Articles | Volume 25, issue 2
https://doi.org/10.5194/acp-25-1023-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-1023-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Increased number concentrations of small particles explain perceived stagnation in air quality over Korea
Sohee Joo
Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea
Juseon Shin
Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea
Matthias Tesche
Leipzig Institute for Meteorology (LIM), Leipzig University, Leipzig, Germany
Naghmeh Dehkhoda
Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea
Taegyeong Kim
Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea
Youngmin Noh
CORRESPONDING AUTHOR
Division of Earth Environmental System Science, Pukyong National University, Busan 48513, Korea
Related authors
Juseon Shin, Juhyeon Sim, Naghmeh Dehkhoda, Sohee Joo, Taekyung Kim, Gahyung Kim, Detlef Müller, Matthias Tesche, Sungkyun Shin, Dongho Shin, and Youngmin Noh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-219, https://doi.org/10.5194/acp-2022-219, 2022
Preprint withdrawn
Short summary
Short summary
We analyzed long-term AERONET sun/sky radiometer for 6 continentals to verify the trend of aerosol physical properties depending on sources (dust or pollution) and size (fine or coarse mode). We identified the trend of classified aerosol optical depth (AOD) and size change over 9 years. Especially, we find out aerosol properties causing AOD variations are different from regions and fine aerosol particle in most regions has become smaller using MK-test for trend analysis.
Peggy Achtert, Torsten Seelig, Gabriella Wallentin, Luisa Ickes, Matthew D. Shupe, Corinna Hoose, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2025-3529, https://doi.org/10.5194/egusphere-2025-3529, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We quantify the occurrence of single- and multi-layer clouds in the Arctic based on combining soundings with cloud-radar observations. We also assess the rate of ice-crystal seeding in multi-layer cloud systems as this is an important initiator of glaciation in super-cooled liquid cloud layers. We find an abundance of multi-layer clouds in the Arctic with seeding in about half to two thirds of cases in which the gap between upper and lower layers ranges between 100 and 1000 m.
Gabriella Wallentin, Annika Oertel, Luisa Ickes, Peggy Achtert, Matthias Tesche, and Corinna Hoose
Atmos. Chem. Phys., 25, 6607–6631, https://doi.org/10.5194/acp-25-6607-2025, https://doi.org/10.5194/acp-25-6607-2025, 2025
Short summary
Short summary
Multilayer clouds are common in the Arctic but remain underrepresented. We use an atmospheric model to simulate multilayer cloud cases from the Arctic expedition MOSAiC 2019/2020. We find that it is complex to accurately model these cloud layers due to the lack of correct temperature profiles. The model also struggles to capture the observed cloud phase and the relative concentration of cloud droplets and cloud ice. We constrain our model to measured aerosols to mitigate this issue.
Yun He, Goutam Choudhury, Matthias Tesche, Albert Ansmann, Fan Yi, Detlef Müller, and Zhenping Yin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2666, https://doi.org/10.5194/egusphere-2025-2666, 2025
Short summary
Short summary
We present a global data set of POLIPHON dust conversion factors at 532 nm obtained using Aerosol RObotic NETwork (AERONET) observations at 137 sites for INP and 123 sites for CCN calculations. We also conduct a comparison of dust CCN concentration profiles derived using both POLIPHON and the independent OMCAM (Optical Modelling of the CALIPSO Aerosol Microphysics) retrieval.
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
Atmos. Chem. Phys., 25, 3841–3856, https://doi.org/10.5194/acp-25-3841-2025, https://doi.org/10.5194/acp-25-3841-2025, 2025
Short summary
Short summary
Aerosol particles in the atmosphere increase cloud reflectivity, thereby cooling the Earth. Accurate global measurements of these particles are crucial for estimating this cooling effect. This study compares and harmonizes two newly developed global aerosol datasets, offering insights for their future use and refinement. We identify pristine oceans as a significant source of uncertainty in the datasets and, therefore, in quantifying the role of aerosols in Earth's climate.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024, https://doi.org/10.5194/amt-17-397-2024, 2024
Short summary
Short summary
We introduce the multi-section method, a novel approach for stable extinction coefficient retrievals in horizontally scanning aerosol lidar measurements, in this study. Our method effectively removes signal–noise-induced irregular peaks and derives a reference extinction coefficient, αref, from multiple scans, resulting in a strong correlation (>0.74) with PM2.5 mass concentrations. Case studies demonstrate its utility in retrieving spatio-temporal aerosol distributions and PM2.5 concentrations.
