Articles | Volume 14, issue 1
https://doi.org/10.5194/acp-14-103-2014
https://doi.org/10.5194/acp-14-103-2014
Research article
 | 
03 Jan 2014
Research article |  | 03 Jan 2014

Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan

Related authors

Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals
Mingmin Zou, Xiaozhen Xiong, Naoko Saitoh, Juying Warner, Ying Zhang, Liangfu Chen, Fuzhong Weng, and Meng Fan
Atmos. Meas. Tech., 9, 3567–3576, https://doi.org/10.5194/amt-9-3567-2016,https://doi.org/10.5194/amt-9-3567-2016, 2016
Short summary
The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record
Juying X. Warner, Zigang Wei, L. Larrabee Strow, Russell R. Dickerson, and John B. Nowak
Atmos. Chem. Phys., 16, 5467–5479, https://doi.org/10.5194/acp-16-5467-2016,https://doi.org/10.5194/acp-16-5467-2016, 2016
Short summary
Impact of the Asian monsoon anticyclone on the variability of mid-to-upper tropospheric methane above the Mediterranean Basin
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014,https://doi.org/10.5194/acp-14-11427-2014, 2014
Tropospheric CO vertical profiles deduced from total columns using data assimilation: methodology and validation
L. El Amraoui, J.-L. Attié, P. Ricaud, W. A. Lahoz, A. Piacentini, V.-H. Peuch, J. X. Warner, R. Abida, J. Barré, and R. Zbinden
Atmos. Meas. Tech., 7, 3035–3057, https://doi.org/10.5194/amt-7-3035-2014,https://doi.org/10.5194/amt-7-3035-2014, 2014
Impact of tropical land convection on the water vapour budget in the tropical tropopause layer
F. Carminati, P. Ricaud, J.-P. Pommereau, E. Rivière, S. Khaykin, J.-L. Attié, and J. Warner
Atmos. Chem. Phys., 14, 6195–6211, https://doi.org/10.5194/acp-14-6195-2014,https://doi.org/10.5194/acp-14-6195-2014, 2014

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimation of diurnal emissions of CO2 from thermal power plants using spaceborne integrated path differential absorption (IPDA) lidar
Xuanye Zhang, Hailong Yang, Lingbing Bu, Zengchang Fan, Wei Xiao, Binglong Chen, Lu Zhang, Sihan Liu, Zhongting Wang, Jiqiao Liu, Weibiao Chen, and Xuhui Lee
Atmos. Chem. Phys., 25, 6725–6740, https://doi.org/10.5194/acp-25-6725-2025,https://doi.org/10.5194/acp-25-6725-2025, 2025
Short summary
Increase in carbon monoxide (CO) and aerosol optical depth (AOD) observed by satellites in the Northern Hemisphere over the summers of 2008–2023, linked to an increase in wildfires
Antoine Ehret, Solène Turquety, Maya George, Juliette Hadji-Lazaro, and Cathy Clerbaux
Atmos. Chem. Phys., 25, 6365–6394, https://doi.org/10.5194/acp-25-6365-2025,https://doi.org/10.5194/acp-25-6365-2025, 2025
Short summary
Monitoring of total and off-road NOx emissions from Canadian oil sands surface mining using the Ozone Monitoring Instrument
Chris A. McLinden, Debora Griffin, Vitali Fioletov, Junhua Zhang, Enrico Dammers, Cristen Adams, Mallory Loria, Nickolay Krotkov, and Lok N. Lamsal
Atmos. Chem. Phys., 25, 6093–6120, https://doi.org/10.5194/acp-25-6093-2025,https://doi.org/10.5194/acp-25-6093-2025, 2025
Short summary
Large reductions in satellite-derived and modelled European lower-tropospheric ozone during and after the COVID-19 pandemic (2020–2022)
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Wuhu Feng, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4391–4401, https://doi.org/10.5194/acp-25-4391-2025,https://doi.org/10.5194/acp-25-4391-2025, 2025
Short summary
Air quality trends and regimes in South Korea inferred from 2015–2023 surface and satellite observations
Yujin J. Oak, Daniel J. Jacob, Drew C. Pendergrass, Ruijun Dang, Nadia K. Colombi, Heesung Chong, Seoyoung Lee, Su Keun Kuk, and Jhoon Kim
Atmos. Chem. Phys., 25, 3233–3252, https://doi.org/10.5194/acp-25-3233-2025,https://doi.org/10.5194/acp-25-3233-2025, 2025
Short summary

Cited articles

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M., Kalnay, E., McMillin, L., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D., Strow, L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products and Processing Systems, IEEE T. Geosci. Remote, 41, 253–264, 2003.
Beer, R.: TES on the Aura mission: scientific objectives, measurements, and analysis overview, IEEE T. Geosci. Remote, 44, 1102–1105, 2006.
Crutzen, P. J. and Zimmermann, P. H.: The changing photochemistry of the troposphere, Tellus, 43, 136–151, 1991.
Daley, R. and Barker, E.: NRL Atmospheric Variational Data Assimilation System, NAVDAS Source Book 2000, 2000.
Dee, P. and da Silva, A. M.: Maximum-Likelihood estimation of forecast and observation error covariance parameters. Part I. Methodology, Mon. Weather Rev., 127, 1822–1834, 1999.
Download
Share
Altmetrics
Final-revised paper
Preprint