Articles | Volume 14, issue 19
https://doi.org/10.5194/acp-14-10565-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-10565-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI)
S. Choi
Science Systems and Applications Inc., Lanham, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
J. Joiner
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Y. Choi
University of Houston, Houston, TX, USA
B. N. Duncan
NASA Goddard Space Flight Center, Greenbelt, MD, USA
A. Vasilkov
Science Systems and Applications Inc., Lanham, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
N. Krotkov
NASA Goddard Space Flight Center, Greenbelt, MD, USA
E. Bucsela
SRI International, Menlo Park, CA, USA
Related authors
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Eloise A. Marais, John F. Roberts, Robert G. Ryan, Henk Eskes, K. Folkert Boersma, Sungyeon Choi, Joanna Joiner, Nader Abuhassan, Alberto Redondas, Michel Grutter, Alexander Cede, Laura Gomez, and Monica Navarro-Comas
Atmos. Meas. Tech., 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021, https://doi.org/10.5194/amt-14-2389-2021, 2021
Short summary
Short summary
Nitrogen oxides in the upper troposphere have a profound influence on the global troposphere, but routine reliable observations there are exceedingly rare. We apply cloud-slicing to TROPOMI total columns of nitrogen dioxide (NO2) at high spatial resolution to derive near-global observations of NO2 in the upper troposphere and show consistency with existing datasets. These data offer tremendous potential to address knowledge gaps in this oft underappreciated portion of the atmosphere.
Lok N. Lamsal, Nickolay A. Krotkov, Alexander Vasilkov, Sergey Marchenko, Wenhan Qin, Eun-Su Yang, Zachary Fasnacht, Joanna Joiner, Sungyeon Choi, David Haffner, William H. Swartz, Bradford Fisher, and Eric Bucsela
Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, https://doi.org/10.5194/amt-14-455-2021, 2021
Short summary
Short summary
The NASA standard nitrogen dioxide (NO2) version 4.0 product for OMI Aura incorporates the most salient improvements. It represents the first global satellite trace gas retrieval with OMI–MODIS synergy accounting for surface reflectance anisotropy in cloud and NO2 retrievals. Improved spectral fitting procedures for NO2 and oxygen dimer (for cloud) retrievals and reliance on high-resolution field-of-view-specific input information for NO2 and cloud retrievals help enhance the NO2 data quality.
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020, https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary
Short summary
Large-scale enhancements of tropospheric BrO and the depletion of surface ozone are often observed in the springtime Arctic. Here, we use a chemical transport model to examine the role of sea salt aerosol from blowing snow in explaining these phenomena. We find that our simulation can account for the spatiotemporal variability of satellite observations of BrO. However, the model has difficulty in producing the magnitude of observed ozone depletion events.
Sungyeon Choi, Lok N. Lamsal, Melanie Follette-Cook, Joanna Joiner, Nickolay A. Krotkov, William H. Swartz, Kenneth E. Pickering, Christopher P. Loughner, Wyat Appel, Gabriele Pfister, Pablo E. Saide, Ronald C. Cohen, Andrew J. Weinheimer, and Jay R. Herman
Atmos. Meas. Tech., 13, 2523–2546, https://doi.org/10.5194/amt-13-2523-2020, https://doi.org/10.5194/amt-13-2523-2020, 2020
Rachel F. Silvern, Daniel J. Jacob, Loretta J. Mickley, Melissa P. Sulprizio, Katherine R. Travis, Eloise A. Marais, Ronald C. Cohen, Joshua L. Laughner, Sungyeon Choi, Joanna Joiner, and Lok N. Lamsal
Atmos. Chem. Phys., 19, 8863–8878, https://doi.org/10.5194/acp-19-8863-2019, https://doi.org/10.5194/acp-19-8863-2019, 2019
Short summary
Short summary
The US EPA reports a steady decrease in nitrogen oxide (NOx) emissions from fuel combustion over the 2005–2017 period, while satellite observations show a leveling off after 2009, suggesting emission reductions and related air quality gains have halted. We show the sustained decrease in NOx emissions is in fact consistent with observed trends in surface NO2 and ozone concentrations and that the flattening of the satellite trend reflects a growing influence from the non-anthropogenic background.
Eloise A. Marais, Daniel J. Jacob, Sungyeon Choi, Joanna Joiner, Maria Belmonte-Rivas, Ronald C. Cohen, Steffen Beirle, Lee T. Murray, Luke D. Schiferl, Viral Shah, and Lyatt Jaeglé
Atmos. Chem. Phys., 18, 17017–17027, https://doi.org/10.5194/acp-18-17017-2018, https://doi.org/10.5194/acp-18-17017-2018, 2018
Short summary
Short summary
We intercompare two new products of global upper tropospheric nitrogen dioxide (NO2) retrieved from the Ozone Monitoring Instrument (OMI). We evaluate these products with aircraft observations from NASA DC8 aircraft campaigns and interpret the useful information these products can provide about nitrogen oxides (NOx) in the global upper troposphere using the GEOS-Chem chemical transport model.
Fei Liu, Sungyeon Choi, Can Li, Vitali E. Fioletov, Chris A. McLinden, Joanna Joiner, Nickolay A. Krotkov, Huisheng Bian, Greet Janssens-Maenhout, Anton S. Darmenov, and Arlindo M. da Silva
Atmos. Chem. Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, https://doi.org/10.5194/acp-18-16571-2018, 2018
Short summary
Short summary
Sulfur dioxide measurements from space have been used to detect emissions from large sources. We developed a new emission inventory by combining the satellite-based emission estimates and the conventional bottom-up inventory for smaller sources. The new inventory improves the model agreement with in situ observations and offers the possibility of rapid updates to emissions.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Heidi Huntrieser, Patrick Jöckel, and Eric J. Bucsela
EGUsphere, https://doi.org/10.5194/egusphere-2024-3348, https://doi.org/10.5194/egusphere-2024-3348, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Lightning plays a significant role in tropospheric chemistry by producing substantial amounts of nitrogen oxides. According to recent estimates, thunderstorms that produce a higher lightning frequency rate also produce less nitrogen oxide per flash. We implemented the dependency of nitrogen oxide production per flash on lightning flash frequency in a chemical atmospheric model.
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024, https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Short summary
Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some greenhouse gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH.
Chris McLinden, Debora Griffin, Vitali Fioletov, Junhua Zhang, Enrico Dammers, Cristen Adams, Mallory Loria, Nicolay Krotkov, and Lok Lamsal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2856, https://doi.org/10.5194/egusphere-2024-2856, 2024
Short summary
Short summary
The Ozone Monitoring Instrument (OMI) was used to understand the evolution of NOx emissions from the Canadian oil sands. OMI NO2 combined with winds and reported stack emissions, found emissions from the heavy-hauler mine fleet increased by about 20 % since 2005, whereas the total oil sands mined nearly doubled. This difference is a result of emissions standards limiting NOx emissions becoming more stringent over this period confirming the efficacy of the policy enacting these standards.
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024, https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary
Short summary
Sulfur dioxide (SO2), a poisonous gas from human activities and volcanoes, causes air pollution, acid rain, and changes to climate and the ozone layer. Satellites have been used to monitor SO2 globally, including remote areas. Here we describe a new satellite SO2 dataset from the OMPS instrument that flies on the N20 satellite. Results show that the new dataset agrees well with the existing ones from other satellites and can help to continue the global monitoring of SO2 from space.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Amir H. Souri, Gonzalo González Abad, Glenn M. Wolfe, Tijl Verhoelst, Corinne Vigouroux, Gaia Pinardi, Steven Compernolle, Bavo Langerock, Bryan N. Duncan, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1947, https://doi.org/10.5194/egusphere-2024-1947, 2024
Short summary
Short summary
We establish a simple yet robust relationship between ozone production rates and several geophysical parameters obtained from several intensive atmospheric composition campaigns. We have shown that satellite remote sensing data can effectively constrain these parameters, enabling us to produce the first global maps of ozone production rates with unprecedented resolution.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023, https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Short summary
Snow-covered terrain, with its high reflectance in the UV, typically enhances satellite sensitivity to boundary layer pollution. However, a significant fraction of high-quality cloud-free measurements over snow is currently excluded from analyses. In this study, we investigated how satellite SO2 measurements over snow-covered surfaces can be used to improve estimations of annual SO2 emissions.
Jincheol Park, Jia Jung, Yunsoo Choi, Hyunkwang Lim, Minseok Kim, Kyunghwa Lee, Yun Gon Lee, and Jhoon Kim
Atmos. Meas. Tech., 16, 3039–3057, https://doi.org/10.5194/amt-16-3039-2023, https://doi.org/10.5194/amt-16-3039-2023, 2023
Short summary
Short summary
In response to the recent release of new geostationary platform-derived observational data generated by the Geostationary Environment Monitoring Spectrometer (GEMS) and its sister instruments, this study utilized the GEMS data fusion product and its proxy data in adjusting aerosol precursor emissions over East Asia. The use of spatiotemporally more complete observation references in updating the emissions resulted in more promising model performances in estimating aerosol loadings in East Asia.
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023, https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Short summary
We describe a methodology that combines machine learning, satellite observations, and 3D chemical model output to infer the abundance of the hydroxyl radical (OH), a chemical that removes many trace gases from the atmosphere. The methodology successfully captures the variability of observed OH, although further observations are needed to evaluate absolute accuracy. Current satellite observations are of sufficient quality to infer OH, but retrieval validation in the remote tropics is needed.
Nick Gorkavyi, Nickolay Krotkov, and Alexander Marshak
Atmos. Meas. Tech., 16, 1527–1537, https://doi.org/10.5194/amt-16-1527-2023, https://doi.org/10.5194/amt-16-1527-2023, 2023
Short summary
Short summary
The article discusses topical issues of the visible (libration) motion of the Earth in the sky of the Moon in a rectangle measuring 13.4° × 15.8°. On the one hand, the librations of the Moon make these observations difficult. On the other hand, they can be used as a natural scanning mechanism for cameras and spectroscopes mounted on a fixed platform on the surface of the Moon.
Joanna Joiner, Sergey Marchenko, Zachary Fasnacht, Lok Lamsal, Can Li, Alexander Vasilkov, and Nickolay Krotkov
Atmos. Meas. Tech., 16, 481–500, https://doi.org/10.5194/amt-16-481-2023, https://doi.org/10.5194/amt-16-481-2023, 2023
Short summary
Short summary
Nitrogen dioxide (NO2) is an important trace gas for both air quality and climate. NO2 affects satellite ocean color products. A new ocean color instrument – OCI (Ocean Color Instrument) – will be launched in 2024 on a NASA satellite. We show that it will be possible to measure NO2 from OCI even though it was not designed for this. The techniques developed here, based on machine learning, can also be applied to instruments already in space to speed up algorithms and reduce the effects of noise.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023, https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Short summary
Sulfur dioxide (SO2) measurements from three satellite instruments were used to update and extend the previously developed global catalogue of large SO2 emission sources. This version 2 of the global catalogue covers the period of 2005–2021 and includes a total of 759 continuously emitting point sources. The catalogue data show an approximate 50 % decline in global SO2 emissions between 2005 and 2021, although emissions were relatively stable during the last 3 years.
Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 15, 5497–5514, https://doi.org/10.5194/amt-15-5497-2022, https://doi.org/10.5194/amt-15-5497-2022, 2022
Short summary
Short summary
Satellite observations provide information on the sources of SO2, an important pollutant that affects both air quality and climate. However, these observations suffer from relatively poor data quality due to weak signals of SO2. Here, we use a machine learning technique to analyze satellite SO2 observations in order to reduce the noise and artifacts over relatively clean areas while keeping the signals near pollution sources. This leads to significant improvement in satellite SO2 data.
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358, https://doi.org/10.5194/gmd-15-6341-2022, https://doi.org/10.5194/gmd-15-6341-2022, 2022
Short summary
Short summary
The hydroxyl radical (OH) is the most important chemical in the atmosphere for removing certain pollutants, including methane, the second-most-important greenhouse gas. We present a methodology to create an easily modifiable parameterization that can calculate OH concentrations in a computationally efficient way. The parameterization, which predicts OH within 5 %, can be integrated into larger climate models to allow for calculation of the interactions between OH, methane, and other chemicals.
Aaron Pearlman, Monica Cook, Boryana Efremova, Francis Padula, Lok Lamsal, Joel McCorkel, and Joanna Joiner
Atmos. Meas. Tech., 15, 4489–4501, https://doi.org/10.5194/amt-15-4489-2022, https://doi.org/10.5194/amt-15-4489-2022, 2022
Short summary
Short summary
NOAA’s Geostationary Extended Observations (GeoXO) constellation is planned to consist of an atmospheric composition instrument (ACX) to support air quality forecasting and monitoring. As design trade-offs are being studied, we investigated one parameter, the polarization sensitivity, which has yet to be fully documented for NO2 retrievals. Our simulation study explores these impacts to inform the ACX’s development and better understand polarization’s role in trace gas retrievals.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nickolay Krotkov, Fei Liu, and Henk Eskes
Atmos. Chem. Phys., 22, 4201–4236, https://doi.org/10.5194/acp-22-4201-2022, https://doi.org/10.5194/acp-22-4201-2022, 2022
Short summary
Short summary
The COVID-19 lockdown had a large impact on anthropogenic emissions and particularly on nitrogen dioxide (NO2). A new method of isolation of background, urban, and industrial components in NO2 is applied to estimate the lockdown impact on each of them. From 16 March to 15 June 2020, urban NO2 declined by −18 % to −28 % in most regions of the world, while background NO2 typically declined by less than −10 %.
Fei Liu, Zhining Tao, Steffen Beirle, Joanna Joiner, Yasuko Yoshida, Steven J. Smith, K. Emma Knowland, and Thomas Wagner
Atmos. Chem. Phys., 22, 1333–1349, https://doi.org/10.5194/acp-22-1333-2022, https://doi.org/10.5194/acp-22-1333-2022, 2022
Short summary
Short summary
In this work, we present a novel method to infer NOx emissions and lifetimes based on tropospheric NO2 observations together with reanalysis wind fields for cities located in polluted backgrounds. We evaluate the accuracy of the method using synthetic NO2 observations derived from a high-resolution model simulation. Our work provides an estimate for uncertainties in satellite-derived emissions inferred from chemical transport model (CTM)-independent approaches.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Nicolas Theys, Vitali Fioletov, Can Li, Isabelle De Smedt, Christophe Lerot, Chris McLinden, Nickolay Krotkov, Debora Griffin, Lieven Clarisse, Pascal Hedelt, Diego Loyola, Thomas Wagner, Vinod Kumar, Antje Innes, Roberto Ribas, François Hendrick, Jonas Vlietinck, Hugues Brenot, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 16727–16744, https://doi.org/10.5194/acp-21-16727-2021, https://doi.org/10.5194/acp-21-16727-2021, 2021
Short summary
Short summary
We present a new algorithm to retrieve sulfur dioxide from space UV measurements. We apply the technique to high-resolution TROPOMI measurements and demonstrate the high sensitivity of the approach to weak SO2 emissions worldwide with an unprecedented limit of detection of 8 kt yr−1. This result has broad implications for atmospheric science studies dealing with improving emission inventories and identifying and quantifying missing sources, in the context of air quality and climate.
