Articles | Volume 14, issue 1
Atmos. Chem. Phys., 14, 103–114, 2014
https://doi.org/10.5194/acp-14-103-2014
Atmos. Chem. Phys., 14, 103–114, 2014
https://doi.org/10.5194/acp-14-103-2014

Research article 03 Jan 2014

Research article | 03 Jan 2014

Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

J. X. Warner et al.

Related authors

The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record
Juying X. Warner, Zigang Wei, L. Larrabee Strow, Russell R. Dickerson, and John B. Nowak
Atmos. Chem. Phys., 16, 5467–5479, https://doi.org/10.5194/acp-16-5467-2016,https://doi.org/10.5194/acp-16-5467-2016, 2016
Short summary
Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014,https://doi.org/10.5194/acp-14-11427-2014, 2014
Impact of tropical land convection on the water vapour budget in the tropical tropopause layer
F. Carminati, P. Ricaud, J.-P. Pommereau, E. Rivière, S. Khaykin, J.-L. Attié, and J. Warner
Atmos. Chem. Phys., 14, 6195–6211, https://doi.org/10.5194/acp-14-6195-2014,https://doi.org/10.5194/acp-14-6195-2014, 2014
Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions
J. Warner, F. Carminati, Z. Wei, W. Lahoz, and J.-L. Attié
Atmos. Chem. Phys., 13, 12469–12479, https://doi.org/10.5194/acp-13-12469-2013,https://doi.org/10.5194/acp-13-12469-2013, 2013
Decadal record of satellite carbon monoxide observations
H. M. Worden, M. N. Deeter, C. Frankenberg, M. George, F. Nichitiu, J. Worden, I. Aben, K. W. Bowman, C. Clerbaux, P. F. Coheur, A. T. J. de Laat, R. Detweiler, J. R. Drummond, D. P. Edwards, J. C. Gille, D. Hurtmans, M. Luo, S. Martínez-Alonso, S. Massie, G. Pfister, and J. X. Warner
Atmos. Chem. Phys., 13, 837–850, https://doi.org/10.5194/acp-13-837-2013,https://doi.org/10.5194/acp-13-837-2013, 2013

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments
Zhen Qu, Daniel J. Jacob, Lu Shen, Xiao Lu, Yuzhong Zhang, Tia R. Scarpelli, Hannah Nesser, Melissa P. Sulprizio, Joannes D. Maasakkers, A. Anthony Bloom, John R. Worden, Robert J. Parker, and Alba L. Delgado
Atmos. Chem. Phys., 21, 14159–14175, https://doi.org/10.5194/acp-21-14159-2021,https://doi.org/10.5194/acp-21-14159-2021, 2021
Short summary
A satellite-data-driven framework to rapidly quantify air-basin-scale NOx emissions and its application to the Po Valley during the COVID-19 pandemic
Kang Sun, Lingbo Li, Shruti Jagini, and Dan Li
Atmos. Chem. Phys., 21, 13311–13332, https://doi.org/10.5194/acp-21-13311-2021,https://doi.org/10.5194/acp-21-13311-2021, 2021
Short summary
Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements
Isabelle De Smedt, Gaia Pinardi, Corinne Vigouroux, Steven Compernolle, Alkis Bais, Nuria Benavent, Folkert Boersma, Ka-Lok Chan, Sebastian Donner, Kai-Uwe Eichmann, Pascal Hedelt, François Hendrick, Hitoshi Irie, Vinod Kumar, Jean-Christopher Lambert, Bavo Langerock, Christophe Lerot, Cheng Liu, Diego Loyola, Ankie Piters, Andreas Richter, Claudia Rivera Cárdenas, Fabian Romahn, Robert George Ryan, Vinayak Sinha, Nicolas Theys, Jonas Vlietinck, Thomas Wagner, Ting Wang, Huan Yu, and Michel Van Roozendael
Atmos. Chem. Phys., 21, 12561–12593, https://doi.org/10.5194/acp-21-12561-2021,https://doi.org/10.5194/acp-21-12561-2021, 2021
Short summary
Recent ozone trends in the Chinese free troposphere: role of the local emission reductions and meteorology
Gaëlle Dufour, Didier Hauglustaine, Yunjiang Zhang, Maxim Eremenko, Yann Cohen, Audrey Gaudel, Guillaume Siour, Mathieu Lachatre, Axel Bense, Bertrand Bessagnet, Juan Cuesta, Jerry Ziemke, Valérie Thouret, and Bo Zheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-476,https://doi.org/10.5194/acp-2021-476, 2021
Revised manuscript accepted for ACP
Short summary
SO2 and BrO emissions of Masaya volcano from 2014 to 2020
Florian Dinger, Timo Kleinbek, Steffen Dörner, Nicole Bobrowski, Ulrich Platt, Thomas Wagner, Martha Ibarra, and Eveling Espinoza
Atmos. Chem. Phys., 21, 9367–9404, https://doi.org/10.5194/acp-21-9367-2021,https://doi.org/10.5194/acp-21-9367-2021, 2021
Short summary

Cited articles

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M., Kalnay, E., McMillin, L., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D., Strow, L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products and Processing Systems, IEEE T. Geosci. Remote, 41, 253–264, 2003.
Beer, R.: TES on the Aura mission: scientific objectives, measurements, and analysis overview, IEEE T. Geosci. Remote, 44, 1102–1105, 2006.
Crutzen, P. J. and Zimmermann, P. H.: The changing photochemistry of the troposphere, Tellus, 43, 136–151, 1991.
Daley, R. and Barker, E.: NRL Atmospheric Variational Data Assimilation System, NAVDAS Source Book 2000, 2000.
Dee, P. and da Silva, A. M.: Maximum-Likelihood estimation of forecast and observation error covariance parameters. Part I. Methodology, Mon. Weather Rev., 127, 1822–1834, 1999.
Download
Altmetrics
Final-revised paper
Preprint