Goutam Choudhury and Matthias Tesche
Earth Syst. Sci. Data, 15, 3747–3760, https://doi.org/10.5194/essd-15-3747-2023, https://doi.org/10.5194/essd-15-3747-2023, 2023
Short summary
Short summary
Aerosols in the atmosphere that can form liquid cloud droplets are called cloud condensation nuclei (CCN). Accurate measurements of CCN, especially CCN of anthropogenic origin, are necessary to quantify the effect of anthropogenic aerosols on the present-day as well as future climate. In this paper, we describe a novel global 3D CCN data set calculated from satellite measurements. We also discuss the potential applications of the data in the context of aerosol–cloud interactions.
Peter Bräuer and Matthias Tesche
Geosci. Model Dev., 15, 7557–7572, https://doi.org/10.5194/gmd-15-7557-2022, https://doi.org/10.5194/gmd-15-7557-2022, 2022
Short summary
Short summary
This paper presents a tool for (i) finding temporally and spatially resolved intersections between two- or three-dimensional geographical tracks (trajectories) and (ii) extracting of data in the vicinity of intersections to achieve the optimal combination of various data sets.
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240, https://doi.org/10.5194/amt-15-4225-2022, https://doi.org/10.5194/amt-15-4225-2022, 2022
Short summary
Short summary
Mid-level and high clouds can be considered natural laboratories for studying cloud glaciation in the atmosphere. While they can be conveniently observed from ground with lidar, such measurements require a clear line of sight between the instrument and the target cloud. Here, observations of clouds with two spaceborne lidars are used to assess where ground-based lidar measurements of mid- and upper-level clouds are least affected by the light-attenuating effect of low-level clouds.
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022, https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Short summary
Lidars provide height-resolved type-specific aerosol properties and are key in studying vertically collocated aerosols and clouds. In this study, we compare the aerosol number concentrations derived from spaceborne lidar with the in situ flight measurements. Our results show a reasonable agreement between both datasets. Such an agreement has not been achieved yet. It shows the potential of spaceborne lidar in studying aerosol–cloud interactions, which is needed to improve our climate forecasts.
Juseon Shin, Juhyeon Sim, Naghmeh Dehkhoda, Sohee Joo, Taekyung Kim, Gahyung Kim, Detlef Müller, Matthias Tesche, Sungkyun Shin, Dongho Shin, and Youngmin Noh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-219, https://doi.org/10.5194/acp-2022-219, 2022
Preprint withdrawn
Short summary
Short summary
We analyzed long-term AERONET sun/sky radiometer for 6 continentals to verify the trend of aerosol physical properties depending on sources (dust or pollution) and size (fine or coarse mode). We identified the trend of classified aerosol optical depth (AOD) and size change over 9 years. Especially, we find out aerosol properties causing AOD variations are different from regions and fine aerosol particle in most regions has become smaller using MK-test for trend analysis.
Goutam Choudhury and Matthias Tesche
Atmos. Meas. Tech., 15, 639–654, https://doi.org/10.5194/amt-15-639-2022, https://doi.org/10.5194/amt-15-639-2022, 2022
Short summary
Short summary
Aerosols are tiny particles suspended in the atmosphere. A fraction of these particles can form clouds and are called cloud condensation nuclei (CCN). Measurements of such aerosol particles are necessary to study the aerosol–cloud interactions and reduce the uncertainty in our future climate predictions. We present a novel methodology to estimate global 3D CCN concentrations from the CALIPSO satellite measurements. The final data set will be used to study the aerosol–cloud interactions.