Bavand Sadeghi, Arman Pouyaei, Yunsoo Choi, and Bernhard Rappenglueck
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-565, https://doi.org/10.5194/acp-2021-565, 2021
Revised manuscript not accepted
Short summary
Short summary
The most significant contributions of VOCs over the Houston Ship Channel came from alkanes. Light alkanes were dominant sources in both seasons. We explored the photochemical reaction of organic compounds and studied their contributions to ozone formation. Ethylene and propylene have the highest. Through weighted trajectory, VOCs at Lynchburg Ferry site was influenced by petrochemical sectors of Baytown and Galveston Bay refineries and industrial facilities of the Bayport industrial district.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Nikita M. Fedkin, Can Li, Nickolay A. Krotkov, Pascal Hedelt, Diego G. Loyola, Russell R. Dickerson, and Robert Spurr
Atmos. Meas. Tech., 14, 3673–3691, https://doi.org/10.5194/amt-14-3673-2021, https://doi.org/10.5194/amt-14-3673-2021, 2021
Short summary
Short summary
This study presents a new volcanic sulfur dioxide (SO2) layer height retrieval algorithm for the Ozone Monitoring Instrument (OMI). We generated a large spectral dataset with a radiative transfer model and used it to train neural networks to predict SO2 height from OMI radiance data. The algorithm is fast and takes less than 10 min for a single orbit. Retrievals were tested on four eruption cases, and results had reasonable agreement (within 2 km) with other retrievals and previous studies.
Daniel C. Anderson, Bryan N. Duncan, Arlene M. Fiore, Colleen B. Baublitz, Melanie B. Follette-Cook, Julie M. Nicely, and Glenn M. Wolfe
Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, https://doi.org/10.5194/acp-21-6481-2021, 2021
Short summary
Short summary
We demonstrate that large-scale climate features are the primary driver of year-to-year variability in simulated values of the hydroxyl radical, the primary atmospheric oxidant, over 1980–2018. The El Niño–Southern Oscillation is the dominant mode of hydroxyl variability, resulting in large-scale global decreases in OH during El Niño events. Other climate modes, such as the Australian monsoon and the North Atlantic Oscillation, have impacts of similar magnitude but on on more localized scales.
Alexander Vasilkov, Nickolay Krotkov, Eun-Su Yang, Lok Lamsal, Joanna Joiner, Patricia Castellanos, Zachary Fasnacht, and Robert Spurr
Atmos. Meas. Tech., 14, 2857–2871, https://doi.org/10.5194/amt-14-2857-2021, https://doi.org/10.5194/amt-14-2857-2021, 2021
Short summary
Short summary
To explicitly account for aerosol effects in the OMI cloud and nitrogen dioxide algorithms, we use a model of aerosol optical properties from a global aerosol assimilation system and radiative transfer computations. Accounting for anisotropic reflection of Earth's surface is an important feature of the approach. Comparisons of the cloud and tropospheric nitrogen dioxide retrievals with implicit and explicit aerosol corrections are carried out for a selected area with high pollution.
Eloise A. Marais, John F. Roberts, Robert G. Ryan, Henk Eskes, K. Folkert Boersma, Sungyeon Choi, Joanna Joiner, Nader Abuhassan, Alberto Redondas, Michel Grutter, Alexander Cede, Laura Gomez, and Monica Navarro-Comas
Atmos. Meas. Tech., 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021, https://doi.org/10.5194/amt-14-2389-2021, 2021
Short summary
Short summary
Nitrogen oxides in the upper troposphere have a profound influence on the global troposphere, but routine reliable observations there are exceedingly rare. We apply cloud-slicing to TROPOMI total columns of nitrogen dioxide (NO2) at high spatial resolution to derive near-global observations of NO2 in the upper troposphere and show consistency with existing datasets. These data offer tremendous potential to address knowledge gaps in this oft underappreciated portion of the atmosphere.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Nick Gorkavyi, Zachary Fasnacht, David Haffner, Sergey Marchenko, Joanna Joiner, and Alexander Vasilkov
Atmos. Meas. Tech., 14, 961–974, https://doi.org/10.5194/amt-14-961-2021, https://doi.org/10.5194/amt-14-961-2021, 2021
Short summary
Short summary
Various instrumental or geophysical artifacts, such as saturation, stray light or obstruction of light, negatively impact satellite measured ultraviolet and visible Earthshine radiance spectra. Here, we introduce a straightforward detection method that is based on the correlation, r, between the observed Earthshine radiance and solar irradiance spectra over a 10 nm spectral range; our decorrelation index (DI for brevity) is simply defined as DI of 1–r.
Lok N. Lamsal, Nickolay A. Krotkov, Alexander Vasilkov, Sergey Marchenko, Wenhan Qin, Eun-Su Yang, Zachary Fasnacht, Joanna Joiner, Sungyeon Choi, David Haffner, William H. Swartz, Bradford Fisher, and Eric Bucsela
Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, https://doi.org/10.5194/amt-14-455-2021, 2021
Short summary
Short summary
The NASA standard nitrogen dioxide (NO2) version 4.0 product for OMI Aura incorporates the most salient improvements. It represents the first global satellite trace gas retrieval with OMI–MODIS synergy accounting for surface reflectance anisotropy in cloud and NO2 retrievals. Improved spectral fitting procedures for NO2 and oxygen dimer (for cloud) retrievals and reliance on high-resolution field-of-view-specific input information for NO2 and cloud retrievals help enhance the NO2 data quality.
Ebrahim Eslami, Yunsoo Choi, Yannic Lops, Alqamah Sayeed, and Ahmed Khan Salman
Geosci. Model Dev., 13, 6237–6251, https://doi.org/10.5194/gmd-13-6237-2020, https://doi.org/10.5194/gmd-13-6237-2020, 2020
Short summary
Short summary
As using deep learning algorithms has become a popular data analytic technique, atmospheric scientists should have a balanced perception of their strengths and limitations so that they can provide a powerful analysis of complex data with well-established procedures. This study addresses significant limitations of an advanced deep learning algorithm, the convolutional neural network.
Can Li, Nickolay A. Krotkov, Peter J. T. Leonard, Simon Carn, Joanna Joiner, Robert J. D. Spurr, and Alexander Vasilkov
Atmos. Meas. Tech., 13, 6175–6191, https://doi.org/10.5194/amt-13-6175-2020, https://doi.org/10.5194/amt-13-6175-2020, 2020
Short summary
Short summary
Sulfur dioxide (SO2) is an important pollutant that causes haze and acid rain. The Ozone Monitoring Instrument (OMI) has been providing global observation of SO2 from space for over 15 years. In this paper, we introduce a new OMI SO2 dataset for global pollution monitoring. The dataset better accounts for the influences of different factors such as location and sun and satellite angles, leading to improved data quality. The new OMI SO2 dataset is publicly available through NASA's data center.
Erik van Schaik, Maurits L. Kooreman, Piet Stammes, L. Gijsbert Tilstra, Olaf N. E. Tuinder, Abram F. J. Sanders, Willem W. Verstraeten, Rüdiger Lang, Alessandra Cacciari, Joanna Joiner, Wouter Peters, and K. Folkert Boersma
Atmos. Meas. Tech., 13, 4295–4315, https://doi.org/10.5194/amt-13-4295-2020, https://doi.org/10.5194/amt-13-4295-2020, 2020
Short summary
Short summary
With our improved algorithm we have generated a stable, long-term dataset of fluorescence measurements from the GOME-2A satellite instrument. In this study we determined a correction for the degradation of GOME-2A in orbit and applied this correction along with other improvements to our SIFTER v2 retrieval algorithm. The result is a coherent dataset of daily and monthly averaged fluorescence values for the period 2007–2018 to track worldwide changes in photosynthetic activity by vegetation.
Arman Pouyaei, Yunsoo Choi, Jia Jung, Bavand Sadeghi, and Chul Han Song
Geosci. Model Dev., 13, 3489–3505, https://doi.org/10.5194/gmd-13-3489-2020, https://doi.org/10.5194/gmd-13-3489-2020, 2020
Short summary
Short summary
This paper introduces a novel Lagrangian model (Concentration Trajectory of Air pollution with an Integrated Lagrangian model, C-TRAIL) for showing the source and receptor areas by following polluted air masses. To investigate the concentrations and trajectories of air masses simultaneously, we use the trajectory-grid (TG) Lagrangian advection model. The TG model follows the concentrations of representative air
packetsof species along trajectories determined by the wind field.
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380, https://doi.org/10.5194/acp-20-8351-2020, https://doi.org/10.5194/acp-20-8351-2020, 2020
Short summary
Short summary
The amount of erythemal irradiance reaching the Earth's surface has been calculated from ozone, aerosol, and reflectivity data obtained from OMI and DSCOVR/EPIC satellite instruments showing areas with high levels of solar UV radiation. Changes in erythemal irradiance, cloud transmission, aerosol transmission, and ozone absorption have been estimated for 14 years 2005–2018 in units of percent per year for 191 locations, mostly large cities, and from EPIC for the entire illuminated Earth.
Sarah A. Strode, James S. Wang, Michael Manyin, Bryan Duncan, Ryan Hossaini, Christoph A. Keller, Sylvia E. Michel, and James W. C. White
Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, https://doi.org/10.5194/acp-20-8405-2020, 2020
Short summary
Short summary
The 13C : 12C isotopic ratio in methane (CH4) provides information about CH4 sources, but loss of CH4 by reaction with OH and chlorine (Cl) also affects this ratio. Tropospheric Cl provides a small and uncertain sink for CH4 but has a large effect on its isotopic ratio. We use the GEOS model with several different Cl fields to test the sensitivity of methane's isotopic composition to tropospheric Cl. Cl affects the global mean, hemispheric gradient, and seasonal cycle of the isotopic ratio.
Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Becky Alexander, Tomás Sherwen, Mat J. Evans, Nicolas Theys, and Sungyeon Choi
Atmos. Chem. Phys., 20, 7335–7358, https://doi.org/10.5194/acp-20-7335-2020, https://doi.org/10.5194/acp-20-7335-2020, 2020
Short summary
Short summary
Large-scale enhancements of tropospheric BrO and the depletion of surface ozone are often observed in the springtime Arctic. Here, we use a chemical transport model to examine the role of sea salt aerosol from blowing snow in explaining these phenomena. We find that our simulation can account for the spatiotemporal variability of satellite observations of BrO. However, the model has difficulty in producing the magnitude of observed ozone depletion events.
Sungyeon Choi, Lok N. Lamsal, Melanie Follette-Cook, Joanna Joiner, Nickolay A. Krotkov, William H. Swartz, Kenneth E. Pickering, Christopher P. Loughner, Wyat Appel, Gabriele Pfister, Pablo E. Saide, Ronald C. Cohen, Andrew J. Weinheimer, and Jay R. Herman
Atmos. Meas. Tech., 13, 2523–2546, https://doi.org/10.5194/amt-13-2523-2020, https://doi.org/10.5194/amt-13-2523-2020, 2020
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Nicolas Theys, Diego G. Loyola, Pascal Hedelt, Nickolay A. Krotkov, and Can Li
Atmos. Chem. Phys., 20, 5591–5607, https://doi.org/10.5194/acp-20-5591-2020, https://doi.org/10.5194/acp-20-5591-2020, 2020
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Fei Liu, Bryan N. Duncan, Nickolay A. Krotkov, Lok N. Lamsal, Steffen Beirle, Debora Griffin, Chris A. McLinden, Daniel L. Goldberg, and Zifeng Lu
Atmos. Chem. Phys., 20, 99–116, https://doi.org/10.5194/acp-20-99-2020, https://doi.org/10.5194/acp-20-99-2020, 2020
Short summary
Short summary
We present a novel method to infer CO2 emissions from individual power plants, based on satellite observations of co-emitted NO2. We find that the CO2 emissions estimated by our satellite-based method during 2005–2017 are in reasonable agreement with the CEMS measurements for US power plants. The broader implication of our methodology is that it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of the world without reliable emissions accounting.
Zachary Fasnacht, Alexander Vasilkov, David Haffner, Wenhan Qin, Joanna Joiner, Nickolay Krotkov, Andrew M. Sayer, and Robert Spurr
Atmos. Meas. Tech., 12, 6749–6769, https://doi.org/10.5194/amt-12-6749-2019, https://doi.org/10.5194/amt-12-6749-2019, 2019
Short summary
Short summary
The anisotropy of Earth's surface reflection plays an important role in satellite-based retrievals of cloud, aerosol, and trace gases. Most current ultraviolet and visible satellite retrievals utilize climatological surface reflectivity databases that do not account for surface anisotropy. The GLER concept was introduced to account for such features. Here we evaluate GLER for water surfaces by comparing with OMI measurements and show that it captures these surface anisotropy features.
Bradford L. Fisher, Nickolay A. Krotkov, Pawan K. Bhartia, Can Li, Simon A. Carn, Eric Hughes, and Peter J. T. Leonard
Atmos. Meas. Tech., 12, 5137–5153, https://doi.org/10.5194/amt-12-5137-2019, https://doi.org/10.5194/amt-12-5137-2019, 2019
Short summary
Short summary
This article describes a new discrete wavelength algorithm, MS_SO2, which has been used operationally to retrieve global daily volcanic SO2 vertical column densities and the UV volcanic ash index from the Total Ozone Mapping Spectrometer (TOMS) data collected by NASA’s Nimbus-7 satellite from 1978 to 1991. We examine the sensitivity of the algorithm to the detection of SO2, evaluate potential sources of error and compare results from MS_SO2 with the Principal Component Analysis (PCA) algorithm.
Wenhan Qin, Zachary Fasnacht, David Haffner, Alexander Vasilkov, Joanna Joiner, Nickolay Krotkov, Bradford Fisher, and Robert Spurr
Atmos. Meas. Tech., 12, 3997–4017, https://doi.org/10.5194/amt-12-3997-2019, https://doi.org/10.5194/amt-12-3997-2019, 2019
Short summary
Short summary
Satellite observations depend on Sun and view angles due to anisotropy of the Earth's atmosphere and surface reflection. But most of the ultraviolet and visible cloud, aerosol, and trace-gas algorithms utilize surface reflectivity databases that do not account for surface anisotropy. We create a surface database using the GLER concept which adequately accounts for surface anisotropy, validate it with independent satellite data, and provide a simple implementation to the current algorithms.
Rachel F. Silvern, Daniel J. Jacob, Loretta J. Mickley, Melissa P. Sulprizio, Katherine R. Travis, Eloise A. Marais, Ronald C. Cohen, Joshua L. Laughner, Sungyeon Choi, Joanna Joiner, and Lok N. Lamsal
Atmos. Chem. Phys., 19, 8863–8878, https://doi.org/10.5194/acp-19-8863-2019, https://doi.org/10.5194/acp-19-8863-2019, 2019
Short summary
Short summary
The US EPA reports a steady decrease in nitrogen oxide (NOx) emissions from fuel combustion over the 2005–2017 period, while satellite observations show a leveling off after 2009, suggesting emission reductions and related air quality gains have halted. We show the sustained decrease in NOx emissions is in fact consistent with observed trends in surface NO2 and ozone concentrations and that the flattening of the satellite trend reflects a growing influence from the non-anthropogenic background.
