study presents a regional-scale modeling analysis of aerosols in the Central Asia region including detailed characterization of seasonal source region and sector contributions along with the predicted changes in distribution of aerosols using 2030 future emission scenarios. The influence of long transport and impact of varied emission sources including dust, biomass burning, and anthropogenic sources on the regional aerosol distributions and the associated transport pathways are discussed.
H. S. Gadhavi, K. Renuka, V. Ravi Kiran, A. Jayaraman, A. Stohl, Z. Klimont, and G. Beig
Atmos. Chem. Phys., 15, 1447–1461, https://doi.org/10.5194/acp-15-1447-2015, https://doi.org/10.5194/acp-15-1447-2015, 2015
Short summary
Short summary
Emission inventories are a key component of simulating past, present and future climate. In this article we have evaluated three black carbon emission inventories for emissions of India using observations made from a strategic location. Annual average simulated black carbon concentration is found to be 35% to 60% lower than observed concentration because of underestimation of emissions of southern India in the inventories.
M. C. Wyant, C. S. Bretherton, R. Wood, G. R. Carmichael, A. Clarke, J. Fast, R. George, W. I. Gustafson Jr., C. Hannay, A. Lauer, Y. Lin, J.-J. Morcrette, J. Mulcahy, P. E. Saide, S. N. Spak, and Q. Yang
Atmos. Chem. Phys., 15, 153–172, https://doi.org/10.5194/acp-15-153-2015, https://doi.org/10.5194/acp-15-153-2015, 2015
Short summary
Short summary
Simulations from a group of GCMs, forecast models, and regional models are compared with aircraft and ship observations of the marine boundary layer (MBL) in the southeast Pacific region during the VOCALS-REx field campaign of October-November 2008. Gradients of cloud, aerosol, and chemical properties in and above the MBL extending from the Peruvian coast westward along 20 degrees south are compared during the period.
T. Amnuaylojaroen, M. C. Barth, L. K. Emmons, G. R. Carmichael, J. Kreasuwun, S. Prasitwattanaseree, and S. Chantara
Atmos. Chem. Phys., 14, 12983–13012, https://doi.org/10.5194/acp-14-12983-2014, https://doi.org/10.5194/acp-14-12983-2014, 2014
S. Nordmann, Y. F. Cheng, G. R. Carmichael, M. Yu, H. A. C. Denier van der Gon, Q. Zhang, P. E. Saide, U. Pöschl, H. Su, W. Birmili, and A. Wiedensohler
Atmos. Chem. Phys., 14, 12683–12699, https://doi.org/10.5194/acp-14-12683-2014, https://doi.org/10.5194/acp-14-12683-2014, 2014
M. L. Krüger, S. Mertes, T. Klimach, Y. F. Cheng, H. Su, J. Schneider, M. O. Andreae, U. Pöschl, and D. Rose
Atmos. Meas. Tech., 7, 2615–2629, https://doi.org/10.5194/amt-7-2615-2014, https://doi.org/10.5194/amt-7-2615-2014, 2014
N. Ma, W. Birmili, T. Müller, T. Tuch, Y. F. Cheng, W. Y. Xu, C. S. Zhao, and A. Wiedensohler
Atmos. Chem. Phys., 14, 6241–6259, https://doi.org/10.5194/acp-14-6241-2014, https://doi.org/10.5194/acp-14-6241-2014, 2014
M. Li, Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, https://doi.org/10.5194/acp-14-5617-2014, 2014
P. Q. Fu, K. Kawamura, Y. F. Cheng, S. Hatakeyama, A. Takami, H. Li, and W. Wang
Atmos. Chem. Phys., 14, 4185–4199, https://doi.org/10.5194/acp-14-4185-2014, https://doi.org/10.5194/acp-14-4185-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
X. Chi, J. Winderlich, J.-C. Mayer, A. V. Panov, M. Heimann, W. Birmili, J. Heintzenberg, Y. Cheng, and M. O. Andreae
Atmos. Chem. Phys., 13, 12271–12298, https://doi.org/10.5194/acp-13-12271-2013, https://doi.org/10.5194/acp-13-12271-2013, 2013
P. E. Saide, G. R. Carmichael, Z. Liu, C. S. Schwartz, H. C. Lin, A. M. da Silva, and E. Hyer
Atmos. Chem. Phys., 13, 10425–10444, https://doi.org/10.5194/acp-13-10425-2013, https://doi.org/10.5194/acp-13-10425-2013, 2013
M. Huang, G. R. Carmichael, T. Chai, R. B. Pierce, S. J. Oltmans, D. A. Jaffe, K. W. Bowman, A. Kaduwela, C. Cai, S. N. Spak, A. J. Weinheimer, L. G. Huey, and G. S. Diskin
Atmos. Chem. Phys., 13, 359–391, https://doi.org/10.5194/acp-13-359-2013, https://doi.org/10.5194/acp-13-359-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Seasonal, regional, and vertical characteristics of high-carbon-monoxide plumes along with their associated ozone anomalies, as seen by IAGOS between 2002 and 2019
The potential of drone observations to improve air quality predictions by 4D-Var
Process analysis of elevated concentrations of organic acids at Whiteface Mountain, New York
Ozone source attribution in polluted European areas during summer 2017 as simulated with MECO(n)
Opinion: Challenges and needs of tropospheric chemical mechanism development
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Tropospheric ozone precursors: global and regional distributions, trends, and variability
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Assessing the relative impacts of satellite ozone and its precursor observations to improve global tropospheric ozone analysis using multiple chemical reanalysis systems
Evaluating present-day and future impacts of agricultural ammonia emissions on atmospheric chemistry and climate
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Air pollution satellite-based CO2 emission inversion: system evaluation, sensitivity analysis, and future perspective
Anthropogenic emission controls reduce summertime ozone-temperature sensitivity in the United States
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Why did ozone concentrations remain high during Shanghai's static management? A statistical and radical-chemistry perspective