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
Short summary
Mineral dust concentrations in the diameter range from 0.4 to 14.0 μm were measured with the balloon-borne UCASS optical particle counter. Launches were coordinated with ground-based remote-sensing and airborne in situ measurements during a Saharan dust outbreak over Cyprus. Particle number concentrations reached 50 cm−3 for the diameter range 0.8–13.9 μm. Comparisons with aircraft data show reasonable agreement in magnitude and shape of the particle size distribution.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Goutam Choudhury, Bhishma Tyagi, Naresh Krishna Vissa, Jyotsna Singh, Chandan Sarangi, Sachchida Nand Tripathi, and Matthias Tesche
Atmos. Chem. Phys., 20, 15389–15399, https://doi.org/10.5194/acp-20-15389-2020, https://doi.org/10.5194/acp-20-15389-2020, 2020
Short summary
Short summary
This study uses 17 years (2001–2017) of observed rain rate, aerosol optical depth (AOD), meteorological reanalysis fields and outgoing long-wave radiation to investigate high precipitation events at the foothills of the Himalayas. Composite analysis of all data sets for high precipitation events (daily rainfall > 95th percentile) indicates clear and robust associations between high precipitation events, high aerosol loading and high moist static energy values.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Cited articles
Allabakash, S., Lim, S., Chong, K. S., and Yamada, T. J.: Particulate matter concentrations over South Korea: Impact of meteorology and other pollutants, Remote Sens., 14, 4849, https://doi.org/10.3390/rs14194849, 2022.
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019.
Ångström, A.: On the atmospheric transmission of sun radiation and on dust in the air, Geogr. Ann., 11, 156–166, https://doi.org/10.1080/20014422.1929.11880498, 1929.
Bae, M., Kim, B. U., Kim, H. C., Kim, J., and Kim, S.: Role of emissions and meteorology in the recent PM2.5 changes in China and South Korea from 2015 to 2018, Environ. Pollut., 270, 116233, https://doi.org/10.1016/j.envpol.2020.116233, 2021.
Baek, S. H.: Energy-efficient monitoring of fine particulate matter with tiny aerosol conditioner, Sensors (Basel), 22, 1950, https://doi.org/10.3390/s22051950, 2022.
Cao, N., Yang, S., Cao, S., Yang, S., and Shen, J.: Accuracy calculation for lidar ratio and aerosol size distribution by dual-wavelength lidar, Appl. Phys. A, 125, 1–10, 2019.
Chen, J., Zhao, C. S., Ma, N., and Yan, P.: Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain, Atmos. Chem. Phys., 14, 8105–8118, https://doi.org/10.5194/acp-14-8105-2014, 2014.
Chen, J., Li, Z., Lv, M., Wang, Y., Wang, W., Zhang, Y., Wang, H., Yan, X., Sun, Y., and Cribb, M.: Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China, Atmos. Chem. Phys., 19, 1327–1342, https://doi.org/10.5194/acp-19-1327-2019, 2019.
Cheng, Z., Wang, S., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Fu, X., and Hao, J.: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China, Environ. Pollut., 182, 101–110, https://doi.org/10.1016/j.envpol.2013.06.043, 2013.
Cheng, Z., Ma, X., He, Y., Jiang, J., Wang, X., Wang, Y., Sheng, L., Hu, J., and Yan, N.: Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China, Environ. Res., 156, 239–246, https://doi.org/10.1016/j.envres.2017.03.022, 2017.
Cheng-Cai, L., Xiu, H., Zhao-Ze, D., Kai-Hon Lau, A., and Ying, L.: Dependence of mixed aerosol light scattering extinction on relative humidity in Beijing and Hong Kong, Atmos. Ocean. Sci. Lett., 6, 117–121, https://doi.org/10.1080/16742834.2013.11447066, 2013.
Dawson, K. W., Ferrare, R. A., Moore, R. H., Clayton, M. B., Thorsen, T. J., and Eloranta, E. W.: Ambient aerosol hygroscopic growth from combined Raman lidar and HSRL, J. Geophys. Res.-Atmos., 125, JD031708, https://doi.org/10.1029/2019JD031708, 2020.
De Marco, A., Proietti, C., Anav, A., Ciancarella, L., D'Elia, I., Fares, S., Fornasier, M. F., Fusaro, L., Gualtieri, M., Manes, F., Marchetto, A., Mircea, M., Paoletti, E., Piersanti, A., Rogora, M., Salvati, L., Salvatori, E., Screpanti, A., Vialetto, G., Vitale, M., and Leonardi, C.: Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy, Environ. Int., 125, 320–333, https://doi.org/10.1016/j.envint.2019.01.064, 2019.