Paul I. Palmer, Emily L. Wilson, Geronimo L. Villanueva, Giuliano Liuzzi, Liang Feng, Anthony J. DiGregorio, Jianping Mao, Lesley Ott, and Bryan Duncan
Atmos. Meas. Tech., 12, 2579–2594, https://doi.org/10.5194/amt-12-2579-2019, https://doi.org/10.5194/amt-12-2579-2019, 2019
Short summary
Short summary
We describe the potential impact of a new, low-cost, portable ground instrument (the mini-LHR) that measures methane and carbon dioxide in the atmospheric column. This region is key in quantifying the global carbon budget but has geographical gaps in measurements left by ground-based networks and space-based observations. A deployment of 50 mini-LHRs would add new data products in the Amazon, the Arctic, and southern Asia and significantly improve knowledge of regional and global carbon budgets.
Yuekui Yang, Kerry Meyer, Galina Wind, Yaping Zhou, Alexander Marshak, Steven Platnick, Qilong Min, Anthony B. Davis, Joanna Joiner, Alexander Vasilkov, David Duda, and Wenying Su
Atmos. Meas. Tech., 12, 2019–2031, https://doi.org/10.5194/amt-12-2019-2019, https://doi.org/10.5194/amt-12-2019-2019, 2019
Short summary
Short summary
The physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance are presented. EPIC cloud products include cloud mask, effective height, and optical depth. Comparison with co-located retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the NASA Langley Atmospheric Sciences Data Center.
Cristen Adams, Chris A. McLinden, Mark W. Shephard, Nolan Dickson, Enrico Dammers, Jack Chen, Paul Makar, Karen E. Cady-Pereira, Naomi Tam, Shailesh K. Kharol, Lok N. Lamsal, and Nickolay A. Krotkov
Atmos. Chem. Phys., 19, 2577–2599, https://doi.org/10.5194/acp-19-2577-2019, https://doi.org/10.5194/acp-19-2577-2019, 2019
Short summary
Short summary
We estimated how much carbon monoxide, ammonia, and nitrogen oxides were emitted in the smoke from the Fort McMurray Horse River wildfire using satellite data and air quality models. The fire emitted amounts of carbon monoxide that were similar to anthropogenic (human-caused) emissions for all of Alberta over a full year. We also estimated large amounts of ammonia and nitrogen oxides emitted from the fire. These results can be used to evaluate the performance of air quality forecasting models.
Huanxin Zhang, Jun Wang, Lorena Castro García, Jing Zeng, Connor Dennhardt, Yang Liu, and Nickolay A. Krotkov
Atmos. Chem. Phys., 19, 2165–2181, https://doi.org/10.5194/acp-19-2165-2019, https://doi.org/10.5194/acp-19-2165-2019, 2019
Short summary
Short summary
OMU-based surface erythemal UV irradiance is compared with ground observations in the United States from 2005 to 2017. We reveal that the assumption of constant atmospheric conditions between OMI overpass time and local solar noon time may not fully represent the real atmosphere and the peaks of surface UV are not always at local solar noon because of cloud effects. Future geostationary satellites (e.g., TEMPO) would reduce sampling bias and improve trend analysis of surface UV estimate.
Eloise A. Marais, Daniel J. Jacob, Sungyeon Choi, Joanna Joiner, Maria Belmonte-Rivas, Ronald C. Cohen, Steffen Beirle, Lee T. Murray, Luke D. Schiferl, Viral Shah, and Lyatt Jaeglé
Atmos. Chem. Phys., 18, 17017–17027, https://doi.org/10.5194/acp-18-17017-2018, https://doi.org/10.5194/acp-18-17017-2018, 2018
Short summary
Short summary
We intercompare two new products of global upper tropospheric nitrogen dioxide (NO2) retrieved from the Ozone Monitoring Instrument (OMI). We evaluate these products with aircraft observations from NASA DC8 aircraft campaigns and interpret the useful information these products can provide about nitrogen oxides (NOx) in the global upper troposphere using the GEOS-Chem chemical transport model.
Fei Liu, Sungyeon Choi, Can Li, Vitali E. Fioletov, Chris A. McLinden, Joanna Joiner, Nickolay A. Krotkov, Huisheng Bian, Greet Janssens-Maenhout, Anton S. Darmenov, and Arlindo M. da Silva
Atmos. Chem. Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, https://doi.org/10.5194/acp-18-16571-2018, 2018
Short summary
Short summary
Sulfur dioxide measurements from space have been used to detect emissions from large sources. We developed a new emission inventory by combining the satellite-based emission estimates and the conventional bottom-up inventory for smaller sources. The new inventory improves the model agreement with in situ observations and offers the possibility of rapid updates to emissions.
Jeffrey A. Geddes, Randall V. Martin, Eric J. Bucsela, Chris A. McLinden, and Daniel J. M. Cunningham
Atmos. Meas. Tech., 11, 6271–6287, https://doi.org/10.5194/amt-11-6271-2018, https://doi.org/10.5194/amt-11-6271-2018, 2018
Short summary
Short summary
This paper describes an approach for separating the stratospheric and tropospheric contributions in geostationary observations of nitrogen dioxide from the upcoming TEMPO instrument. We find minimal impact of the limited field of observation compared to previous low-Earth-observing systems with global coverage. We find that continued development of low-Earth-orbit retrievals will benefit geostationary data by providing important context outside the field of regard.
Arlene M. Fiore, Emily V. Fischer, George P. Milly, Shubha Pandey Deolal, Oliver Wild, Daniel A. Jaffe, Johannes Staehelin, Olivia E. Clifton, Dan Bergmann, William Collins, Frank Dentener, Ruth M. Doherty, Bryan N. Duncan, Bernd Fischer, Stefan Gilge, Peter G. Hess, Larry W. Horowitz, Alexandru Lupu, Ian A. MacKenzie, Rokjin Park, Ludwig Ries, Michael G. Sanderson, Martin G. Schultz, Drew T. Shindell, Martin Steinbacher, David S. Stevenson, Sophie Szopa, Christoph Zellweger, and Guang Zeng
Atmos. Chem. Phys., 18, 15345–15361, https://doi.org/10.5194/acp-18-15345-2018, https://doi.org/10.5194/acp-18-15345-2018, 2018
Short summary
Short summary
We demonstrate a proof-of-concept approach for applying northern midlatitude mountaintop peroxy acetyl nitrate (PAN) measurements and a multi-model ensemble during April to constrain the influence of continental-scale anthropogenic precursor emissions on PAN. Our findings imply a role for carefully coordinated multi-model ensembles in helping identify observations for discriminating among widely varying (and poorly constrained) model responses of atmospheric constituents to changes in emissions.
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Short summary
Using satellite reflectance measurements and a machine learning algorithm, we generated a new solar-induced chlorophyll fluorescence (SIF) dataset that is closely linked to plant photosynthesis. This new dataset has higher spatial and temporal resolutions, and lower uncertainty compared to the existing satellite retrievals. We also demonstrated its application in monitoring drought and improving the understanding of the SIF–photosynthesis relationship.
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093–4107, https://doi.org/10.5194/amt-11-4093-2018, https://doi.org/10.5194/amt-11-4093-2018, 2018
Short summary
Short summary
We discuss a new cloud algorithm that retrieves effective cloud fraction and cloud altitude and pressure from the oxygen dimer absorption band at 477 nm. The algorithm accounts for how changes in the sun–satellite geometry affect the surface reflection. The cloud fraction and pressure are used as inputs to the OMI algorithm that retrieves a pollutant gas called nitrogen dioxide. Impacts of the application of the newly developed cloud algorithm on the OMI nitrogen dioxide retrieval are discussed.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Jungbin Mok, Nickolay A. Krotkov, Omar Torres, Hiren Jethva, Zhanqing Li, Jhoon Kim, Ja-Ho Koo, Sujung Go, Hitoshi Irie, Gordon Labow, Thomas F. Eck, Brent N. Holben, Jay Herman, Robert P. Loughman, Elena Spinei, Seoung Soo Lee, Pradeep Khatri, and Monica Campanelli
Atmos. Meas. Tech., 11, 2295–2311, https://doi.org/10.5194/amt-11-2295-2018, https://doi.org/10.5194/amt-11-2295-2018, 2018
Short summary
Short summary
Measuring aerosol absorption from the shortest ultraviolet (UV) to the near-infrared (NIR) wavelengths is important for studies of climate, tropospheric photochemistry, human health, and agricultural productivity. We estimate the accuracy and demonstrate consistency of aerosol absorption retrievals from different instruments, after accounting for spectrally varying surface albedo and gaseous absorption.
Anders V. Lindfors, Jukka Kujanpää, Niilo Kalakoski, Anu Heikkilä, Kaisa Lakkala, Tero Mielonen, Maarten Sneep, Nickolay A. Krotkov, Antti Arola, and Johanna Tamminen
Atmos. Meas. Tech., 11, 997–1008, https://doi.org/10.5194/amt-11-997-2018, https://doi.org/10.5194/amt-11-997-2018, 2018
Short summary
Short summary
This paper describes the algorithm that will be used for estimating surface UV radiation from TROPOMI (TROPOspheric Monitoring Instrument) measurements. TROPOMI is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). The presented algorithm has been tested using input based on previous satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.
Jerald R. Ziemke, Sarah A. Strode, Anne R. Douglass, Joanna Joiner, Alexander Vasilkov, Luke D. Oman, Junhua Liu, Susan E. Strahan, Pawan K. Bhartia, and David P. Haffner
Atmos. Meas. Tech., 10, 4067–4078, https://doi.org/10.5194/amt-10-4067-2017, https://doi.org/10.5194/amt-10-4067-2017, 2017
Short summary
Short summary
We combine satellite measurements of ozone and cloud properties from the Aura OMI and MLS instruments for 2004–2016 to measure ozone in the mid–upper levels of deep convective clouds. Our results ascribe upward injection of low boundary layer ozone (varying from low to high amounts) as a major driver of the measured concentrations of ozone in thick clouds. Our OMI/MLS generated ozone product is made available to the public for use in science applications.
Vitali Fioletov, Chris A. McLinden, Shailesh K. Kharol, Nickolay A. Krotkov, Can Li, Joanna Joiner, Michael D. Moran, Robert Vet, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys., 17, 12597–12616, https://doi.org/10.5194/acp-17-12597-2017, https://doi.org/10.5194/acp-17-12597-2017, 2017
Nickolay A. Krotkov, Lok N. Lamsal, Edward A. Celarier, William H. Swartz, Sergey V. Marchenko, Eric J. Bucsela, Ka Lok Chan, Mark Wenig, and Marina Zara
Atmos. Meas. Tech., 10, 3133–3149, https://doi.org/10.5194/amt-10-3133-2017, https://doi.org/10.5194/amt-10-3133-2017, 2017
Short summary
Short summary
We describe the new version 3 OMI NO2 standard product (SPv3) based on significant improvements in both the estimation of the SCDs and the AMFs. The new SCDs and stratospheric VCDs are systematically lower (by ~ 10–40 %) than previous estimates. Tropospheric VCDs are also reduced over polluted areas. Initial evaluation over unpolluted areas has shown that the new SPv3 products agree better with independent satellite- and ground-based FTIR measurements.
Georgina M. Miles, Richard Siddans, Roy G. Grainger, Alfred J. Prata, Bradford Fisher, and Nickolay Krotkov
Atmos. Meas. Tech., 10, 2687–2702, https://doi.org/10.5194/amt-10-2687-2017, https://doi.org/10.5194/amt-10-2687-2017, 2017
Short summary
Short summary
Volcanic eruptions are important in the way they perturb the climate and help us understand atmospheric processes. We show a new method to measure the SO2 released by explosive volcanic eruptions using the HIRS/2 satellite instrument, which measured atmospheric temperature and H2O. We apply the technique to the 1991 eruption of Cerro Hudson and show it is possible to detect SO2 with a good degree of accuracy. This method and instrument can potentially generate a climate-significant record.
Hyun-Deok Choi, Hongyu Liu, James H. Crawford, David B. Considine, Dale J. Allen, Bryan N. Duncan, Larry W. Horowitz, Jose M. Rodriguez, Susan E. Strahan, Lin Zhang, Xiong Liu, Megan R. Damon, and Stephen D. Steenrod
Atmos. Chem. Phys., 17, 8429–8452, https://doi.org/10.5194/acp-17-8429-2017, https://doi.org/10.5194/acp-17-8429-2017, 2017
Short summary
Short summary
We evaluate global ozone–carbon monoxide (O3–CO) correlations in a chemistry and transport model during July–August with TES-Aura satellite observations and examine the sensitivity of model simulations to input meteorological data and emissions. Results show that O3–CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
Yan Zhang, Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 10, 1495–1509, https://doi.org/10.5194/amt-10-1495-2017, https://doi.org/10.5194/amt-10-1495-2017, 2017
Short summary
Short summary
In this study, we demonstrate a very good consistency of the SO2 retrievals from OMI and OMPS using our state-of-the-art principal component analysis technique. Four full years of OMI and OMPS SO2 retrievals, during 2012–2015 have been analyzed over some of the world’s most polluted regions: eastern China, Mexico, and South Africa. The consistency of retrievals between OMI and OMPS make it possible to continue the long-term global SO2 pollution monitoring.
Alba Lorente, K. Folkert Boersma, Huan Yu, Steffen Dörner, Andreas Hilboll, Andreas Richter, Mengyao Liu, Lok N. Lamsal, Michael Barkley, Isabelle De Smedt, Michel Van Roozendael, Yang Wang, Thomas Wagner, Steffen Beirle, Jin-Tai Lin, Nickolay Krotkov, Piet Stammes, Ping Wang, Henk J. Eskes, and Maarten Krol
Atmos. Meas. Tech., 10, 759–782, https://doi.org/10.5194/amt-10-759-2017, https://doi.org/10.5194/amt-10-759-2017, 2017
Short summary
Short summary
Choices and assumptions made to represent the state of the atmosphere introduce an uncertainty of 42 % in the air mass factor calculation in trace gas satellite retrievals in polluted regions. The AMF strongly depends on the choice of a priori trace gas profile, surface albedo data set and the correction method to account for clouds and aerosols. We call for well-designed validation exercises focusing on situations when AMF structural uncertainty has the highest impact on satellite retrievals.
Can Li, Nickolay A. Krotkov, Simon Carn, Yan Zhang, Robert J. D. Spurr, and Joanna Joiner
Atmos. Meas. Tech., 10, 445–458, https://doi.org/10.5194/amt-10-445-2017, https://doi.org/10.5194/amt-10-445-2017, 2017
Short summary
Short summary
In this paper, we describe the new-generation OMI volcanic SO2 algorithm based on our principal component analysis (PCA) retrieval technique. We demonstrate significant improvement in the our new OMI volcanic SO2 data, with the retrieval noise reduced by a factor of 2 as compared with the previous dataset. The algorithm also improves the accuracy for large volcanic eruptions. It is also capable of producing consistent retrievals between different instruments.
Alexander Vasilkov, Wenhan Qin, Nickolay Krotkov, Lok Lamsal, Robert Spurr, David Haffner, Joanna Joiner, Eun-Su Yang, and Sergey Marchenko
Atmos. Meas. Tech., 10, 333–349, https://doi.org/10.5194/amt-10-333-2017, https://doi.org/10.5194/amt-10-333-2017, 2017
Short summary
Short summary
We show how the surface reflection can vary day to day in the blue part of the sun's spectrum where we measure the pollutant gas nitrogen dioxide using a satellite instrument called OMI. We use information from an imaging spectrometer on another satellite, MODIS, to estimate the angular surface effects. We can then use models of how the sunlight travels through the atmosphere to predict how the angle-dependent surface reflection will impact the values of pollutant levels inferred by OMI.
