Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9439-2023
https://doi.org/10.5194/acp-23-9439-2023
Research article
 | 
25 Aug 2023
Research article |  | 25 Aug 2023

Concurrent photochemical whitening and darkening of ambient brown carbon

Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu

Related authors

Vertically resolved formation mechanisms of fine particulate nitrate in Asian megacities: integrated lidar – aircraft observations and process analysis
Yutong Tian, Ting Yang, Hongyi Li, Ping Tian, Yifan Song, Jiancun He, Yining Tan, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 25, 17581–17594, https://doi.org/10.5194/acp-25-17581-2025,https://doi.org/10.5194/acp-25-17581-2025, 2025
Short summary
Aircraft-based observation of volatile organic compounds (VOCs) over the North China Plain
Yibo Huangfu, Ziyang Liu, Bin Yuan, Sihang Wang, Xianjun He, Wei Zhou, Fei Wang, Ping Tian, Wei Xiao, Yuanmou Du, Jiujiang Sheng, and Min Shao
Atmos. Chem. Phys., 25, 17613–17628, https://doi.org/10.5194/acp-25-17613-2025,https://doi.org/10.5194/acp-25-17613-2025, 2025
Short summary
Estimation of CFC-11 emissions from coal combustion in China
Zhenzhen Niu, Shaofei Kong, Qin Yan, Yi Cheng, Huang Zheng, Yao Hu, Jian Wu, Xujing Qin, Haoyu Dong, Weisi Jiang, Yingying Yan, Wei Liu, Feng Ding, Yongqing Bai, and Shihua Qi
Earth Syst. Sci. Data, 17, 6731–6746, https://doi.org/10.5194/essd-17-6731-2025,https://doi.org/10.5194/essd-17-6731-2025, 2025
Short summary
The transport history of African biomass burning aerosols arriving in the remote Southeast Atlantic and their impacts on cloud properties
Huihui Wu, Fanny Peers, Jonathan W. Taylor, Chenjie Yu, Steven J. Abel, Paul A. Barrett, Jamie Trembath, Keith Bower, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 25, 16589–16609, https://doi.org/10.5194/acp-25-16589-2025,https://doi.org/10.5194/acp-25-16589-2025, 2025
Short summary
Black carbon aerosols in China: spatial-temporal variations and lessons from long-term atmospheric observations
Huang Zheng, Shaofei Kong, Deping Ding, Marjan Savadkoohi, Congbo Song, Mingming Zheng, and Roy M. Harrison
Atmos. Chem. Phys., 25, 16363–16386, https://doi.org/10.5194/acp-25-16363-2025,https://doi.org/10.5194/acp-25-16363-2025, 2025
Short summary

Cited articles

Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, https://doi.org/10.1126/science.276.5315.1052, 1997. 
Bahadur, R., Praveen, P. S., Xu, Y., and Ramanathan, V.: Solar absorption by elemental and brown carbon determined from spectral observations, P. Natl. Acad. Sci. USA, 109, 17366–17371, https://doi.org/10.1073/pnas.1205910109, 2012. 
Bond, T. C.: Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28, 4075–4078, https://doi.org/10.1029/2001gl013652, 2001. 
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006. 
Download
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Share
Altmetrics
Final-revised paper
Preprint