Du, A., Li, Y., Sun, J., Zhang, Z., You, B., Li, Z., Chen, C., Li, J., Qiu, Y., Liu, X., Ji, D., Zhang, W., Xu, W., Fu, P., and Sun, Y.: Rapid transition of aerosol optical properties and water-soluble organic aerosols in cold season in Fenwei Plain, Sci. Total Environ., 829, 154661, https://doi.org/10.1016/j.scitotenv.2022.154661, 2022.
Du, X. X., Shi, G. M., Zhao, T. L., Yang, F. M., Zheng, X. B., Zhang, Y. J., and Tan, Q. W.: Contribution of secondary particles to wintertime PM2.5 during 2015–2018 in a major urban area of the Sichuan Basin, Southwest China, Earth Space Sci., 7, EA001194, https://doi.org/10.1029/2020EA001194, 2020.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002.
Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner, M.: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B, 61, 165–179, https://doi.org/10.1111/j.1600-0889.2008.00396.x, 2009.
Fu-Qi, S., Jian-Guo, L., Ping-Hua, X., Yu-Jun, Z., Wen-Qing, L., Kuze, H., Cheng, L., Lagrosas, N., and Takeuchi, N.: Determination of aerosol extinction coefficient and mass extinction efficiency by DOAS with a flashlight source, Chinese Phys., 14, 2360–2364, https://doi.org/10.1088/1009-1963/14/11/037, 2005.
Gao, M., Liu, Z., Zheng, B., Ji, D., Sherman, P., Song, S., Xin, J., Liu, C., Wang, Y., Zhang, Q., Xing, J., Jiang, J., Wang, Z., Carmichael, G. R., and McElroy, M. B.: China's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002, Atmos. Chem. Phys., 20, 1497–1505, https://doi.org/10.5194/acp-20-1497-2020, 2020.
Geng, G., Xiao, Q., Zheng, Y., Tong, D., Zhang, Y., Zhang, X., Zhang, Q., He, K., and Liu, Y.: Impact of China's air pollution prevention and control action plan on PM2.5 chemical composition over eastern China, Sci. China Earth Sci., 62, 1872–1884, https://doi.org/10.1007/s11430-018-9353-x, 2019.
Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M., Ansmann, A., Althausen, D., and Seefeldner, M.: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2, Tellus, 63, 706–724, https://doi.org/10.1111/j.1600-0889.2011.00556.x, 2011.
Hao, X., Li, J., Wang, H., Liao, H., Yin, Z., Hu, J., Wei, Y., and Dang, R.: Long-term health impact of PM2.5 under whole-year COVID-19 lockdown in China, Environ. Pollut., 290, 118118, https://doi.org/10.1016/j.envpol.2021.118118, 2021.
He, Q., Zhou, G., Geng, F., Gao, W., and Yu, W.: Spatial distribution of aerosol hygroscopicity and its effect on PM2.5 retrieval in East China, Atmos. Res., 170, 161–167, https://doi.org/10.1016/j.atmosres.2015.11.011, 2016.
Huang, W., Tan, J., Kan, H., Zhao, N., Song, W., Song, G., Chen, G., Jiang, L., Jiang, C., Chen, R., and Chen, B.: Visibility, air quality and daily mortality in Shanghai, China, Sci. Total Environ., 407, 3295–3300, https://doi.org/10.1016/j.scitotenv.2009.02.019, 2009.
Huang, X., Li, C., Pan, C., Zheng, W., Lin, G., Li, H., Zhang, Y., Wang, J., Lei, Y., Ye, J., Ge, X., and Zhang, H.: Effects of significant emission changes on PM2.5 chemical composition and optical properties from 2019 to 2021 in a typical industrial city of eastern China, Atmos. Res., 301, 107287, https://doi.org/10.1016/j.atmosres.2024.107287, 2024.
IARC (International Agency for Research on Cancer): Outdoor air pollution a leading environmental cause of cancer deaths, Lyon/Geneva, 2 pp., https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf (last access: 20 January 2025), 17 October 2013.
Jeong, J. I., Seo, J., and Park, R. J.: Compromised improvement of poor visibility due to PM chemical composition changes in South Korea, Remote Sens., 14, 5310, https://doi.org/10.3390/rs14215310, 2022.