Iolanda Ialongo, Jay Herman, Nick Krotkov, Lok Lamsal, K. Folkert Boersma, Jari Hovila, and Johanna Tamminen
Atmos. Meas. Tech., 9, 5203–5212, https://doi.org/10.5194/amt-9-5203-2016, https://doi.org/10.5194/amt-9-5203-2016, 2016
Short summary
Short summary
We present the comparison between satellite- and ground-based atmospheric NO2 observations in Helsinki (Finland). The results show that, despite some limitations due to cloud contamination and low solar angles, satellite data are able to describe urban air quality features such as the weekly and seasonal cycles. The results support air quality satellite data exploitation at high latitudes and prepare for similar applications for future missions.
Wonbae Jeon, Yunsoo Choi, Peter Percell, Amir Hossein Souri, Chang-Keun Song, Soon-Tae Kim, and Jhoon Kim
Geosci. Model Dev., 9, 3671–3684, https://doi.org/10.5194/gmd-9-3671-2016, https://doi.org/10.5194/gmd-9-3671-2016, 2016
Short summary
Short summary
This study suggests a new hybrid Lagrangian–Eulerian modeling tool (the Screening Trajectory Ozone Prediction System, STOPS) for an accurate/fast prediction of Asian dust events. The STOPS is a moving nest (Lagrangian approach) between the source and the receptor inside Eulerian model. We run STOPS, instead of running a time-consuming Eulerian model, using constrained PM concentration from remote sensing aerosol optical depth, reflecting real-time dust particles. STOPS is for unexpected events.
Vitali E. Fioletov, Chris A. McLinden, Nickolay Krotkov, Can Li, Joanna Joiner, Nicolas Theys, Simon Carn, and Mike D. Moran
Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, https://doi.org/10.5194/acp-16-11497-2016, 2016
Short summary
Short summary
We introduce the first space-based catalogue of SO2 emission sources seen by OMI. The inventory contains about 500 sources. They account for about a half of all SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI. The sources are grouped by type (volcanoes, power plants, oil- and gas-related sources, and smelters) and country. The catalogue presented herein can be used for verification of available SO2 emission inventories.
Cristen Adams, Elise N. Normand, Chris A. McLinden, Adam E. Bourassa, Nicholas D. Lloyd, Douglas A. Degenstein, Nickolay A. Krotkov, Maria Belmonte Rivas, K. Folkert Boersma, and Henk Eskes
Atmos. Meas. Tech., 9, 4103–4122, https://doi.org/10.5194/amt-9-4103-2016, https://doi.org/10.5194/amt-9-4103-2016, 2016
Short summary
Short summary
A new "OMI-minus-OSIRIS" (OmO) prototype dataset for tropospheric NO2 was created by combining information from the OMI satellite instrument, which is sensitive to NO2 in both the troposphere and stratosphere, with information from the OSIRIS satellite instrument, which measures NO2 in the stratosphere. This paper demonstrates that this approach is feasible and could be applied to future geostationary missions.
Joanna Joiner, Yasuko Yoshida, Luis Guanter, and Elizabeth M. Middleton
Atmos. Meas. Tech., 9, 3939–3967, https://doi.org/10.5194/amt-9-3939-2016, https://doi.org/10.5194/amt-9-3939-2016, 2016
Short summary
Short summary
We examine new ways to use existing satellite instruments to retrieve red solar-induced fluorescence (SIF) over land and ocean. Our 8-year record of red SIF observations over land with the Global Ozone Monitoring Instrument 2 (GOME-2) shows for the first time reductions in response to drought. High-quality ocean fluorescence can also be derived with GOME-2 and similar instruments by utilizing their rich measurements of different colors.
Gonzalo González Abad, Alexander Vasilkov, Colin Seftor, Xiong Liu, and Kelly Chance
Atmos. Meas. Tech., 9, 2797–2812, https://doi.org/10.5194/amt-9-2797-2016, https://doi.org/10.5194/amt-9-2797-2016, 2016
Short summary
Short summary
The multi-spectral possibilities of the OMPS Nadir Mapper instrument are exploited here to perform formaldehyde retrievals. Orbiting the Earth at 824 km, OMPS observes the atmosphere in a time frame similar to instruments belonging to NASA's A-Train constellation, 01:30. We show that OMPS is well suited to measure formaldehyde despite its spectral resolution of 1nm. The comparison of OMPS retrievals with OMI products show good temporal correlation.
Pawan Gupta, Joanna Joiner, Alexander Vasilkov, and Pawan K. Bhartia
Atmos. Meas. Tech., 9, 2813–2826, https://doi.org/10.5194/amt-9-2813-2016, https://doi.org/10.5194/amt-9-2813-2016, 2016
Short summary
Short summary
The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. In this paper, retrievals of cloud/aerosols parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been used to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data as inputs. Application of our method to other ultraviolet sensors may provide unique estimates of TOA SWF.
Jinfeng Chang, Philippe Ciais, Mario Herrero, Petr Havlik, Matteo Campioli, Xianzhou Zhang, Yongfei Bai, Nicolas Viovy, Joanna Joiner, Xuhui Wang, Shushi Peng, Chao Yue, Shilong Piao, Tao Wang, Didier A. Hauglustaine, Jean-Francois Soussana, Anna Peregon, Natalya Kosykh, and Nina Mironycheva-Tokareva
Biogeosciences, 13, 3757–3776, https://doi.org/10.5194/bg-13-3757-2016, https://doi.org/10.5194/bg-13-3757-2016, 2016
Short summary
Short summary
We derived the global maps of grassland management intensity of 1901–2012, including the minimum area of managed grassland with fraction of mown/grazed part. These maps, to our knowledge for the first time, provide global, time-dependent information for drawing up global estimates of management impact on biomass production and yields and for global vegetation models to enable simulations of carbon stocks and GHG budgets beyond simple tuning of grassland productivities to account for management.
Sarah A. Strode, Helen M. Worden, Megan Damon, Anne R. Douglass, Bryan N. Duncan, Louisa K. Emmons, Jean-Francois Lamarque, Michael Manyin, Luke D. Oman, Jose M. Rodriguez, Susan E. Strahan, and Simone Tilmes
Atmos. Chem. Phys., 16, 7285–7294, https://doi.org/10.5194/acp-16-7285-2016, https://doi.org/10.5194/acp-16-7285-2016, 2016
Short summary
Short summary
We use global models to interpret trends in MOPITT observations of CO. Simulations with time-dependent emissions reproduce the observed trends over the eastern USA and Europe, suggesting that the emissions are reasonable for these regions. The simulations produce a positive trend over eastern China, contrary to the observed negative trend. This may indicate that the assumed emission trend over China is too positive. However, large variability in the overhead ozone column also contributes.
Nickolay A. Krotkov, Chris A. McLinden, Can Li, Lok N. Lamsal, Edward A. Celarier, Sergey V. Marchenko, William H. Swartz, Eric J. Bucsela, Joanna Joiner, Bryan N. Duncan, K. Folkert Boersma, J. Pepijn Veefkind, Pieternel F. Levelt, Vitali E. Fioletov, Russell R. Dickerson, Hao He, Zifeng Lu, and David G. Streets
Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, https://doi.org/10.5194/acp-16-4605-2016, 2016
Short summary
Short summary
We examine changes in SO2 and NO2 over the world's most polluted regions during the first decade of Aura OMI observations. Over the eastern US, both NO2 and SO2 levels decreased by 40 % and 80 %, respectively. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend been observed since 2011, with a 50 % reduction in 2012–2014. India's SO2 and NO2 levels are growing at a fast pace.
Yasin F. Elshorbany, Bryan N. Duncan, Sarah A. Strode, James S. Wang, and Jules Kouatchou
Geosci. Model Dev., 9, 799–822, https://doi.org/10.5194/gmd-9-799-2016, https://doi.org/10.5194/gmd-9-799-2016, 2016
Short summary
Short summary
The ECCOH (pronounced "echo") chemistry module interactively simulates the photochemistry of the CH4–CO–OH system within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4–CO–OH system. This capability is important for capturing nonlinear feedbacks of the CH4–CO–OH system and understanding the perturbations to methane, CO, and OH and the concomitant climate impacts.
S. A. Strode, B. N. Duncan, E. A. Yegorova, J. Kouatchou, J. R. Ziemke, and A. R. Douglass
Atmos. Chem. Phys., 15, 11789–11805, https://doi.org/10.5194/acp-15-11789-2015, https://doi.org/10.5194/acp-15-11789-2015, 2015
Short summary
Short summary
A low bias in carbon monoxide (CO) at northern latitudes is a common feature of chemistry climate models. We find that increasing Northern Hemisphere (NH) CO emissions or reducing NH OH concentrations improves the agreement with CO surface observations, but reducing NH OH leads to a better comparison with MOPITT. Removing model biases in ozone and water vapor increases the simulated methane lifetime, but it does not give the 20% reduction in NH OH suggested by our analysis of the CO bias.
Z. Lu, D. G. Streets, B. de Foy, L. N. Lamsal, B. N. Duncan, and J. Xing
Atmos. Chem. Phys., 15, 10367–10383, https://doi.org/10.5194/acp-15-10367-2015, https://doi.org/10.5194/acp-15-10367-2015, 2015
Short summary
Short summary
Using an exponentially modified Gaussian method and taking into account the effect of wind on NO2 distributions, we estimate 3-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the OMI during 2005−2014. Total OMI-derived NOx emissions over US urban areas decreased by 49%, consistent with reductions of 43, 49, and 44% in the bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively.
P. Köhler, L. Guanter, and J. Joiner
Atmos. Meas. Tech., 8, 2589–2608, https://doi.org/10.5194/amt-8-2589-2015, https://doi.org/10.5194/amt-8-2589-2015, 2015
Short summary
Short summary
The paper presents recent developments for the retrieval of sun-induced fluorescence (SIF) from medium spectral resolution space-borne spectrometers such as the Global Ozone Monitoring Experiment (GOME-2) and the Scanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Beside using simulated radiances to evaluate the retrieval performance, the method has also been used to estimate SIF at 740 nm using real spectra from GOME-2 and for the first time, from SCIAMACHY.
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
S. R. Arnold, L. K. Emmons, S. A. Monks, K. S. Law, D. A. Ridley, S. Turquety, S. Tilmes, J. L. Thomas, I. Bouarar, J. Flemming, V. Huijnen, J. Mao, B. N. Duncan, S. Steenrod, Y. Yoshida, J. Langner, and Y. Long
Atmos. Chem. Phys., 15, 6047–6068, https://doi.org/10.5194/acp-15-6047-2015, https://doi.org/10.5194/acp-15-6047-2015, 2015
Short summary
Short summary
The extent to which forest fires produce the air pollutant and greenhouse gas ozone (O3) in the atmosphere at high latitudes in not well understood. We have compared how fire emissions produce O3 and its precursors in several models of atmospheric chemistry. We find enhancements in O3 in air dominated by fires in all models, which increase on average as fire emissions age. We also find that in situ O3 production in the Arctic is sensitive to details of organic chemistry and vertical lifting.
I. Ialongo, J. Hakkarainen, R. Kivi, P. Anttila, N. A. Krotkov, K. Yang, C. Li, S. Tukiainen, S. Hassinen, and J. Tamminen
Atmos. Meas. Tech., 8, 2279–2289, https://doi.org/10.5194/amt-8-2279-2015, https://doi.org/10.5194/amt-8-2279-2015, 2015
Short summary
Short summary
The SO2 observations from OMI and OMPS satellite instruments are compared to ground-based measurements during the Icelandic Holuhraun fissure eruption in September 2014. The best agreement with the Brewer observations in Sodankylä, Finland can be found, assuming the SO2 predominantly located in the lowest levels of the atmosphere. The analysis of the SO2 surface concentrations in northern Finland supports the hypothesis that the volcanic plume was located very close to the surface.
S. A. Monks, S. R. Arnold, L. K. Emmons, K. S. Law, S. Turquety, B. N. Duncan, J. Flemming, V. Huijnen, S. Tilmes, J. Langner, J. Mao, Y. Long, J. L. Thomas, S. D. Steenrod, J. C. Raut, C. Wilson, M. P. Chipperfield, G. S. Diskin, A. Weinheimer, H. Schlager, and G. Ancellet
Atmos. Chem. Phys., 15, 3575–3603, https://doi.org/10.5194/acp-15-3575-2015, https://doi.org/10.5194/acp-15-3575-2015, 2015
Short summary
Short summary
Multi-model simulations of Arctic CO, O3 and OH are evaluated using observations. Models show highly variable concentrations but the relative importance of emission regions and types is robust across the models, demonstrating the importance of biomass burning as a source. Idealised tracer experiments suggest that some of the model spread is due to variations in simulated transport from Europe in winter and from Asia throughout the year.
L. Guanter, I. Aben, P. Tol, J. M. Krijger, A. Hollstein, P. Köhler, A. Damm, J. Joiner, C. Frankenberg, and J. Landgraf
Atmos. Meas. Tech., 8, 1337–1352, https://doi.org/10.5194/amt-8-1337-2015, https://doi.org/10.5194/amt-8-1337-2015, 2015
Short summary
Short summary
This paper investigates the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) instrument for the retrieval of the chlorophyll fluorescence signal emitted in the 650–850nm spectral range by the photosynthetic machinery of green plants. We find that TROPOMI will allow substantial improvements in the space monitoring of fluorescence with respect to current spaceborne instruments such as GOME-2 and SCIAMACHY.