Impact of introducing electric vehicles on ground-level O3 and PM2.5 in the Greater Tokyo Area: Yearly trends and the importance of changes in the Urban Heat Island effect
Revising VOC emissions speciation improves the simulation of global background ethane and propane
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Urban ozone formation and sensitivities to volatile chemical products, cooking emissions, and NOx across the Los Angeles Basin
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Insights on ozone pollution control in urban areas by decoupling meteorological factors based on machine learning
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska during ALPACA-2022
Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes
The impact of multi-decadal changes in VOC speciation on urban ozone chemistry: a case study in Birmingham, United Kingdom
Technical note: Challenges in detecting free tropospheric ozone trends in a sparsely sampled environment
Combined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide
Thibaut Lebourgeois, Bastien Sauvage, Pawel Wolff, Béatrice Josse, Virginie Marécal, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Jean-Marc Cousin, Philippe Nedelec, and Valérie Thouret
Atmos. Chem. Phys., 24, 13975–14004, https://doi.org/10.5194/acp-24-13975-2024, https://doi.org/10.5194/acp-24-13975-2024, 2024
Short summary
Short summary
Our study examines intense-carbon-monoxide (CO) pollution events measured by commercial aircraft from the In-service Aircraft for a Global Observing System (IAGOS) research infrastructure. We combine these measurements with the SOFT-IO model to trace the origin of the observed CO. A comprehensive analysis of the geographical origin, source type, seasonal variation, and ozone levels of these pollution events is provided.
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
Atmos. Chem. Phys., 24, 13693–13713, https://doi.org/10.5194/acp-24-13693-2024, https://doi.org/10.5194/acp-24-13693-2024, 2024
Short summary
Short summary
This work uses chemical transport and box modeling to study the gas- and aqueous-phase production of organic acid concentrations measured in cloud water at the summit of Whiteface Mountain on 1 July 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas-phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 24, 13503–13523, https://doi.org/10.5194/acp-24-13503-2024, https://doi.org/10.5194/acp-24-13503-2024, 2024
Short summary
Short summary
Anthropogenic emissions are a major source of precursors of tropospheric ozone. As ozone formation is highly non-linear, we apply a global–regional chemistry–climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. Our analysis shows that the contribution of European anthropogenic emissions largely increases during large ozone periods, indicating that emissions from these sectors drive ozone values.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024, https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for representative winter and summer conditions. The study provides insights into further air quality control in China with reduced primary emissions.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024, https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Short summary
We develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry, we estimate the cancer risk from inhalation exposure to ambient formaldehyde across the contiguous USA and predict that 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024, https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Short summary
Reactive loss of volatile organic compounds (VOCs) is a long-term issue yet to be resolved in VOC source analyses. We assess common methods of, and existing issues in, reducing losses, impacts of losses, and sources in current source analyses. We offer a potential supporting role for solving issues of VOC conversion. Source analyses of consumed VOCs that reacted to produce ozone and secondary organic aerosols can play an important role in the effective control of secondary pollution in air.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024, https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary
Short summary
We incorporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratio predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understanding chemical transport models, with implications for better air quality management and environmental protection in the region.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Takashi Sekiya, Emanuele Emili, Kazuyuki Miyazaki, Antje Inness, Zhen Qu, R. Bradley Pierce, Dylan Jones, Helen Worden, William Y. Y. Cheng, Vincent Huijnen, and Gerbrand Koren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2426, https://doi.org/10.5194/egusphere-2024-2426, 2024
Short summary
Short summary
Five global chemical reanalysis datasets were used to assess the relative impacts of assimilating satellite ozone and its precursors measurements on tropospheric ozone analyses for 2010. The multiple reanalysis system comparison allows for evaluating dependency of the impacts on different reanalysis systems. The results suggested the importance of satellite ozone and its precursor measurements for improving ozone analysis in the whole troposphere, with varying the magnitudes among the systems.