Jing, J., Wu, Y., Tao, J., Che, H., Xia, X., Zhang, X., Yan, P., Zhao, D., and Zhang, L.: Observation and analysis of near-surface atmospheric aerosol optical properties in urban Beijing, Particuology, 18, 144–154, https://doi.org/10.1016/j.partic.2014.03.013, 2015.
Joo, S., Dehkhoda, N., Shin, J., Park, M. E., Sim, J., and Noh, Y.: A study on the long-term variations in mass extinction efficiency using visibility data in South Korea, Remote Sens., 14, 1592, https://doi.org/10.3390/rs14071592, 2022.
Jung, J., Lee, H., Kim, Y. J., Liu, X., Zhang, Y., Gu, J., and Fan, S.: Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign, J. Environ. Manage., 90, 3231–3244, https://doi.org/10.1016/j.jenvman.2009.04.021, 2009.
Jung, W.: Environmental challenges and cooperation in NorthEast Asia, Focus Asia Perspect. Anal., 16, 1–11, 2016.
Kendall, M. G.: Rank correlation methods, Biometrika, 44, 298, https://doi.org/10.2307/2333282, 1957.
Kim, H.: Seasonal impacts of particulate matter levels on bike sharing in Seoul, South Korea, Int. J. Environ. Res. Public Health, 17, 3999, https://doi.org/10.3390/ijerph17113999, 2020.
Kim, K. W.: Physico-chemical characteristics of visibility impairment by airborne pollen in an urban area, Atmos. Environ., 41, 3565–3576, https://doi.org/10.1016/j.atmosenv.2006.12.054, 2007.
Kim, K. W.: Time-resolved chemistry measurement to determine the aerosol optical properties using PIXE analysis, J. Korean Phy. Soc., 59, 189–195, https://doi.org/10.3938/jkps.59.189, 2011.
Kim, K. W.: Optical properties of size-resolved aerosol chemistry and visibility variation observed in the urban site of Seoul, Korea, Aerosol Air Qual. Res., 15, 271–283, https://doi.org/10.4209/aaqr.2013.11.0347, 2015.
Korea Environment Corporation: PM Mass Concentration Data, AirKorea [data set], https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123 (last access: 16 February 2024), 2024.
Kovalev, V. A. and Eichinger, W. E.: Elastic lidar: Theory, practice, and analysis methods, John Wiley & Sons, 640 pp., https://www.wiley.com/en-us/Elastic+Lidar:+Theory,+Practice,+and+Analysis+Methods-p-9780471201717 (last access: 20 January 2025), 2004.
Lang, J., Zhang, Y., Zhou, Y., Cheng, S., Chen, D., Guo, X., Chen, S., Li, X., Xing, X., and Wang, H.: Trends of PM2.5 and chemical composition in Beijing, 2000–2015, Aerosol Air Qual. Res., 17, 412–425, https://doi.org/10.4209/aaqr.2016.07.0307, 2017.
Lee, K. H. and Bae, M. S.: Discrepancy between scientific measurement and public anxiety about particulate matter concentrations, Sci. Total Environ., 760, 143980, https://doi.org/10.1016/j.scitotenv.2020.143980, 2021.
Li, J., Zhang, Z., Wu, Y., Tao, J., Xia, Y., Wang, C., and Zhang, R.: Effects of chemical compositions in fine particles and their identified sources on hygroscopic growth factor during dry season in urban Guangzhou of South China, Sci. Total Environ., 801, 149749, https://doi.org/10.1016/j.scitotenv.2021.149749, 2021.
Li, Y., Huang, H. X. H., Griffith, S. M., Wu, C., Lau, A. K. H., and Yu, J. Z.: Quantifying the relationship between visibility degradation and PM2.5 constituents at a suburban site in Hong Kong: Differentiating contributions from hydrophilic and hydrophobic organic compounds, Sci. Total Environ., 575, 1571–1581, https://doi.org/10.1016/j.scitotenv.2016.10.082, 2017.
Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., Fan, J., Gong, D., Huang, J., Jiang, M., Jiang, Y., Lee, S.-S., Li, H., Li, J., Liu, J., Qian, Y., Rosenfeld, D., Shan, S., Sun, Y., Wang, H., Xin, J., Yan, X., Yang, X., Yang, X., Zhang, F., and Zheng, Y.: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIR CPC), J. Geophys. Res.-Atmos., 124, 13026–13054, https://doi.org/10.1029/2019JD030758, 2019.