L. N. Lamsal, N. A. Krotkov, E. A. Celarier, W. H. Swartz, K. E. Pickering, E. J. Bucsela, J. F. Gleason, R. V. Martin, S. Philip, H. Irie, A. Cede, J. Herman, A. Weinheimer, J. J. Szykman, and T. N. Knepp
Atmos. Chem. Phys., 14, 11587–11609, https://doi.org/10.5194/acp-14-11587-2014, https://doi.org/10.5194/acp-14-11587-2014, 2014
A. Rocha-Lima, J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben-Ami, and P. Artaxo
Atmos. Chem. Phys., 14, 10649–10661, https://doi.org/10.5194/acp-14-10649-2014, https://doi.org/10.5194/acp-14-10649-2014, 2014
A. Vasilkov, J. Joiner, and C. Seftor
Atmos. Meas. Tech., 7, 2897–2906, https://doi.org/10.5194/amt-7-2897-2014, https://doi.org/10.5194/amt-7-2897-2014, 2014
I. Ialongo, J. Hakkarainen, N. Hyttinen, J.-P. Jalkanen, L. Johansson, K. F. Boersma, N. Krotkov, and J. Tamminen
Atmos. Chem. Phys., 14, 7795–7805, https://doi.org/10.5194/acp-14-7795-2014, https://doi.org/10.5194/acp-14-7795-2014, 2014
C. A. McLinden, V. Fioletov, K. F. Boersma, S. K. Kharol, N. Krotkov, L. Lamsal, P. A. Makar, R. V. Martin, J. P. Veefkind, and K. Yang
Atmos. Chem. Phys., 14, 3637–3656, https://doi.org/10.5194/acp-14-3637-2014, https://doi.org/10.5194/acp-14-3637-2014, 2014
V. Buchard, A. M. da Silva, P. Colarco, N. Krotkov, R. R. Dickerson, J. W. Stehr, G. Mount, E. Spinei, H. L. Arkinson, and H. He
Atmos. Chem. Phys., 14, 1929–1941, https://doi.org/10.5194/acp-14-1929-2014, https://doi.org/10.5194/acp-14-1929-2014, 2014
Y. Choi
Atmos. Chem. Phys., 14, 675–690, https://doi.org/10.5194/acp-14-675-2014, https://doi.org/10.5194/acp-14-675-2014, 2014
J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan
Atmos. Chem. Phys., 14, 103–114, https://doi.org/10.5194/acp-14-103-2014, https://doi.org/10.5194/acp-14-103-2014, 2014
J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg
Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, https://doi.org/10.5194/amt-6-2803-2013, 2013
E. J. Bucsela, N. A. Krotkov, E. A. Celarier, L. N. Lamsal, W. H. Swartz, P. K. Bhartia, K. F. Boersma, J. P. Veefkind, J. F. Gleason, and K. E. Pickering
Atmos. Meas. Tech., 6, 2607–2626, https://doi.org/10.5194/amt-6-2607-2013, https://doi.org/10.5194/amt-6-2607-2013, 2013
A. Vasilkov, J. Joiner, and R. Spurr
Atmos. Meas. Tech., 6, 981–990, https://doi.org/10.5194/amt-6-981-2013, https://doi.org/10.5194/amt-6-981-2013, 2013
J. Wang, S. Park, J. Zeng, C. Ge, K. Yang, S. Carn, N. Krotkov, and A. H. Omar
Atmos. Chem. Phys., 13, 1895–1912, https://doi.org/10.5194/acp-13-1895-2013, https://doi.org/10.5194/acp-13-1895-2013, 2013
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Vertical profiles of global tropospheric nitrogen dioxide (NO2) obtained by cloud slicing the TROPOspheric Monitoring Instrument (TROPOMI)
Opinion: Beyond global means – novel space-based approaches to indirectly constrain the concentrations of and trends and variations in the tropospheric hydroxyl radical (OH)
Satellite-observed relationships between land cover, burned area, and atmospheric composition over the southern Amazon
Ammonia emission estimates using CrIS satellite observations over Europe
Insights into the long-term (2005–2021) spatiotemporal evolution of summer ozone production sensitivity in the Northern Hemisphere derived with the Ozone Monitoring Instrument (OMI)
Tropical tropospheric ozone distribution and trends from in situ and satellite data
Estimation of ground-level NO2 and its spatiotemporal variations in China using GEMS measurements and a nested machine learning model
Unleashing the Potential of Geostationary Satellite Observations in Air Quality Forecasting Through Artificial Intelligence Techniques
Investigation of the impact of satellite vertical sensitivity on long-term retrieved lower-tropospheric ozone trends
Quantifying the diurnal variation in atmospheric NO2 from Geostationary Environment Monitoring Spectrometer (GEMS) observations
Global seasonal urban, industrial, and background NO2 estimated from TROPOMI satellite observations
What can we learn about tropospheric OH from satellite observations of methane?
Feasibility of robust estimates of ozone production rates using satellite observations
Identifying Missing Sources and Reducing NOx Emissions Uncertainty over China using Daily Satellite Data and a Mass-Conserving Method
Ammonia in the upper troposphere–lower stratosphere (UTLS): GLORIA airborne measurements for CAMS model evaluation in the Asian monsoon and in biomass burning plumes above the South Atlantic
A lightweight NO2-to-NOx conversion model for quantifying NOx emissions of point sources from NO2 satellite observations
Towards a sector-specific CO∕CO2 emission ratio: satellite-based observations of CO release from steel production in Germany
Monitoring European anthropogenic NOx emissions from space
Upper tropospheric pollutants observed by MIPAS: geographic and seasonal variations
Comparing space-based to reported carbon monoxide emission estimates for Europe’s iron & steel plants
Opposite variations of peak and low ozone concentrations in eastern China: Positive effects of NOx control on ozone pollution
Pyrogenic HONO seen from space: insights from global IASI observations
First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period
High-resolution mapping of nitrogen oxide emissions in large US cities from TROPOMI retrievals of tropospheric nitrogen dioxide columns
Quantifying the tropospheric ozone radiative effect and its temporal evolution in the satellite era
Tropical upper tropospheric trends in ozone and carbon monoxide (2005–2020): observational and model results
A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent
Investigation of spatial and temporal variability in lower tropospheric ozone from RAL Space UV–Vis satellite products
Two years of satellite-based carbon dioxide emission quantification at the world's largest coal-fired power plants
Tropical tropospheric ozone and carbon monoxide distributions: characteristics, origins, and control factors, as seen by IAGOS and IASI
Investigation of the summer 2018 European ozone air pollution episodes using novel satellite data and modelling
Bridging the spatial gaps of the Ammonia Monitoring Network using satellite ammonia measurements
A roadmap to estimating agricultural ammonia volatilization over Europe using satellite observations and simulation data
Investigation of meteorological conditions and BrO during ozone depletion events in Ny-Ålesund between 2010 and 2021
Quantification of carbon monoxide emissions from African cities using TROPOMI
Nitrogen oxides emissions from selected cities in North America, Europe, and East Asia observed by the TROPOspheric Monitoring Instrument (TROPOMI) before and after the COVID-19 pandemic
Remotely sensed and surface measurement- derived mass-conserving inversion of daily NOx emissions and inferred combustion technologies in energy-rich northern China
Examining TROPOMI formaldehyde to nitrogen dioxide ratios in the Lake Michigan region: implications for ozone exceedances
Impact of different sources of precursors on an ozone pollution outbreak over Europe analysed with IASI+GOME2 multispectral satellite observations and model simulations
Monitoring and quantifying CO2 emissions of isolated power plants from space
Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy
Significant contribution of inland ships to the total NOx emissions along the Yangtze River
Characteristics of interannual variability in space-based XCO2 global observations
Toward a versatile spaceborne architecture for immediate monitoring of the global methane pledge
Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021
Ground solar absorption observations of total column CO, CO2, CH4, and aerosol optical depth from California's Sequoia Lightning Complex Fire: emission factors and modified combustion efficiency at regional scales
Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula
Mobile MAX-DOAS observations of tropospheric NO2 and HCHO during summer over the Three Rivers' Source region in China
Estimating enhancement ratios of nitrogen dioxide, carbon monoxide and carbon dioxide using satellite observations
Source mechanisms and transport patterns of tropospheric bromine monoxide: findings from long-term multi-axis differential optical absorption spectroscopy measurements at two Antarctic stations
Rebekah P. Horner, Eloise A. Marais, Nana Wei, Robert G. Ryan, and Viral Shah
Atmos. Chem. Phys., 24, 13047–13064, https://doi.org/10.5194/acp-24-13047-2024, https://doi.org/10.5194/acp-24-13047-2024, 2024
Short summary
Short summary
Nitrogen oxides (NOx ≡ NO + NO2) affect tropospheric ozone and the hydroxyl radical, influencing climate and atmospheric oxidation. To address the lack of routine observations of NOx, we cloud slice satellite observations of NO2 to derive a new dataset of global vertical profiles of NO2. We evaluate our data against in situ aircraft observations and use these data to critique the contemporary understanding of tropospheric NOx, as simulated by the GEOS-Chem model.
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024, https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Short summary
Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some greenhouse gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH.
Emma Sands, Richard J. Pope, Ruth M. Doherty, Fiona M. O'Connor, Chris Wilson, and Hugh Pumphrey
Atmos. Chem. Phys., 24, 11081–11102, https://doi.org/10.5194/acp-24-11081-2024, https://doi.org/10.5194/acp-24-11081-2024, 2024
Short summary
Short summary
Changes in vegetation alongside biomass burning impact regional atmospheric composition and air quality. Using satellite remote sensing, we find a clear linear relationship between forest cover and isoprene and a pronounced non-linear relationship between burned area and nitrogen dioxide in the southern Amazon, a region of substantial deforestation. These quantified relationships can be used for model evaluation and further exploration of biosphere-atmosphere interactions in Earth System Models.
Jieying Ding, Ronald van der A, Henk Eskes, Enrico Dammers, Mark Shephard, Roy Wichink Kruit, Marc Guevara, and Leonor Tarrason
Atmos. Chem. Phys., 24, 10583–10599, https://doi.org/10.5194/acp-24-10583-2024, https://doi.org/10.5194/acp-24-10583-2024, 2024
Short summary
Short summary
Here we applied the existing Daily Emissions Constrained by Satellite Observations (DECSO) inversion algorithm to NH3 observations from the CrIS satellite instrument to estimate NH3 emissions. As NH3 in the atmosphere is influenced by NOx, we implemented DECSO to estimate NOx and NH3 emissions simultaneously. The emissions are derived over Europe for 2020 at a spatial resolution of 0.2° using daily observations from CrIS and TROPOMI. Results are compared to bottom-up emission inventories.
Matthew S. Johnson, Sajeev Philip, Scott Meech, Rajesh Kumar, Meytar Sorek-Hamer, Yoichi P. Shiga, and Jia Jung
Atmos. Chem. Phys., 24, 10363–10384, https://doi.org/10.5194/acp-24-10363-2024, https://doi.org/10.5194/acp-24-10363-2024, 2024
Short summary
Short summary
Satellites, like the Ozone Monitoring Instrument (OMI), retrieve proxy species of ozone (O3) formation (formaldehyde and nitrogen dioxide) and the ratios (FNRs) which can define O3 production sensitivity regimes. Here we investigate trends of OMI FNRs from 2005 to 2021, and they have increased in major cities, suggesting a transition from radical- to NOx-limited regimes. OMI also observed the impact of reduced emissions during the 2020 COVID-19 lockdown that resulted in increased FNRs.
Audrey Gaudel, Ilann Bourgeois, Meng Li, Kai-Lan Chang, Jerald Ziemke, Bastien Sauvage, Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Nadia Smith, Daan Hubert, Arno Keppens, Juan Cuesta, Klaus-Peter Heue, Pepijn Veefkind, Kenneth Aikin, Jeff Peischl, Chelsea R. Thompson, Thomas B. Ryerson, Gregory J. Frost, Brian C. McDonald, and Owen R. Cooper
Atmos. Chem. Phys., 24, 9975–10000, https://doi.org/10.5194/acp-24-9975-2024, https://doi.org/10.5194/acp-24-9975-2024, 2024
Short summary
Short summary
The study examines tropical tropospheric ozone changes. In situ data from 1994–2019 display increased ozone, notably over India, Southeast Asia, and Malaysia and Indonesia. Sparse in situ data limit trend detection for the 15-year period. In situ and satellite data, with limited sampling, struggle to consistently detect trends. Continuous observations are vital over the tropical Pacific Ocean, Indian Ocean, western Africa, and South Asia for accurate ozone trend estimation in these regions.
Naveed Ahmad, Changqing Lin, Alexis K. H. Lau, Jhoon Kim, Tianshu Zhang, Fangqun Yu, Chengcai Li, Ying Li, Jimmy C. H. Fung, and Xiang Qian Lao
Atmos. Chem. Phys., 24, 9645–9665, https://doi.org/10.5194/acp-24-9645-2024, https://doi.org/10.5194/acp-24-9645-2024, 2024
Short summary
Short summary
This study developed a nested machine learning model to convert the GEMS NO2 column measurements into ground-level concentrations across China. The model directly incorporates the NO2 mixing height (NMH) into the methodological framework. The study underscores the importance of considering NMH when estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of new-generation geostationary satellites in air quality monitoring.
Chengxin Zhang, Xinhan Niu, Hongyu Wu, Zhipeng Ding, Ka Lok Chan, Jhoon Kim, Thomas Wagner, and Cheng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2620, https://doi.org/10.5194/egusphere-2024-2620, 2024
Short summary
Short summary
This research utilizes hourly air pollution observations from the world’s first geostationary satellite to develop a spatiotemporal neural network model for full-coverage surface NO2 pollution prediction over the next 24 hours, achieving outstanding forecasting performance and efficacy. These results highlight the profound impact of geostationary satellite observations in advancing air quality forecasting models, thereby contributing to future models for health exposure to air pollution.
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024, https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Short summary
Ozone is a potent air pollutant in the lower troposphere, with adverse impacts on human health. Satellite records of tropospheric ozone currently show large-scale inconsistencies in long-term trends. Our detailed study of the potential factors (e.g. satellite errors, where the satellite can observe ozone) potentially driving these inconsistencies found that, in North America, Europe, and East Asia, the underlying trends are typically small with large uncertainties.
David P. Edwards, Sara Martínez-Alonso, Duseong S. Jo, Ivan Ortega, Louisa K. Emmons, John J. Orlando, Helen M. Worden, Jhoon Kim, Hanlim Lee, Junsung Park, and Hyunkee Hong
Atmos. Chem. Phys., 24, 8943–8961, https://doi.org/10.5194/acp-24-8943-2024, https://doi.org/10.5194/acp-24-8943-2024, 2024
Short summary
Short summary
Until recently, satellite observations of atmospheric pollutants at any location could only be obtained once a day. New geostationary satellites stare at a region of the Earth to make hourly measurements, and the Geostationary Environment Monitoring Spectrometer is the first looking at Asia. These data and model simulations show how the change seen for one important pollutant that determines air quality depends on a combination of pollution emissions, atmospheric chemistry, and meteorology.
Vitali Fioletov, Chris A. McLinden, Debora Griffin, Xiaoyi Zhao, and Henk Eskes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1991, https://doi.org/10.5194/egusphere-2024-1991, 2024
Short summary
Short summary
Satellite data were used to estimate urban per capita emissions for 261 major cities worldwide. Three components in tropospheric NO2 data: background NO2, NO2 from urban sources, and from industrial point sources were isolated and then each of these components was analyzed separately. The largest per capita emissions were found at the Middle East and the smallest were in India and South Africa. Urban weekend emissions are 20 %–50 % less than workday emissions for all regions except China.
Elise Penn, Daniel J. Jacob, Zichong Chen, James D. East, Melissa P. Sulprizio, Lori Bruhwiler, Joannes D. Maasakkers, Hannah Nesser, Zhen Qu, Yuzhong Zhang, and John Worden
EGUsphere, https://doi.org/10.5194/egusphere-2024-2260, https://doi.org/10.5194/egusphere-2024-2260, 2024
Short summary
Short summary
The hydroxyl radical (OH), destroys many air pollutants, including methane. Global mean OH cannot be directly measured, so it is inferred with the methyl chloroform (MCF) proxy. MCF is decreasing, and a replacement is needed. We use satellite observations of methane in two spectral ranges as a proxy for OH instead. We find shortwave infrared observations can characterize yearly OH and its seasonality, but not the latitudinal distribution. Thermal infrared observations add little information.
Amir H. Souri, Gonzalo González Abad, Glenn M. Wolfe, Tijl Verhoelst, Corinne Vigouroux, Gaia Pinardi, Steven Compernolle, Bavo Langerock, Bryan N. Duncan, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1947, https://doi.org/10.5194/egusphere-2024-1947, 2024
Short summary
Short summary
We establish a simple yet robust relationship between ozone production rates and several geophysical parameters obtained from several intensive atmospheric composition campaigns. We have shown that satellite remote sensing data can effectively constrain these parameters, enabling us to produce the first global maps of ozone production rates with unprecedented resolution.