Maureen Beaudor, Didier Hauglustaine, Juliette Lathière, Martin Van Damme, Lieven Clarisse, and Nicolas Vuichard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2022, https://doi.org/10.5194/egusphere-2024-2022, 2024
Short summary
Short summary
Agriculture is the biggest ammonia (NH3) source, impacting air quality, climate, and ecosystems. Because of food demand, NH3 emissions are projected to rise by 2100. Using a global model, we analyzed the impact of present and future NH3 emissions generated from a land model. Our results show improved ammonia patterns compared to a reference inventory. Future scenarios predict up to 70 % increase in global NH3 burden, significant changes in radiative forcing, and could significantly elevate N2O.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Hui Li, Jiaxin Qiu, and Bo Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2024-1986, https://doi.org/10.5194/egusphere-2024-1986, 2024
Short summary
Short summary
We conduct a sensitivity analysis on various factors including prior, model resolution, satellite constraint, and inversion system configuration to assess the vulnerability of emission estimates across temporal, sectoral, and regional dimensions. Our analysis first reveals the robustness of emissions estimated by this air pollution satellite sensor-based CO2 emission inversion system, with relative change between tests and Base inversion below 4.0 % for national annual NOx and CO2 emissions.
Shuai Li, Xiao Lu, and Haolin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1889, https://doi.org/10.5194/egusphere-2024-1889, 2024
Short summary
Short summary
We report that the summertime ozone-temperature sensitivity decreased by 50 % from 3.0 ppbv/K in 1990 to 1.5 ppb/K in 2021 in the US. GEOS-Chem simulations show that anthropogenic NOx emission reduction is the dominant driver of the ozone-temperature sensitivity decline, through influencing both the temperature-direct and temperature-indirect processes. Reduced ozone-temperature sensitivity has decreased the ozone enhancement from low to high temperatures by an average of 6.8 ppbv across the US.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Hiroo Hata, Norifumi Mizushima, and Tomohiko Ihara
EGUsphere, https://doi.org/10.5194/egusphere-2024-1961, https://doi.org/10.5194/egusphere-2024-1961, 2024
Short summary
Short summary
The introduction of battery electric vehicles (BEV) is expected to reduce the primary air pollutants from vehicular exhaust and evaporative emissions while reducing the anthropogenic heat produced by vehicles, ultimately decreasing the urban heat island effect (UHI). This study revealed the impact of introducing BEVs on the decrease in UHI and the effects of BEVs on the formation of tropospheric ozone and fine particulate matter in the Greater Tokyo Area of Japan.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024, https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
Short summary
This paper presents detailed plume simulations of nitrogen oxides and carbon dioxide that are emitted from four large industrial facilities world-wide. Results from the high-resolution simulations that include atmospheric chemistry are compared to nitrogen dioxide observations from satellites. We find good performance of the model and show that common assumptions that are used in simplified models need revision. This work is important for the monitoring of emissions using satellite data.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1899, https://doi.org/10.5194/egusphere-2024-1899, 2024
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking are important sources that impact air quality. This study used a model to evaluate how these emissions impact ozone in the Los Angeles Basin, and quantifies the impact of gaseous cooking emissions for the first time. Accurate representation of these and other man-made sources in inventories is crucial to inform effective air quality policies.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Yuqing Qiu, Xin Li, Wenxuan Chai, Yi Liu, Mengdi Song, Xudong Tian, Qiaoli Zou, Wenjun Lou, Wangyao Zhang, Juan Li, and Yuanhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1576, https://doi.org/10.5194/egusphere-2024-1576, 2024
Short summary
Short summary
