Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-5071-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5071-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A novel method of identifying and analysing oil smoke plumes based on MODIS and CALIPSO satellite data
Alexandru Mereuţă
Faculty of Environmental Science and Engineering, Babeş-Bolyai
University, Cluj-Napoca, 400294, Romania
Faculty of Environmental Science and Engineering, Babeş-Bolyai
University, Cluj-Napoca, 400294, Romania
Andrei T. Radovici
Faculty of Environmental Science and Engineering, Babeş-Bolyai
University, Cluj-Napoca, 400294, Romania
Nikolaos Papagiannopoulos
Consiglio Nazionale delle Ricerche, Istituto di Metodologie per
l'Analisi Ambientale (CNR-IMAA), C. da S. Loja, Tito Scalo (PZ), 85050, Italy
Lucia T. Deaconu
Faculty of Environmental Science and Engineering, Babeş-Bolyai
University, Cluj-Napoca, 400294, Romania
Camelia S. Botezan
Faculty of Environmental Science and Engineering, Babeş-Bolyai
University, Cluj-Napoca, 400294, Romania
Horaţiu I. Ştefănie
Faculty of Environmental Science and Engineering, Babeş-Bolyai
University, Cluj-Napoca, 400294, Romania
Institute of Geophysics, Faculty of Physics, University of Warsaw,
Warsaw, Poland
Doina Nicolae
National Institute of R&D for Optoelectronics (INOE), Magurele,
Romania
Alexandru Ozunu
Faculty of Environmental Science and Engineering, Babeş-Bolyai
University, Cluj-Napoca, 400294, Romania
Faculty of Natural and Agricultural Sciences, Disaster Management
Training and Education Centre (DIMTEC), University of the Free State,
Bloemfontein 9300, South Africa
Related authors
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023, https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary
Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the emissions reported to UNFCCC, and up to three-quarters of the detected emissions are related to operational venting. Our results suggest that oil and gas production infrastructure in Romania holds a massive mitigation potential.
Teresa Laurita, Alessandro Mauceri, Francesco Cardellicchio, Emilio Lapenna, Benedetto De Rosa, Serena Trippetta, Michail Mytilinaios, Davide Amodio, Aldo Giunta, Ermann Ripepi, Canio Colangelo, Nikolaos Papagiannopoulos, Francesca Morrongiello, Claudio Dema, Simone Gagliardi, Carmela Cornacchia, Rosa Maria Petracca Altieri, Aldo Amodeo, Marco Rosoldi, Donato Summa, Gelsomina Pappalardo, and Lucia Mona
Atmos. Meas. Tech., 18, 2373–2396, https://doi.org/10.5194/amt-18-2373-2025, https://doi.org/10.5194/amt-18-2373-2025, 2025
Short summary
Short summary
This paper provides an overview of the CIAO Observatory in southern Italy, focusing on the upgrade of its aerosol in situ laboratory in compliance with ACTRIS standard operating procedures. The aim is to provide the aerosol research community with technical details and practical guidance for establishing an in situ aerosol observational site. The paper also discusses the importance of combining in situ and remote sensing measurements for a comprehensive understanding of atmospheric processes.
Doina Nicolae, Gabriela-Ancuta Ciocan, Anca Nemuc, Victor Nicolae, Camelia Talianu, Jeni Vasilescu, Alexandru Dandocsi, Cristian Radu, Marius-Mihai Cazacu, Viorel Vulturescu, and Livio Belegante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2092, https://doi.org/10.5194/egusphere-2025-2092, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Over the past decade, researchers at RADO-Bucharest have measured and analyzed aerosol properties to understand their optical and microphysical characteristics, seasonal variability, and transport pathways. Using advanced lidar and photometer techniques the study reveals that fine-mode aerosols dominate, with pollution-driven regimes and seasonal influences by dust, biomass burning, and marine sources highlighting the impact of regional pollution and long-range transport on local air quality.
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025, https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary
Short summary
For Bucharest, Romania's capital, mobile measurements during two intensive campaigns and mixed-effect LUR (land-use regression) models to derive seasonal maps of near-surface PM10, NO2 and UFPs (ultrafine particles) have successfully been used. The model's performance was evaluated, demonstrating its potential for high-resolution mapping in other cities with well-characterized urban structures and diverse in situ monitoring stations.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023, https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary
Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the emissions reported to UNFCCC, and up to three-quarters of the detected emissions are related to operational venting. Our results suggest that oil and gas production infrastructure in Romania holds a massive mitigation potential.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David Sexton, Christopher C. Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2022-1330, https://doi.org/10.5194/egusphere-2022-1330, 2022
Preprint archived
Short summary
Short summary
We show that potential structural deficiencies in a climate model can be exposed by comprehensively exploring its parametric uncertainty, and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. Combined consideration of parametric and structural uncertainties provides a future pathway towards building models that have greater physical realism and lower uncertainty.