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-1903, https://doi.org/10.5194/egusphere-2024-1903, 2024
Short summary
Short summary
This study assimilates NO2 observations from TROPOMI in a mass-conserving manner and inverts daily NOx emissions. The results are presented over rapidly changing regions in China. Attribution is quantified using local observations and inverted proxy of combustion temperature. There are significant sources identified in some areas which are not in existing databases, especially small and medium industries along the Yangtze River. We also demonstrate which emissions are robust and which are not.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Sandro Meier, Erik F. M. Koene, Maarten Krol, Dominik Brunner, Alexander Damm, and Gerrit Kuhlmann
Atmos. Chem. Phys., 24, 7667–7686, https://doi.org/10.5194/acp-24-7667-2024, https://doi.org/10.5194/acp-24-7667-2024, 2024
Short summary
Short summary
Nitrogen oxides (NOx = NO + NO2) are important air pollutants. This study addresses the challenge of accurately estimating NOx emissions from NO2 satellite observations. We develop a realistic model to convert NO2 to NOx by using simulated plumes from various power plants. We apply the model to satellite NO2 observations, significantly reducing biases in estimated NOx emissions. The study highlights the potential for a consistent, high-resolution estimation of NOx emissions using satellite data.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
Atmos. Chem. Phys., 24, 7609–7621, https://doi.org/10.5194/acp-24-7609-2024, https://doi.org/10.5194/acp-24-7609-2024, 2024
Short summary
Short summary
Large quantities of CO and CO2 are emitted during conventional steel production. As satellite-based estimates of CO2 emissions at the facility level are challenging, co-emitted CO can indicate the carbon footprint of steel plants. We estimate CO emissions for German steelworks and use CO2 emissions from emissions trading data to derive a sector-specific CO/CO2 emission ratio for the steel industry; it is a prerequisite to use CO as a proxy for CO2 emissions from similar steel production sites.
Ronald J. van der A, Jieying Ding, and Henk Eskes
Atmos. Chem. Phys., 24, 7523–7534, https://doi.org/10.5194/acp-24-7523-2024, https://doi.org/10.5194/acp-24-7523-2024, 2024
Short summary
Short summary
Using observations of the Sentinel-5P satellite and the latest version of the inversion algorithm DECSO, anthropogenic NOx emissions are derived for Europe for the years 2019–2022 with a spatial resolution of 0.2°. The results are compared with European emissions of the Copernicus Atmosphere Monitoring Service.
Norbert Glatthor, Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Sylvia Kellmann, and Andrea Linden
EGUsphere, https://doi.org/10.5194/egusphere-2024-1793, https://doi.org/10.5194/egusphere-2024-1793, 2024
Short summary
Short summary
We present global upper tropospheric distributions of the pollutants HCN, CO, C2H2, C2H6, PAN and HCOOH, observed by MIPAS/Envisat between 2002 and 2012. This common view allows conclusions on the sources of the different pollutants, like, e.g., biomass burning, anthropogenic sources or biogenic release. For this purpose we compare their VMR distributions and additionally perform global correlation and regression analyses.
Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, Ivar R. van der Velde, and Ilse Aben
EGUsphere, https://doi.org/10.5194/egusphere-2024-1561, https://doi.org/10.5194/egusphere-2024-1561, 2024
Short summary
Short summary
The production of steel coincides with large emissions of greenhouse gases and air pollutants including carbon monoxide. European facilities are required to report their emissions, which are estimated using a variety of methods. We evaluate these estimates using carbon monoxide concentrations measured using a satellite. We find generally good agreement between our values and those reported but also identify some uncertainties, showing that satellites can provide insights on these emissions.
Zhuang Wang, Chune Shi, Hao Zhang, Xianguang Ji, Yizhi Zhu, Congzi Xia, Xiaoyun Sun, Xinfeng Lin, Shaowei Yan, Suyao Wang, Yuan Zhou, Chengzhi Xing, Yujia Chen, and Cheng Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-341, https://doi.org/10.5194/egusphere-2024-341, 2024
Short summary
Short summary
This study attempts to explain the surface ozone background, typical, and peak trends in eastern China by combining a large amount of ground–based and satellite observations, and found substantial reductions in nitrogen oxides emissions have diametrically opposed effects on peak (decreasing) and low (increasing) ozone concentrations.
Bruno Franco, Lieven Clarisse, Nicolas Theys, Juliette Hadji-Lazaro, Cathy Clerbaux, and Pierre Coheur
Atmos. Chem. Phys., 24, 4973–5007, https://doi.org/10.5194/acp-24-4973-2024, https://doi.org/10.5194/acp-24-4973-2024, 2024
Short summary
Short summary
Using IASI global infrared measurements, we retrieve nitrous acid (HONO) in fire plumes from space. We detect large enhancements of pyrogenic HONO worldwide, especially from intense wildfires at Northern Hemisphere mid- and high latitudes. Predominance of IASI nighttime over daytime measurements sheds light on HONO's extended lifetime and secondary formation during long-range transport in smoke plumes. Our findings deepen the understanding of atmospheric HONO, crucial for air quality assessment.
Gitaek T. Lee, Rokjin J. Park, Hyeong-Ahn Kwon, Eunjo S. Ha, Sieun D. Lee, Seunga Shin, Myoung-Hwan Ahn, Mina Kang, Yong-Sang Choi, Gyuyeon Kim, Dong-Won Lee, Deok-Rae Kim, Hyunkee Hong, Bavo Langerock, Corinne Vigouroux, Christophe Lerot, Francois Hendrick, Gaia Pinardi, Isabelle De Smedt, Michel Van Roozendael, Pucai Wang, Heesung Chong, Yeseul Cho, and Jhoon Kim
Atmos. Chem. Phys., 24, 4733–4749, https://doi.org/10.5194/acp-24-4733-2024, https://doi.org/10.5194/acp-24-4733-2024, 2024
Short summary
Short summary
This study evaluates the Geostationary Environment Monitoring Spectrometer (GEMS) HCHO product by comparing its vertical column densities (VCDs) with those of TROPOMI and ground-based observations. Based on some sensitivity tests, obtaining radiance references under clear-sky conditions significantly improves HCHO retrieval quality. GEMS HCHO VCDs captured seasonal and diurnal variations well during the first year of observation, showing consistency with TROPOMI and ground-based observations.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Lucien Froidevaux, Douglas E. Kinnison, Benjamin Gaubert, Michael J. Schwartz, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, Jerry R. Ziemke, and Ryan A. Fuller
EGUsphere, https://doi.org/10.5194/egusphere-2024-525, https://doi.org/10.5194/egusphere-2024-525, 2024
Short summary
Short summary
We compare observed changes in ozone (O3) and carbon monoxide (CO) in the tropical upper troposphere (10–15 km altitude) for 2005–2020 to predictions from model simulations that track the evolution of natural and industrial emissions transported to this region. An increasing trend in measured upper tropospheric O3 is generally well matched by the model trends. We also find that changes in modeled industrial CO surface emissions lead to better model agreement with observed decreasing CO trends.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, and Richard Rigby
Atmos. Chem. Phys., 23, 14933–14947, https://doi.org/10.5194/acp-23-14933-2023, https://doi.org/10.5194/acp-23-14933-2023, 2023
Short summary
Short summary
Ozone is a potent air pollutant, and we present the first study to investigate long-term changes in lower tropospheric column ozone (LTCO3) from space. We have constructed a merged LTCO3 dataset from GOME-1, SCIAMACHY and OMI between 1996 and 2017. Comparing LTCO3 between the 1996–2000 and 2013–2017 5-year averages, we find significant positive increases in the tropics/sub-tropics, while in the northern mid-latitudes, we find small-scale differences.
Daniel H. Cusworth, Andrew K. Thorpe, Charles E. Miller, Alana K. Ayasse, Ralph Jiorle, Riley M. Duren, Ray Nassar, Jon-Paul Mastrogiacomo, and Robert R. Nelson
Atmos. Chem. Phys., 23, 14577–14591, https://doi.org/10.5194/acp-23-14577-2023, https://doi.org/10.5194/acp-23-14577-2023, 2023
Short summary
Short summary
Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we tasked two satellites to routinely observe CO2 emissions at 30 coal-fired power plants between 2021 and 2022. These results present the largest dataset of space-based CO2 emission estimates to date.
Maria Tsivlidou, Bastien Sauvage, Yasmine Bennouna, Romain Blot, Damien Boulanger, Hannah Clark, Eric Le Flochmoën, Philippe Nédélec, Valérie Thouret, Pawel Wolff, and Brice Barret
Atmos. Chem. Phys., 23, 14039–14063, https://doi.org/10.5194/acp-23-14039-2023, https://doi.org/10.5194/acp-23-14039-2023, 2023
Short summary
Short summary
The tropics are a region where the ozone increase has been most apparent since 1980 and where observations are sparse. Using aircraft, satellite, and model data, we document the characteristics of tropospheric ozone and CO over the whole tropics for the last 2 decades. We explore the origin of the observed CO anomalies and investigate transport processes driving the tropical CO and O3 distribution. Our study highlights the importance of anthropogenic emissions, mostly over the northern tropics.
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023, https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Short summary
Ammonia (NH3) is a key precursor for fine particulate matter (PM2.5) and a primary form of reactive nitrogen, yet it has sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the US, demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the US, including the NH3 hotspots and urban areas.
Rimal Abeed, Camille Viatte, William C. Porter, Nikolaos Evangeliou, Cathy Clerbaux, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, and Sarah Safieddine
Atmos. Chem. Phys., 23, 12505–12523, https://doi.org/10.5194/acp-23-12505-2023, https://doi.org/10.5194/acp-23-12505-2023, 2023
Short summary
Short summary
Ammonia emissions from agricultural activities will inevitably increase with the rise in population. We use a variety of datasets (satellite, reanalysis, and model simulation) to calculate the first regional map of ammonia emission potential during the start of the growing season in Europe. We then apply our developed method using a climate model to show the effect of the temperature increase on future ammonia columns under two possible climate scenarios.
Bianca Zilker, Andreas Richter, Anne-Marlene Blechschmidt, Peter von der Gathen, Ilias Bougoudis, Sora Seo, Tim Bösch, and John Philip Burrows
Atmos. Chem. Phys., 23, 9787–9814, https://doi.org/10.5194/acp-23-9787-2023, https://doi.org/10.5194/acp-23-9787-2023, 2023
Short summary
Short summary
During Arctic spring, near-surface ozone is depleted by bromine released from salty sea ice and/or snow-covered areas under certain meteorological conditions. To study this ozone depletion and the prevailing meteorological conditions, two ozone data sets from Ny-Ålesund, Svalbard, have been evaluated. We found that during ozone depletion events lower pressure over the Barents Sea and higher pressure in the Icelandic Low area led to a transport of cold polar air from the north to Ny-Ålesund.
Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, and Ilse Aben
Atmos. Chem. Phys., 23, 8899–8919, https://doi.org/10.5194/acp-23-8899-2023, https://doi.org/10.5194/acp-23-8899-2023, 2023
Short summary
Short summary
We present a fast method to evaluate carbon monoxide emissions from cities in Africa. Carbon monoxide is important for climate change in an indirect way, as it is linked to ozone, methane, and carbon dioxide. Our measurements are made with a satellite that sees the entire globe every single day. This means that we can check from space whether the current knowledge of emission rates is up to date. We make the comparison and show that the emission rates in northern Africa are underestimated.
Chantelle R. Lonsdale and Kang Sun
Atmos. Chem. Phys., 23, 8727–8748, https://doi.org/10.5194/acp-23-8727-2023, https://doi.org/10.5194/acp-23-8727-2023, 2023
Short summary
Short summary
The COVID-19 pandemic, which was caused by the SARS-CoV-2 virus, emerged in 2019, and its still evolving variants have resulted in unprecedented shifts in human activities and anthropogenic emissions into the Earth's atmosphere. We present monthly nitrogen oxide emissions over three major continents from May 2018 to January 2023 to capture variations before and after the COVID-19 pandemic. We focus on a diverse collection of 54 cities to quantify the post-COVID-19 perturbations.
Xiaolu Li, Jason Blake Cohen, Kai Qin, Hong Geng, Xiaohui Wu, Liling Wu, Chengli Yang, Rui Zhang, and Liqin Zhang
Atmos. Chem. Phys., 23, 8001–8019, https://doi.org/10.5194/acp-23-8001-2023, https://doi.org/10.5194/acp-23-8001-2023, 2023
Short summary
Short summary
Remotely sensed NO2 and surface NOx are combined with a mathematical method to estimate daily NOx emissions. The results identify new sources and improve existing estimates. The estimation is driven by three flexible factors: thermodynamics of combustion, chemical loss, and atmospheric transport. The thermodynamic term separates power, iron, and cement from coking, boilers, and aluminum. This work finds three causes for the extremes: emissions, UV radiation, and transport.
Juanito Jerrold Mariano Acdan, Robert Bradley Pierce, Angela F. Dickens, Zachariah Adelman, and Tsengel Nergui
Atmos. Chem. Phys., 23, 7867–7885, https://doi.org/10.5194/acp-23-7867-2023, https://doi.org/10.5194/acp-23-7867-2023, 2023
Short summary
Short summary
Ozone is an air pollutant that is harmful to human health. Near the surface of Earth, ozone is created when other pollutants react in the presence of sunlight. This study uses satellite data to investigate how ozone levels can be decreased in the Lake Michigan region of the United States. Our results indicate that ozone levels can be decreased by decreasing volatile organic compound emissions in urban areas and decreasing nitrogen oxide emissions in the region as a whole.
Sachiko Okamoto, Juan Cuesta, Matthias Beekmann, Gaëlle Dufour, Maxim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, and Hajime Akimoto
Atmos. Chem. Phys., 23, 7399–7423, https://doi.org/10.5194/acp-23-7399-2023, https://doi.org/10.5194/acp-23-7399-2023, 2023
Short summary
Short summary
We present a detailed analysis of the daily evolution of the lowermost tropospheric ozone documented by IASI+GOME2 multispectral satellite observations and that of its precursors from TCR-2 tropospheric chemistry reanalysis. It reveals that the ozone outbreak across Europe in July 2017 was produced during favorable condition for photochemical production of ozone and was associated with multiple sources of ozone precursors: biogenic, anthropogenic, and biomass burning emissions.
Xiaojuan Lin, Ronald van der A, Jos de Laat, Henk Eskes, Frédéric Chevallier, Philippe Ciais, Zhu Deng, Yuanhao Geng, Xuanren Song, Xiliang Ni, Da Huo, Xinyu Dou, and Zhu Liu
Atmos. Chem. Phys., 23, 6599–6611, https://doi.org/10.5194/acp-23-6599-2023, https://doi.org/10.5194/acp-23-6599-2023, 2023
Short summary
Short summary
Satellite observations provide evidence for CO2 emission signals from isolated power plants. We use these satellite observations to quantify emissions. We found that for power plants with multiple observations, the correlation of estimated and reported emissions is significantly improved compared to a single observation case. This demonstrates that accurate estimation of power plant emissions can be achieved by monitoring from future satellite missions with more frequent observations.
