Articles | Volume 13, issue 2
https://doi.org/10.5194/acp-13-625-2013
https://doi.org/10.5194/acp-13-625-2013
Research article
 | 
17 Jan 2013
Research article |  | 17 Jan 2013

Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign

E. Athanasopoulou, H. Vogel, B. Vogel, A. P. Tsimpidi, S. N. Pandis, C. Knote, and C. Fountoukis

Related authors

Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024,https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Significant spatial and temporal variation of the concentrations and chemical composition of ultrafine particulate matter over Europe
Konstantinos Mataras, Evangelia Siouti, David Patoulias, and Spyros Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2024-3357,https://doi.org/10.5194/egusphere-2024-3357, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-145,https://doi.org/10.5194/gmd-2024-145, 2024
Revised manuscript under review for GMD
Short summary
Drivers of droplet formation in east Mediterranean orographic clouds
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024,https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024,https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Radiative impact of improved global parameterisations of oceanic dry deposition of ozone and lightning-generated NOx
Ashok K. Luhar, Ian E. Galbally, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 13013–13033, https://doi.org/10.5194/acp-22-13013-2022,https://doi.org/10.5194/acp-22-13013-2022, 2022
Short summary
Measurements and modeling of airborne plutonium in Subarctic Finland between 1965 and 2011
Susanna Salminen-Paatero, Julius Vira, and Jussi Paatero
Atmos. Chem. Phys., 20, 5759–5769, https://doi.org/10.5194/acp-20-5759-2020,https://doi.org/10.5194/acp-20-5759-2020, 2020
Short summary
Photochemical impacts of haze pollution in an urban environment
Michael Hollaway, Oliver Wild, Ting Yang, Yele Sun, Weiqi Xu, Conghui Xie, Lisa Whalley, Eloise Slater, Dwayne Heard, and Dantong Liu
Atmos. Chem. Phys., 19, 9699–9714, https://doi.org/10.5194/acp-19-9699-2019,https://doi.org/10.5194/acp-19-9699-2019, 2019
Short summary
Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms
Fabien Paulot, David Paynter, Paul Ginoux, Vaishali Naik, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 13265–13281, https://doi.org/10.5194/acp-18-13265-2018,https://doi.org/10.5194/acp-18-13265-2018, 2018
Short summary
The role of HFCs in mitigating 21st century climate change
Y. Xu, D. Zaelke, G. J. M. Velders, and V. Ramanathan
Atmos. Chem. Phys., 13, 6083–6089, https://doi.org/10.5194/acp-13-6083-2013,https://doi.org/10.5194/acp-13-6083-2013, 2013

Cited articles

Ackermann, I., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F., and Shankar U.: Modal aerosol dynamics model for Europe: Development and first applications, Atmos. Environ., 32, 2981–2999, 1998.
Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., Gouw, J. A. de, Meagher, J., Hsie, E.-Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006, J. Geophys. Res., 117, D06301, https://doi.org/10.1029/2011JD016831, 2012.
Andersson-Sköld, Y. and Simpson, D.: Secondary organic aerosol formation in northern Europe: A model study, J. Geophys. Res., 106, 7357–7374, https://doi.org/10.1029/2000JD900656, 2001.
Baeumer, D., Lohmann, U., Lesins, G., Li, J., and Croft, B.: Parameterizing the optical properties of carbonaceous aerosols in the Canadian Centre for Climate Modeling and Analysis Atmospheric General Circulation Model with impacts on global radiation and energy fluxes, J. Geophys. Res., 112, D10207, https://doi.org/10.1029/2006JD007319, 2007.
Download
Altmetrics
Final-revised paper
Preprint