Liao, W., Zhou, J., Zhu, S., Xiao, A., Li, K., and Schauer, J. J.: Characterization of aerosol chemical composition and the reconstruction of light extinction coefficients during winter in Wuhan, China, Chemosphere, 241, 125033, https://doi.org/10.1016/j.chemosphere.2019.125033, 2020.
Liu, F., Tan, Q., Jiang, X., Yang, F., and Jiang, W.: Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China, J. Environ. Sci. (China), 86, 15–23, https://doi.org/10.1016/j.jes.2019.05.004, 2019.
Liu, H., Wang, C., Zhang, M., and Wang, S.: Evaluating the effects of air pollution control policies in China using a difference-in-differences approach, Sci. Total Environ., 845, 157333, https://doi.org/10.1016/j.scitotenv.2022.157333, 2022.
Liu, J., Ren, C., Huang, X., Nie, W., Wang, J., Sun, P., Chi, X., and Ding, A.: Increased aerosol extinction efficiency hinders visibility improvement in eastern China, Geophys. Res. Lett., 47, GL090167, https://doi.org/10.1029/2020GL090167, 2020.
Liu, X., Gu, J., Li, Y., Cheng, Y., Qu, Y., Han, T., Wang, J., Tian, H., Chen, J., and Zhang, Y.: Increase of aerosol scattering by hygroscopic growth: Observation, modeling, and implications on visibility, Atmos. Res., 132–133, 91–101, https://doi.org/10.1016/j.atmosres.2013.04.007, 2013.
Liu, Z., Omar, A., Vaughan, M., Hair, J., Kittaka, C., Hu, Y., Powell, K., Trepte, C., Winker, D., Hostetler, C., Ferrare, R., and Pierce, R.: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport, J. Geophys. Res., 113, D7, https://doi.org/10.1029/2007JD008878, 2008.
Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945.
National Institute for Environmental Studies (NIES): Asian Dust and Aerosol Lidar Observation Network (AD-Net), https://www-lidar.nies.go.jp/AD-Net/ncdf/ (last access: 10 March 2024), 2024.
Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., and Okamoto, H.: Algorithms to retrieve optical properties of three component aerosols from two-wavelength backscatter and one-wavelength polarization lidar measurements considering nonsphericity of dust, J. Quant. Spectrosc. Ra., 112, 254–267, https://doi.org/10.1016/j.jqsrt.2010.06.002, 2011.
Noh, Y. M., Kim, Y. J., Choi, B. C., and Murayama, T.: Aerosol lidar ratio characteristics measured by a multi-wavelength Raman lidar system at Anmyeon Island, Korea, Atmos. Res., 86, 76–87, https://doi.org/10.1016/j.atmosres.2007.03.006, 2007.
Noh, Y. M., Kim, Y. J., and Müller, D.: Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn, Atmos. Environ., 42, 2208–2224, https://doi.org/10.1016/j.atmosenv.2007.11.045, 2008.
Noh, Y. M., Müller, D., Mattis, I., Lee, H., and Kim, Y. J.: Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: Multiwavelength Raman lidar observations of East Asian aerosol types over Korea, J. Geophys. Res., 116, D6, https://doi.org/10.1029/2010JD014873, 2011.
O'Neill, N. T., Ranjbar, K., Ivǎnescu, L., Eck, T. F., Reid, J. S., Giles, D. M., Pérez-Ramírez, D., and Chaubey, J. P.: Relationship between the sub-micron fraction (SMF) and fine-mode fraction (FMF) in the context of AERONET retrievals, Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, 2023.
Qu, W. J., Wang, J., Zhang, X. Y., Wang, D., and Sheng, L. F.: Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China, Atmos. Res., 153, 500–511, https://doi.org/10.1016/j.atmosres.2014.10.009, 2015.
Sabetghadam, S. and Ahmadi-Givi, F.: Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009, Environ. Sci. Pollut. Res. Int., 21, 538–547, https://doi.org/10.1007/s11356-013-1901-9, 2014.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and bimodal aerosol size distributions, J. Geophys. Res., 111, D7, https://doi.org/10.1029/2005JD006328, 2006.
