Articles | Volume 15, issue 19
https://doi.org/10.5194/acp-15-11355-2015
https://doi.org/10.5194/acp-15-11355-2015
Research article
 | 
13 Oct 2015
Research article |  | 13 Oct 2015

Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean

E. Kostenidou, K. Florou, C. Kaltsonoudis, M. Tsiflikiotou, S. Vratolis, K. Eleftheriadis, and S. N. Pandis

Abstract. The concentration and chemical composition of non-refractory fine particulate matter (NR-PM1) and black carbon (BC) levels were measured during the summer of 2012 in the suburbs of two Greek cities, Patras and Athens, in an effort to better understand the chemical processing of particles in the high photochemical activity environment of the eastern Mediterranean. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources for the corresponding pollution levels. The PM1 average mass concentration was 9–14 μg m−3. The contribution of sulfate was around 38 %, while organic aerosol (OA) contributed approximately 45 % in both cases. PM1 nitrate levels were low (2 %). The oxygen to carbon (O : C) atomic ratio was 0.50 ± 0.08 in Patras and 0.47 ± 0.11 in Athens. In both cases PM1 was acidic.

Positive matrix factorization (PMF) was applied to the high-resolution organic aerosol mass spectra obtained by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). For Patras, five OA sources could be identified: 19 % very oxygenated OA (V-OOA), 38 % moderately oxygenated OA (M-OOA), 21 % biogenic oxygenated OA (b-OOA), 7 % hydrocarbon-like OA (HOA-1) associated with traffic sources and 15 % hydrocarbon-like OA (HOA-2) related to other primary emissions (including cooking OA). For Athens, the corresponding source contributions were: V-OOA (35 %), M-OOA (30 %), HOA-1 (18 %) and HOA-2 (17 %). In both cities the major component was OOA, suggesting that under high photochemical conditions most of the OA in the eastern Mediterranean is quite aged. The contribution of the primary sources (HOA-1 and HOA-2) was important (22 % in Patras and 35 % in Athens) but not dominant.

Download
Short summary
The concentration and chemical composition of fine particulate matter were measured during the summer of 2012 in two Greek cities, Patras and Athens. The composition of PM1 was surprisingly similar in both areas, demonstrating the importance of regional sources. Analysis of the Aerosol Mass Spectrometer data suggested that the contribution of the primary sources to organic aerosol was important (22% in Patras and 35% in Athens) but not dominant.
Altmetrics
Final-revised paper
Preprint