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023, https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Short summary
We describe a methodology that combines machine learning, satellite observations, and 3D chemical model output to infer the abundance of the hydroxyl radical (OH), a chemical that removes many trace gases from the atmosphere. The methodology successfully captures the variability of observed OH, although further observations are needed to evaluate absolute accuracy. Current satellite observations are of sufficient quality to infer OH, but retrieval validation in the remote tropics is needed.
Xiumei Zhang, Ronald van der A, Jieying Ding, Xin Zhang, and Yan Yin
Atmos. Chem. Phys., 23, 5587–5604, https://doi.org/10.5194/acp-23-5587-2023, https://doi.org/10.5194/acp-23-5587-2023, 2023
Short summary
Short summary
We compiled a ship emission inventory based on automatic identification system (AIS) signals in the Jiangsu section of the Yangtze River. This ship emission inventory was compared with Chinese bottom-up inventories and the satellite-derived emissions from TROPOMI. The result shows a consistent spatial distribution, with riverine cities having high NOx emissions. Inland ship emissions of NOx are shown to contribute at least 40 % to air pollution along the river.
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Liang Feng, Paul I. Palmer, Robert J. Parker, Mark F. Lunt, and Hartmut Bösch
Atmos. Chem. Phys., 23, 4863–4880, https://doi.org/10.5194/acp-23-4863-2023, https://doi.org/10.5194/acp-23-4863-2023, 2023
Short summary
Short summary
Our understanding of recent changes in atmospheric methane has defied explanation. Since 2007, the atmospheric growth of methane has accelerated to record-breaking values in 2020 and 2021. We use satellite observations of methane to show that (1) increasing emissions over the tropics are mostly responsible for these recent atmospheric changes, and (2) changes in the OH sink during the 2020 Covid-19 lockdown can explain up to 34% of changes in atmospheric methane for that year.
Isis Frausto-Vicencio, Sajjan Heerah, Aaron G. Meyer, Harrison A. Parker, Manvendra Dubey, and Francesca M. Hopkins
Atmos. Chem. Phys., 23, 4521–4543, https://doi.org/10.5194/acp-23-4521-2023, https://doi.org/10.5194/acp-23-4521-2023, 2023
Short summary
Short summary
Wildfires are increasing in the western USA, making it critical to understand the impacts of greenhouse gases and air pollutants on the atmosphere. We used a ground-based remote sensing technique to measure the greenhouse gases and aerosol in the atmosphere. We isolate a large smoke plume from a nearby wildfire and calculate variables to understand the fuel properties and combustion phases. We find that a significant amount of methane is emitted from the 2020 California wildfire season.
Hervé Petetin, Marc Guevara, Steven Compernolle, Dene Bowdalo, Pierre-Antoine Bretonnière, Santiago Enciso, Oriol Jorba, Franco Lopez, Albert Soret, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023, https://doi.org/10.5194/acp-23-3905-2023, 2023
Short summary
Short summary
This study analyses the potential of the TROPOMI space sensor for monitoring the variability of NO2 pollution over the Iberian Peninsula. A reduction of NO2 levels is observed during the weekend and in summer, especially over most urbanized areas, in agreement with surface observations. An enhancement of NO2 is found during summer with TROPOMI over croplands, potentially related to natural soil NO emissions, which illustrates the outstanding value of TROPOMI for complementing surface networks.
Siyang Cheng, Xinghong Cheng, Jianzhong Ma, Xiangde Xu, Wenqian Zhang, Jinguang Lv, Gang Bai, Bing Chen, Siying Ma, Steffen Ziegler, Sebastian Donner, and Thomas Wagner
Atmos. Chem. Phys., 23, 3655–3677, https://doi.org/10.5194/acp-23-3655-2023, https://doi.org/10.5194/acp-23-3655-2023, 2023
Short summary
Short summary
We made mobile MAX-DOAS measurements in the background atmosphere over the Tibetan Plateau in summer 2021. We retrieved the tropospheric NO2 and HCHO vertical column densities (VCDs) along extended driving routes and found a decreasing trend of the VCDs with altitude. Elevated NO2 VCDs along the driving routes could be attributed to enhanced traffic emissions from the towns crossed. The spatio-temporal distribution of the HCHO VCDs correlated strongly with the surface temperature.
Cameron G. MacDonald, Jon-Paul Mastrogiacomo, Joshua L. Laughner, Jacob K. Hedelius, Ray Nassar, and Debra Wunch
Atmos. Chem. Phys., 23, 3493–3516, https://doi.org/10.5194/acp-23-3493-2023, https://doi.org/10.5194/acp-23-3493-2023, 2023
Short summary
Short summary
We use three satellites measuring carbon dioxide (CO2), carbon monoxide (CO) and nitrogen dioxide (NO2) to calculate atmospheric enhancements of these gases from 27 urban areas. We calculate enhancement ratios between the species and compare those to ratios derived from four globally gridded anthropogenic emission inventories. We find that the global inventories generally underestimate CO emissions in many North American and European cities relative to our observed enhancement ratios.
Udo Frieß, Karin Kreher, Richard Querel, Holger Schmithüsen, Dan Smale, Rolf Weller, and Ulrich Platt
Atmos. Chem. Phys., 23, 3207–3232, https://doi.org/10.5194/acp-23-3207-2023, https://doi.org/10.5194/acp-23-3207-2023, 2023
Short summary
Short summary
Reactive bromine compounds, emitted by the sea ice during polar spring, play an important role in the atmospheric chemistry of the coastal regions of Antarctica. We investigate the sources and impacts of reactive bromine in detail using many years of measurements at two Antarctic sites located at opposite sides of the Antarctic continent. Using a multitude of meteorological observations, we were able to identify the main triggers and source regions for reactive bromine in Antarctica.
Cited articles
Acarreta, J. R., De Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2-O2 absorption band at 477 nm, J. Geophys. Res., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004.
Ahmad, Z., Bhartia, P. K., and Krotkov, N.: Spectral properties of backscattered UV radiation in cloudy atmospheres, J. Geophys. Res., 109, 0148–0227, https://doi.org/10.1029/2003JD003395, 2004.
Allen, D., Pickering, K., Duncan, B., and Damon, M.: Impact of lightning NO emissions on North American photochemistry as determined using the Global Modeling Initiative (GMI) model, J. Geophys. Res., 115, D22301, https://doi.org/10.1029/2010JD014062, 2010.
Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.: Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model, Atmos. Chem. Phys., 12, 1737–1758, https://doi.org/10.5194/acp-12-1737-2012, 2012.
Avery, M., Twohy, C., McCabe, D., Joiner, J., Severance, K., Atlas, E., Blake, D., Bui, T. P., Crounse, J., Dibb, J., Diskin, G., Lawson, P., McGill, M., Rogers, D., Sachse, G., Scheuer, E., Thompson, A. M., Trepte, C., Wennberg, P., and Ziemke, J.: Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4, J. Geophys. Res., 115, D00J21, https://doi.org/10.1029/2009JD013450, 2010.
Beirle, S., Platt, U., von Glasow, R., Wenig, M., and Wagner, T.: Estimate of nitrogen oxide emissions from shipping by satellite remote sensing, Geophys. Res. Lett., 31, L18102, https://doi.org/10.1029/2004GL020312, 2004.
Beirle, S., Spichtinger, N., Stohl, A., Cummins, K. L., Turner, T., Boccippio, D., Cooper, O. R., Wenig, M., Grzegorski, M., Platt, U., and Wagner, T.: Estimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico, Atmos. Chem. Phys., 6, 1075–1089, https://doi.org/10.5194/acp-6-1075-2006, 2006.
Beirle, S., Salzmann, M., Lawrence, M. G., and Wagner, T.: Sensitivity of satellite observations for freshly produced lightning NOx, Atmos. Chem. Phys., 9, 1077–1094, https://doi.org/10.5194/acp-9-1077-2009, 2009.
Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space, Science, 333, 1737–1739, 2011.
Belmonte Rivas, M., Veefkind, P., Boersma, F., Levelt, P., Eskes, H., and Gille, J.: Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations, Atmos. Meas. Tech., 7, 2203–2225, https://doi.org/10.5194/amt-7-2203-2014, 2014.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res., 106, 23073–23095, 2001.
Boersma, K. F., Eskes, H. J., Meijer, E. W., and Kelder, H. M.: Estimates of lightning NOx production from GOME satellite observations, Atmos. Chem. Phys., 5, 2311–2331, https://doi.org/10.5194/acp-5-2311-2005, 2005.
Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007.
Boersma, K. F., Jacob, D. J., Bucsela, E. J., Perring, A. E., Dirksen, R., van der A, R. J., Yantosca, R. M., Park, R. J., Wenig, M. O., and Bertram, T. H.: Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico, Atmos. Environ., 42, 4480–4497, https://doi.org/10.1016/j.atmosenv.2008.02.004, 2008.
Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, https://doi.org/10.5194/amt-4-1905-2011, 2011.
Boersma, K. F., van Geffen, J., Maasakkers, J. D., Eskes, H. J., Williams, J. W., and Veefkind, J. P.: Algorithm improvements for (TROP)OMI NO2 retrievals (towards v3.0), presented at the OMI Science Team Meeting, De Bilt, The Netherlands, 2014.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, 1999.
Bowman, K. and Henze, D. K.: Attribution of direct ozone radiative forcing to spatially resolved emissions, Geophys. Res. Lett., 39, L22074, https://doi.org/10.1029/2012GL053274, 2012.
Brook, J. R., Burnett, R. T., Dann, T. F., Cakmak, S., Goldberg, M. S., Fan, X., and Wheeler, A. J.: Further interpretation of the acute effect of nitrogen dioxide observed in Canadian time series studies, J. Expo. Sci. Env. Epid., 17, S36–S44, 2007.
Bucsela, E. J., Celarier, E. A., Wenig, M. O., Gleason, J. F., Veefkind, J. P., Boersma, K. F., and Brinksma, E. J.: Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument, IEEE T. Geosci. Remote, 44, 1245–1258, https://doi.org/10.1109/TGRS.2005.863715, 2006.
Bucsela, E. J., Perring, A. E., Cohen, R. C., Boersma, K. F., Celarier, E. A., Gleason, J. F., Wenig, M. O., Bertram, T. H., Wooldridge, P. J., Dirksen, R., and Veefkind, J. P.: Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI, J. Geophys. Res., 113, D16S31, https://doi.org/10.1029/2007JD008838, 2008.
Bucsela, E. J., Krotkov, N. A., Celarier, E. A., Lamsal, L. N., Swartz, W. H., Bhartia, P. K., Boersma, K. F., Veefkind, J. P., Gleason, J. F., and Pickering, K. E.: A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI, Atmos. Meas. Tech., 6, 2607–2626, https://doi.org/10.5194/amt-6-2607-2013, 2013.
Castellanos, P. and Boersma, K. F.: Reductions in nitrogen oxides over Europe driven by environmental policy and economic recession, Sci. Rep., 2, 265, https://doi.org/10.1038/srep00265, 2012.
Celarier, E. A., Brinksma, E. J., Gleason, J. F., Veefkind, J. P., Cede, A., Herman, J. R., Ionov, D., Goutail, F., Pommereau, J.-P., Lambert, J.-C., van Roozendael, M., Pinardi, G., Wittrock, F., Schönhardt, A., Richter, A., Ibrahim, O. W., Wagner, T., Bojkov, B., Mount, G., Spinei, E., Chen, C. M., Pongetti, T. J., Sander, S. P., Bucsela, E. J., Wenig, M. O., Swart, D. P. J., Volten, H., Kroon, M., and Levelt, P. F.: Validation of Ozone Monitoring Instrument nitrogen dioxide columns, J. Geophys. Res., 113, D15S15, https://doi.org/10.1029/2007JD008908, 2008.
Chance, K., Liu, X., Suleiman, R. M., Flittner, D. E., Al-Saadi, J., and Janz, S. J.: Tropospheric Emissions: Monitoring of Pollution (TEMPO), Proc. SPIE, vol. 8866, Earth Observing Systems XVIII, Paper 88660D, San Diego, California, USA, 23 September 2013, https://doi.org/10.1117/12.2024479, 2013.
Choi, Y., Wang, Y., Zeng, T., Martin, R. V., Kurosu, T. P., and Chance, K.: Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America, Geophys. Res. Lett., 32, L02805, https://doi.org/10.1029/2004GL021436, 2005.
Choi, Y., Wang, Y., Zeng, T., Cunnold, D., Yang, E.-S., Martin, R., Chance, K., Thouret, V., and Edgerton, E.: Springtime transitions of NO2, CO, and O3 over North America: model evaluation and analysis, J. Geophys. Res., 113, D20311, https://doi.org/10.1029/2007JD009632, 2008.
CloudSat Project: Level 2 cloud optical depth product process description and interface control document, version 5.0, available at: http://www.cloudsat.cira.colostate.edu/ICD/2B-TAU/ 2B-TAU PDICD 5.0.pdf (last access: 4 October 2011), Colorado State University, Fort Collins, CO, USA, 2008.
Deirmendjian, D.: Scattering and polarization properties of water clouds and hazes in the visible and infrared, Appl. Opt., 3, 187–196, 1964.
Deirmendjian, D.: Electromagnetic scattering on spherical polydispersions, Elsevier Sci., New York, 290 pp., 1969.
Douglass, A. R., Stolarski, R. S., Strahan, S. E., and Connell, P. S.: Radicals and reservoirs in the GMI chemistry and transport model: comparison to measurements, J. Geophys. Res., 109, D16302, https://doi.org/10.1029/2004JD004632, 2004.
Duncan, B. N., Strahan, S. E., Yoshida, Y., Steenrod, S. D., and Livesey, N.: Model study of the cross-tropopause transport of biomass burning pollution, Atmos. Chem. Phys., 7, 3713–3736, https://doi.org/10.5194/acp-7-3713-2007, 2007.
Duncan, B. N., Yoshida, Y., de Foy, B., Lamsal, L. N., Streets, D. G., Lu, Z., Pickering, K. E., and Krotkov, N. A.: The observed response of Ozone Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005–2011, Atmos. Environ., 81, 102–111, https://doi.org/10.1016/j.atmosenv.2013.08.068, 2013.
Eskes, H. J. and Boersma, K. F.: Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291, https://doi.org/10.5194/acp-3-1285-2003, 2003.
Frost, G. J., McKeen, S. A., Trainer, M., Ryerson, T. B., Neuman, J. A., Roberts, J. M., Swanson, A., Holloway, J. S., Sueper, D. T., Fortin, T., Parrish, D. D., Fehsenfeld, F. C., Flocke, F., Peckham, S. E., Grell, G. A., Kowal, D., Cartwright, J., Auerbach, N., and Habermann, T.: Effecs of changing power plant NOx emissions on ozone in the eastern United States: proof of concept, J. Geophys. Res., 111, D12306, https://doi.org/10.1029/2005JD006354, 2006.
Fuglestvedt, J., Berntsen, T., Myhre, G., Rypdal, K., and Skeie, R. B.: Climate forcing from the transport sectors, P. Natl. Acad. Sci. USA, 105, 454–458, 2008.
Hains, J. C., Boersma, K. F., Kroon, M., Dirksen, R. J., Cohen, R. C., Perring, A. E., Bucsela, E., Volten, H., Swart, D. P. J., Richter, A., Wittrock, F., Schoenhardt, A., Wagner, T., Ibrahim, O. W., van Roozendael, M., Pinardi, G., Gleason, J. F., Veefkind, J. P., and Levelt, P.: Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns, J. Geophys. Res., 115, D05301, https://doi.org/10.1029/2009JD012399, 2010.
Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abuhassan, N.: NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: intercomparisons and application to OMI validation, J. Geophys. Res., 114, D13307, https://doi.org/10.1029/2009JD011848, 2009.
Hild, L., Richter, A., Rozanov, V., and Burrows, J. P.: Air Mass Calculations for GOME Measurements of lightning-produced NO2, Adv. Space Res., 29, 1685–1690, 2002.
Huntrieser, H., Schlager, H., Lichtenstern, M., Roiger, A., Stock, P., Minikin, A., Höller, H., Schmidt, K., Betz, H.-D., Allen, G., Viciani, S., Ulanovsky, A., Ravegnani, F., and Brunner, D.: NOx production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE, Atmos. Chem. Phys., 9, 8377–8412, https://doi.org/10.5194/acp-9-8377-2009, 2009.
Jaeglé, L., Steinberger, L., Martin, R. V., and Chance, K.: Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discuss., 130, 407–423, https://doi.org/10.1039/b502128f, 2005.
Joiner, J. and Vasilkov, A. P.: First results from the OMI rotational raman scattering cloud pressure algorithm, IEEE T. Geosci. Remote, 44, 1272–1282, 2006.
Joiner, J., Schoeberl, M. R., Vasilkov, A. P., Oreopoulos, L., Platnick, S., Livesey, N. J., and Levelt, P. F.: Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget, Atmos. Chem. Phys., 9, 4447–4465, https://doi.org/10.5194/acp-9-4447-2009, 2009.
Joiner, J., Vasilkov, A. P., Bhartia, P. K., Wind, G., Platnick, S., and Menzel, W. P.: Detection of multi-layer and vertically-extended clouds using A-train sensors, Atmos. Meas. Tech., 3, 233–247, https://doi.org/10.5194/amt-3-233-2010, 2010.
Joiner, J., Vasilkov, A. P., Gupta, P., Bhartia, P. K., Veefkind, P., Sneep, M., de Haan, J., Polonsky, I., and Spurr, R.: Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals, Atmos. Meas. Tech., 5, 529–545, https://doi.org/10.5194/amt-5-529-2012, 2012.
Kim, J.: GEMS (Geostationary Environment Monitoring Spectrometer) onboard the GeoKOMPSAT to monitor air quality in high temporal and spatial resolution over Asia–Pacific Region, Geophys. Res. Abstr., EGU2012-4051, EGU General Assembly 2012, Vienna, Austria, 22–27 April 2012, p. 4051, 2012.
Koelemeijer, R. B. A. and Stammes, P.: Effects of clouds on ozone column retrieval from GOME UV measurements, J. Geophys. Res., 104, 8281–8294, https://doi.org/10.1029/1999JD900012, 1999.
Krotkov, N. A., Bucsela, E., Celarier, E., Lamsal, L., Swartz, W., Pickering, K., Duncan, B. N., Janz, S., Herman, J., Yoshida, Y., Yurganov, L., Spinei, E., and Gleason, J.: Improved OMI NO2 standard product: algorithm, evaluation, and results, the Aura Science Team Meeting, Pasadena, CA, USA, available at: http://aura.gsfc.nasa.gov/project/documents/AuraSTM_Oct2012_OralAbstracts.pdf (last access: 3 October 2012), 2012.
Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A., Bucsela, E. J., Boersma, K. F., Dirksen, R., Luo, C., and Wang, Y.: Indirect validation of tropospheric nitrogen dioxide 30 retrieved from the OMI satellite instrument: insight into the seasonal variation of nitrogen oxides at northern midlatitudes, J. Geophys. Res., 115, D05302, https://doi.org/10.1029/2009JD013351, 2010.
Lamsal, L. N., Martin, R. V., Parrish, D. D., Krotkov. N. A.: Scaling relationship for NO2 pollution and urban population size: a satellite perspective, Environ. Sci. Technol., 47, 7855, https://doi.org/10.1021/es400744g, 2013.
Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J., and Saari, H.: The Ozone Monitoring Instrument, IEEE T. Geosci. Remote, 44, 1093–1101, https://doi.org/10.1109/TGRS.2006.872333, 2006.
Li, Q., Jacob. D. J., Park, R., Wang, Y., Heald, C. L., Hudman, R., and Yantosca, R. M.: North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone, J. Geophys. Res., 110, D10301, https://doi.org/10.1029/2004JD005039, 2005.
Liang, Q., Jaeglé, L., Jaffe, D. A., Weiss-Penzias, P., Heckman, A., and Snow, J. A.: Long-range transport of Asian pollution to the Northeast Pacific: seasonal variations and transport pathways of carbon monoxide, J. Geophys. Res., 109, D23S07, https://doi.org/10.1029/2003JD004402, 2004.
Lin, J.-T., McElroy, M. B., and Boersma, K. F.: Constraint of anthropogenic NOx emissions in China from different sectors: a new methodology using multiple satellite retrievals, Atmos. Chem. Phys., 10, 63–78, https://doi.org/10.5194/acp-10-63-2010, 2010.
Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., and Evans, M. J.: Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns, J. Geophys. Res., 108, 4537, https://doi.org/10.1029/2003JD003453, 2003.
Martin, R. V., Sioris, C. E., Chance, K. V., Ryerson, T. B., Bertram, T. H.,Woolridge, P. J., Cohen, R. C., Neuman, J. A., Swanson, A., and Flocke, F. M.: Evaluation of space-based constraints on nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, J. Geophys. Res., 111, D15308, https://doi.org/10.1029/2005JD006680, 2006.
Martini, M., Allen, D. J., Pickering, K. E., Stenchikov, G. L., Richter, A., Hyer, E. J., and Loughner, C. P.: The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004, J. Geophys. Res., 116, D07305, https://doi.org/10.1029/2010JD014305, 2011.
Munro, R., Eisinger, M., Anderson, C., Callies, J., Corpaccioli, E., Lang, R., Lefebvre, A., Livschitz, Y., and Albinana, A. P.: GOME-2 on MetOp, in: Proc. of the 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland, 12–16 June 2006, EUMETSAT, 48, 2006.
Nolin, A., Armstrong, R. L., and Maslanik, J.: Near Real-Time SSM/I EASE-Grid Daily Global Ice Concentration and Snow Extent, January to March 2004 (updated daily), Digital media, National Snow and Ice Data Center, Boulder, CO, USA, 1998.
Parrish, D. D.: Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) and Pacific Exploration of Asian Continental Emission (PEACE) experiments: an overview of the 2002 winter and spring intensives, J. Geophys. Res., 109, D23S01, https://doi.org/10.1029/2004JD004980, 2004.
Perring, A. E., Bertram, T. H., Farmer, D. K., Wooldridge, P. J., Dibb, J., Blake, N. J., Blake, D. R., Singh, H. B., Fuelberg, H., Diskin, G., Sachse, G., and Cohen, R. C.: The production and persistence of ΣRONO2 in the Mexico City plume, Atmos. Chem. Phys., 10, 7215–7229, https://doi.org/10.5194/acp-10-7215-2010, 2010.
Pickering, K. E., Wang, Y., Tao, W.-K., Price, C., and Müller, J.-F.: Vertical distributions of lightning NOx for use in regional and global chemical transport models, J. Geophys. Res., 103, 31203–31216, https://doi.org/10.1029/98JD02651, 1998.
Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97, 9919–9933, 1992.
Price, C., Penner, J., and Prather, M.: NOx from lightning, Part I: Global distribution based on lightning physics, J. Geophys. Res., 102, 5929–5941, 1997.
Reidmiller, D. R., Jaffe, D. A., Chand, D., Strode, S., Swartzendruber, P., Wolfe, G. M., and Thornton, J. A.: Interannual variability of long-range transport as seen at the Mt. Bachelor observatory, Atmos. Chem. Phys., 9, 557–572, https://doi.org/10.5194/acp-9-557-2009, 2009.
Richter, A. and Burrows, J. P.: Retrieval of tropospheric NO2 from GOME measurements, Adv. Space Res., 29, 1673–1683, 2002.
Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129–132, https://doi.org/10.1038/nature04092, 2005.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Russell, A. R., Valin, L. C., Bucsela, E. J., Wenig, M. O., and Cohen, R. C.: Space-based constraints on spatial and temporal patterns of NOx emissions in California, 2005–2008, Environ. Sci. Technol., 44, 3608–3615, https://doi.org/10.1021/es903451j, 2010.
Russell, A. R., Valin, L. C., and Cohen, R. C.: Trends in OMI NO2 observations over the United States: effects of emission control technology and the economic recession, Atmos. Chem. Phys., 12, 12197–12209, https://doi.org/10.5194/acp-12-12197-2012, 2012.
Shindell, D. and Faluvegi, G.: Climate response to regional radiative forcing during the twentieth century, Nat. Geosci., 2, 294–300, https://doi.org/10.1038/ngeo473, 2009.
Singh, H. B., Brune, W. H., Crawford, J. H., Flocke, F., and Jacob, D. J.: Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results, Atmos. Chem. Phys., 9, 2301–2318, https://doi.org/10.5194/acp-9-2301-2009, 2009.
Sneep, M., de Haan, J. F., Stammes, P., Wang, P., Vanbauce, C., Joiner, J., Vasilkov, A. P., and Levelt, P. F.: Three-way comparison between OMI and PARASOL cloud pressure products, J. Geophys. Res., 113, D15S23, https://doi.org/10.1029/2007JD008694, 2008.
Solomon, S., Portmann, R. W., Sanders, R. W., and Daniels, J. S.: On the role of nitrogen dioxide in the absorption of solar radiation, J. Geophys. Res., 104, 12047–12058, 1999.
Spurr, R. J. D., Kurosu, T. P., and Chance, K.: A linearized discrete ordinate radiative transfer model for atmospheric remote sensing retrieval, J. Quant. Spectrosc. Ra., 68, 689–735, 2001
Stammes, P., Sneep, M., de Haan, J. F., Veefkind, J. P., Wang, P., and Levelt, P. F.: Effective cloud fractions from the Ozone Monitoring Instrument: theoretical framework and validation, J. Geophys. Res., 113, D16S38, https://doi.org/10.1029/2007JD008820, 2008.
Stohl, A., Huntrieser, H., Richter, A., Beirle, S., Cooper, O. R., Eckhardt, S., Forster, C., James, P., Spichtinger, N., Wenig, M., Wagner, T., Burrows, J. P., and Platt, U.: Rapid intercontinental air pollution transport associated with a meteorological bomb, Atmos. Chem. Phys., 3, 969–985, https://doi.org/10.5194/acp-3-969-2003, 2003..
Strahan, S. E., Duncan, B. N., and Hoor, P.: Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model, Atmos. Chem. Phys., 7, 2435–2445, https://doi.org/10.5194/acp-7-2435-2007, 2007.
Thornton, J. A., Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios, Anal. Chem., 72, 528–539, 2000.
Vasilkov, A., Joiner, J., Spurr, R., Bhartia, P. K., Levelt, P., and Stephens, G.: Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations, J. Geophys. Res., 113, D15S19, https://doi.org/10.1029/2007JD008689, 2008.
Vasilkov, A. P., Joiner, J., Oreopoulos, L., Gleason, J. F., Veefkind, P., Bucsela, E., Celarier, E. A., Spurr, R. J. D., and Platnick, S.: Impact of tropospheric nitrogen dioxide on the regional radiation budget, Atmos. Chem. Phys., 9, 6389–6400, https://doi.org/10.5194/acp-9-6389-2009, 2009.
Walker, T. W., Martin, R. V., van Donkelaar, A., Leaitch, W. R., MacDonald, A. M., Anlauf, K. G., Cohen, R. C., Bertram, T. H., Huey, L. G., Avery, M. A., Weinheimer, A. J., Flocke, F. M., Tarasick, D. W., Thompson, A. M., Streets, D. G., and Liu, X.: Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring, Atmos. Chem. Phys., 10, 8353–8372, https://doi.org/10.5194/acp-10-8353-2010, 2010.
Wang, Y., Choi, Y., Zeng, T., Ridley, B., Blake, N., Blake, D., and Flocke, F.: Late-spring increase of trans-Pacific pollution transport in the upper troposphere, Geophys. Res. Lett., 33, L01811, https://doi.org/10.1029/2005GL024975, 2006.
Wild, O., Prather, M. J., and Akimoto, H.: Indirect long-term global radiative cooling from NOx emissions, Geophys. Res. Lett., 28, 1719–1722, 2001.
Witte, J. C., Schoeberl, M. R., Douglass, A. R., Gleason, J. F., Krotkov, N. A., Gille, J. C., Pickering, K. E., and Livesey, N.: Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics, Geophys. Res. Lett., 36, L17803, https://doi.org/10.1029/2009GL039236, 2009.
Zhang, L., Jacob, D. J., Boersma, K. F., Jaffe, D. A., Olson, J. R., Bowman, K. W., Worden, J. R., Thompson, A. M., Avery, M. A., Cohen, R. C., Dibb, J. E., Flock, F. M., Fuelberg, H. E., Huey, L. G., McMillan, W. W., Singh, H. B., and Weinheimer, A. J.: Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations, Atmos. Chem. Phys., 8, 6117–6136, https://doi.org/10.5194/acp-8-6117-2008, 2008.
Ziemke, J. R., Chandra, S., and Bhartia, P. K.: "Cloud slicing": a new technique to derive upper tropospheric ozone from satellite measurements, J. Geophys. Res., 106, 9853–9867, 2001.
Ziemke, J. R., Chandra, S., and Bhartia, P. K.: Upper tropospheric ozone derived from the cloud slicing technique: implications for large-scale convection, J. Geophys. Res., 108, 4390, https://doi.org/10.1029/2002JD002919, 2003.
Ziemke, J. R., Chandra, S., and Bhartia, P. K.: A 25 yr data record of atmospheric ozone in the Pacific from Total Ozone Mapping Spectrometer (TOMS) cloud slicing: implications for ozone trends in the stratosphere and troposphere, J. Geophys. Res., 110, D15105, https://doi.org/10.1029/2004JD005687, 2005.
Ziemke, J. R., Joiner, J., Chandra, S., Bhartia, P. K., Vasilkov, A., Haffner, D. P., Yang, K., Schoeberl, M. R., Froidevaux, L., and Levelt, P. F.: Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements, Atmos. Chem. Phys., 9, 573–583, https://doi.org/10.5194/acp-9-573-2009, 2009.
Zien, A. W., Richter, A., Hilboll, A., Blechschmidt, A.-M., and Burrows, J. P.: Systematic analysis of tropospheric NO2 long-range transport events detected in GOME-2 satellite data, Atmos. Chem. Phys., 14, 7367–7396, https://doi.org/10.5194/acp-14-7367-2014, 2014.
Zhang, Q., Streets, D. G., He, K.,Wang, Y., Richter, A., Burrows, J. P., Uno, I., Jang, C. J., Chen, D., Yao, Z., and Lei, Y.: NOx emission trends for China, 1995–2004: the view from the ground 15 and the view from space, J. Geophys. Res., 112, D22306, https://doi.org/10.1029/2007jd008684, 2007.
Altmetrics
Final-revised paper
Preprint