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Shen, Z., Cao, J., Zhang, L., Zhang, Q., Huang, R.-J., Liu, S., Zhao, Z., Zhu, C., Lei, Y., Xu, H., and Zheng, C.: Retrieving historical ambient PM2.5 concentrations using existing visibility measurements in Xi'an, Northwest China, Atmos. Environ., 126, 15–20, https://doi.org/10.1016/j.atmosenv.2015.11.040, 2016.
Shimizu, A., Sugimoto, N., Matsui, I., Arao, K., Uno, I., Murayama, T., Kagawa, N., Aoki, K., Uchiyama, A., and Yamazaki, A.: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia, J. Geophys. Res., 109, D19, https://doi.org/10.1029/2002JD003253, 2004.
Shimizu, A., Nishizawa, T., Jin, Y., Kim, S. W., Wang, Z., Batdorj, D., and Sugimoto, N.: Evolution of a lidar network for tropospheric aerosol detection in East Asia, Opt. Eng., 56, 031219–031219, https://doi.org/10.1117/1.OE.56.3.031219, 2016.
Shin, J., Sim, J., Dehkhoda, N., Joo, S., Kim, T., Kim, G., Müller, D., Tesche, M., Shin, S., Shin, D., and Noh, Y.: Long-term variation study of fine-mode particle size and regional characteristics using AERONET data, Remote Sens., 14, 4429, https://doi.org/10.3390/rs14184429, 2022a.
Shin, J., Kim, D., and Noh, Y.: Estimation of aerosol extinction coefficient using camera images and application in mass extinction efficiency retrieval, Remote Sens., 14, 1224, https://doi.org/10.3390/rs14051224, 2022b.
Shin, J., Shin, D., Müller, D., and Noh, Y.: Long-term analysis of AOD separated by aerosol type in East Asia, Atmos. Environ., 310, 119957, https://doi.org/10.1016/j.atmosenv.2023.119957, 2023.
Shin, S.-K., Müller, D., Lee, C., Lee, K. H., Shin, D., Kim, Y. J., and Noh, Y. M.: Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia, Atmos. Chem. Phys., 15, 6707–6720, https://doi.org/10.5194/acp-15-6707-2015, 2015.
Singh, A. and Dey, S.: Influence of aerosol composition on visibility in megacity Delhi, Atmos. Environ., 62, 367–373, https://doi.org/10.1016/j.atmosenv.2012.08.048, 2012.
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R., Freudenthaler, V., and Groß, S.: Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res.-Atmos., 114, D13, https://doi.org/10.1029/2009JD011862, 2009.
Ting, Y. C., Young, L. H., Lin, T. H., Tsay, S. C., Chang, K. E., and Hsiao, T. C.: Quantifying the impacts of PM2.5 constituents and relative humidity on visibility impairment in a suburban area of eastern Asia using long-term in-situ measurements, Sci. Total Environ., 818, 151759, https://doi.org/10.1016/j.scitotenv.2021.151759, 2022.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M. J., Olmo, F. J., and Alados-Arboledas, L.: Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources, Atmos. Environ., 141, 494–507, https://doi.org/10.1016/j.atmosenv.2016.07.021, 2016.
Vaisala, O.: Humidity conversion formulas, Calculation formulas for humidity, 17 pp., https://web.archive.org/web/20200212215746im_/https://www.vaisala.com/en/system/files?file=documents/Humidity_Conversion_Formulas_B210973EN.pdf (last access: 20 January 2025), 2013.
Van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A., Sayer, A. M., and Winker, D. M.: Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors, Environ. Sci. Technol., 50, 3762–3772, https://doi.org/10.1021/acs.est.5b05833, 2016.
Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Franke, K., and Whiteman, D. N.: Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution, Appl. Opt., 43, 1180–1195, https://doi.org/10.1364/ao.43.001180, 2004.
Wang, Q., Sun, Y., Jiang, Q., Du, W., Sun, C., Fu, P., and Wang, Z.: Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China, J. Geophys. Res.-Atmos., 120, 12708–12722, https://doi.org/10.1002/2015JD023871, 2015.
Won, J. S., Kim, H., and Kim, S. G.: A study on the preliminary plan for environmental health in Seoul, Korea, Int. J. Environ. Res. Public Health, 19, 16611, https://doi.org/10.3390/ijerph192416611, 2022.