The chemical reactions of ozone (O3) formation are related to meteorology and local emissions. Here, a random forest approach was used to eliminate the effects of meteorological factors (dispersion or transport) on O3 and its precursors. Variations in the sensitivity of O3 formation and the apportionment of emission sources were revealed after meteorological normalization. Our results suggest that meteorological variations should be considered when diagnosing O3 formation.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Tianlang Zhao, Jingqiu Mao, Zolal Ayazpour, Gonzalo González Abad, Caroline R. Nowlan, and Yiqi Zheng
Atmos. Chem. Phys., 24, 6105–6121, https://doi.org/10.5194/acp-24-6105-2024, https://doi.org/10.5194/acp-24-6105-2024, 2024
Short summary
Short summary
HCHO variability is a key tracer in understanding VOC emissions in response to climate change. We investigate the role of methane oxidation and biogenic and wildfire emissions in HCHO interannual variability over northern high latitudes in summer, emphasizing wildfires as a key driver of HCHO interannual variability in Alaska, Siberia and northern Canada using satellite HCHO and SIF retrievals and then GEOS-Chem model. We show SIF is a tool to understand biogenic HCHO variability in this region.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, Peter Effertz, Gary Morris, and Brian C. McDonald
Atmos. Chem. Phys., 24, 6197–6218, https://doi.org/10.5194/acp-24-6197-2024, https://doi.org/10.5194/acp-24-6197-2024, 2024
Short summary
Short summary
A great majority of observational trend studies of free tropospheric ozone use sparsely sampled ozonesonde and aircraft measurements as reference data sets. A ubiquitous assumption is that trends are accurate and reliable so long as long-term records are available. We show that sampling bias due to sparse samples can persistently reduce the trend accuracy, and we highlight the importance of maintaining adequate frequency and continuity of observations.
Jin Ma, Linda M. J. Kooijmans, Norbert Glatthor, Stephen A. Montzka, Marc von Hobe, Thomas Röckmann, and Maarten C. Krol
Atmos. Chem. Phys., 24, 6047–6070, https://doi.org/10.5194/acp-24-6047-2024, https://doi.org/10.5194/acp-24-6047-2024, 2024
Short summary
Short summary
The global budget of atmospheric COS can be optimised by inverse modelling using TM5-4DVAR, with the co-constraints of NOAA surface observations and MIPAS satellite data. We found reduced COS biosphere uptake from inversions and improved land and ocean separation using MIPAS satellite data assimilation. Further improvements are expected from better quantification of COS ocean and biosphere fluxes.
Cited articles
Drimal, M., Lewis, C., and Abianova, F.: Health Risk Assessment to Environmental Exposure to Malodorous sulfur Coumpounds in Central Slovakia, Carpath. J. Earth Env., 15, 119–126, 2010.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.
Ghude, D. S., Jain, L. S., Arya, C. B., Beig, G., Ahammaed, N. Y., Kumar, A., and Tyagi, B.: ozone in ambeint air at a tropical megacity Delhi: Characteristics trends and cumulative ozone exposure indicies, J. Atmos. Chem., 60, 37–252, 2008.
Grell, A. G., Peckha, E. S., Schmitz, R., McKeen, A. S., Frost, G., Skamarock, C. W., and Eder B.: Fully coupled online chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Guttikunda, S. K., Tang, Y., Carmichael, G. R., Kurata, G., Pan, L., Streets, D. G., Woo, J.-H., Thongboonchoo, N., and Fried, A.: Impacts of Asian Megacity Emissions on Regional Air Quality during Spring 2001, J. Geophys. Res., 110, D20301, https://doi.org/10.1029/2004JD004921, 2005.
IPCC, 2007: Climate Change, 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, B. K., Tignor, M., and Miller, L. H., Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 996 pp., 2007.
Mohan, M. and Kandya, A.: An Analysis of the Annual and Seasonal Trends of Air Quality Index of Delhi, Environ. Monit. Assess., 131, 267–277, 2007.
Mohan, M., Dagar, L., and Gurjar, R. B.: Preparation and Validation of Gridded Emission Inventory of Criteria Air Pollutants and Identification of Emission Hotspots for Megacity Delhi, Environ. Monit. Assess., 130, 323–339, 2006.
Ramanathan, V. and Carmichael, G.: Global and Regional Climate Change Due to Black Carbon, Nat. Geosi., 1, 221–227, 2008.
Sahu, S. K., Beig, G., and Sharma,C.: Decadal Growth of Black Carbon Emissions in India, Geophys, Res. Lett., 35, L02807, https://doi.org/10.1029/2007GL032333, 2008.
Sahu, S. K., Beig, G., and Parkhi , N .: Emission Inventory of Anthropogenic Pm2.5 and PM10 in Delhi during Commonwealth Games 2010, Atmos. Environ., 45, 6180–6190,2011.
Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res., 113, D13204, https://doi.org/10.1029/2007JD008782, 2008.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Altmetrics
Final-revised paper
Preprint