Xiao, Q., Geng, G., Liang, F., Wang, X., Lv, Z., Lei, Y., Huang, X., Zhang, Q., Liu, Y., and He, K.: Changes in spatial patterns of PM2.5 pollution in China 2000–2018: Impact of clean air policies, Environ. Int., 141, 105776, https://doi.org/10.1016/j.envint.2020.105776, 2020.
Xie, C., Nishizawa, T., Sugimoto, N., Matsui, I., and Wang, Z.: Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China, Appl. Opt., 47, 4945–4951, https://doi.org/10.1364/ao.47.004945, 2008.
Xie, P. and Liao, H.: The impacts of changes in anthropogenic emissions over China on PM2.5 concentrations in South Korea and Japan during 2013–2017, Front. Environ. Sci., 10, 31, https://doi.org/10.3389/fenvs.2022.841285, 2022.
Xu, W., Kuang, Y., Bian, Y., Liu, L., Li, F., Wang, Y., Xue, B., Luo, B., Huang, S., Yuan, B., Zhao, P., and Shao, M.: Current challenges in visibility improvement in southern China, Environ. Sci. Technol. Lett., 7, 395–401, https://doi.org/10.1021/acs.estlett.0c00274, 2020.
Yuan, C. S., Lee, C. G., Liu, S. H., Chang, J. C., Yuan, C., and Yang, H. Y.: Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols, Atmos. Res., 82, 663–679, https://doi.org/10.1016/j.atmosres.2006.02.027, 2006.
Yue, H., He, C., Huang, Q., Yin, D., and Bryan, B. A.: Stronger policy required to substantially reduce deaths from PM2.5 pollution in China, Nat. Commun., 11, 1462, https://doi.org/10.1038/s41467-020-15319-4, 2020.
Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and Li, J.: Ozone and haze pollution weakens net primary productivity in China, Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, 2017.
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019.
Zhang, Q. and Geng, G.: Impact of clean air action on PM2.5 pollution in China, Sci. China Earth Sci., 62, 1845–1846, https://doi.org/10.1007/s11430-019-9531-4, 2019.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, Q., Qin, L., Zhou, Y., Jia, S., Yao, L., Zhang, Z., and Zhang, L.: Evaluation of Extinction Effect of PM2.5 and Its Chemical Components during Heating Period in an Urban Area in Beijing–Tianjin–Hebei Region, Atmosphere, 13, 403, https://doi.org/10.3390/atmos13030403, 2022.
Zhang, Q. H., Zhang, J. P., and Xue, H. W.: The challenge of improving visibility in Beijing, Atmos. Chem. Phys., 10, 7821–7827, https://doi.org/10.5194/acp-10-7821-2010, 2010.
Zhou, Y., Wang, Q., Zhang, X., Wang, Y., Liu, S., Wang, M., Tian, J., Zhu, C., Huang, R., Zhang, Q., Zhang, T., Zhou, J., Dai, W., and Cao, J.: Exploring the impact of chemical composition on aerosol light extinction during winter in a heavily polluted urban area of China, J. Environ. Manage., 247, 766–775, https://doi.org/10.1016/j.jenvman.2019.06.100, 2019.
Zieger, P., Weingartner, E., Henzing, J., Moerman, M., de Leeuw, G., Mikkilä, J., Ehn, M., Petäjä, T., Clémer, K., van Roozendael, M., Yilmaz, S., Frieß, U., Irie, H., Wagner, T., Shaiganfar, R., Beirle, S., Apituley, A., Wilson, K., and Baltensperger, U.: Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw, Atmos. Chem. Phys., 11, 2603–2624, https://doi.org/10.5194/acp-11-2603-2011, 2011.
Short summary
In our study, we investigated why, in northeast Asia, visibility has not improved even though air pollution levels have decreased. By examining trends in Seoul and Ulsan, we found that the particles in the air are getting smaller, which scatters light more effectively and reduces how far we can see. Our findings suggest that changes in particle properties adversely affected public perception of air quality improvement even though the PM2.5 mass concentration is continuously decreasing.
In our study, we investigated why, in northeast Asia, visibility has not improved even though...
Altmetrics
Final-revised paper
Preprint