Haochi Che, Philip Stier, Duncan Watson-Parris, Hamish Gordon, and Lucia Deaconu
Atmos. Chem. Phys., 22, 10789–10807, https://doi.org/10.5194/acp-22-10789-2022, https://doi.org/10.5194/acp-22-10789-2022, 2022
Short summary
Short summary
Extensive stratocumulus clouds over the south-eastern Atlantic (SEA) can lead to a cooling effect on the climate. A key pathway by which aerosols affect cloud properties is by acting as cloud condensation nuclei (CCN). Here, we investigated the source attribution of CCN in the SEA as well as the cloud responses. Our results show that aerosol nucleation contributes most to CCN in the marine boundary layer. In terms of emissions, anthropogenic sources contribute most to the CCN and cloud droplets.
Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
Geosci. Model Dev., 14, 7659–7672, https://doi.org/10.5194/gmd-14-7659-2021, https://doi.org/10.5194/gmd-14-7659-2021, 2021
Short summary
Short summary
The Earth System Emulator (ESEm) provides a fast and flexible framework for emulating a wide variety of Earth science datasets and tools for constraining (or tuning) models of any complexity. Three distinct use cases are presented that demonstrate the utility of ESEm and provide some insight into the use of machine learning for emulation in these different settings. The open-source Python package is freely available so that it might become a valuable tool for the community.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Mariana Adam, Iwona S. Stachlewska, Lucia Mona, Nikolaos Papagiannopoulos, Juan Antonio Bravo-Aranda, Michaël Sicard, Doina N. Nicolae, Livio Belegante, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Arnoud Apituley, Ina Mattis, Anatoli Chaikovsky, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-759, https://doi.org/10.5194/acp-2021-759, 2021
Revised manuscript not accepted
Short summary
Short summary
Results over 10 years of biomass burning events measured by EARLINET are analysed by means of the intensive parameters, based on the methodology described in Part I. Smoke type is characterized for each of the four geographical regions based on continental smoke origin. Relationships between intensive parameters or colour ratios are shown. The smoke is labelled in average as aged smoke.
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021, https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Short summary
We introduce an automated aerosol type classification method, SCAN. The output of SCAN is compared with two aerosol classification methods: (1) the Mahalanobis distance automatic aerosol type classification and (2) a neural network aerosol typing algorithm. A total of 97 free tropospheric aerosol layers from four EARLINET stations in the period 2014–2018 were classified.
Haochi Che, Philip Stier, Hamish Gordon, Duncan Watson-Parris, and Lucia Deaconu
Atmos. Chem. Phys., 21, 17–33, https://doi.org/10.5194/acp-21-17-2021, https://doi.org/10.5194/acp-21-17-2021, 2021
Short summary
Short summary
The south-eastern Atlantic is semi-permanently covered by some of the largest stratocumulus clouds and is influenced by one-third of the biomass burning emissions from African fires. A UKEMS1 model simulation shows that the absorption effect of biomass burning aerosols is the most significant on clouds and radiation. The dominate cooling and rapid adjustments induced by the radiative effects of biomass burning aerosols result in an overall cooling in the south-eastern Atlantic.
Ourania Soupiona, Alexandros Papayannis, Panagiotis Kokkalis, Romanos Foskinis, Guadalupe Sánchez Hernández, Pablo Ortiz-Amezcua, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Papagiannopoulos, Stefanos Samaras, Silke Groß, Rodanthi-Elisavet Mamouri, Lucas Alados-Arboledas, Aldo Amodeo, and Basil Psiloglou
Atmos. Chem. Phys., 20, 15147–15166, https://doi.org/10.5194/acp-20-15147-2020, https://doi.org/10.5194/acp-20-15147-2020, 2020
Short summary
Short summary
51 dust events over the Mediterranean from EARLINET were studied regarding the aerosol geometrical, optical and microphysical properties and radiative forcing. We found δp532 values of 0.24–0.28, LR532 values of 49–52 sr and AOT532 of 0.11–0.40. The aerosol mixing state was also examined. Depending on the dust properties, intensity and solar zenith angle, the estimated solar radiative forcing ranged from −59 to −22 W m−2 at the surface and from −24 to −1 W m−2 at the TOA (cooling effect).
Mariana Adam, Doina Nicolae, Iwona S. Stachlewska, Alexandros Papayannis, and Dimitris Balis
Atmos. Chem. Phys., 20, 13905–13927, https://doi.org/10.5194/acp-20-13905-2020, https://doi.org/10.5194/acp-20-13905-2020, 2020
Short summary
Short summary
Biomass burning events measured by EARLINET are analysed using intensive parameters. The pollution layers are labelled smoke layers if fires were found along the air-mass back trajectory. The number of contributing fires to the smoke measurements is quantified. It is shown that most of the time we measure mixed smoke. The methodology provides three research directions: fires measured by several stations, long-range transport from N. America, and an analysis function of continental sources.
Alexis Merlaud, Livio Belegante, Daniel-Eduard Constantin, Mirjam Den Hoed, Andreas Carlos Meier, Marc Allaart, Magdalena Ardelean, Maxim Arseni, Tim Bösch, Hugues Brenot, Andreea Calcan, Emmanuel Dekemper, Sebastian Donner, Steffen Dörner, Mariana Carmelia Balanica Dragomir, Lucian Georgescu, Anca Nemuc, Doina Nicolae, Gaia Pinardi, Andreas Richter, Adrian Rosu, Thomas Ruhtz, Anja Schönhardt, Dirk Schuettemeyer, Reza Shaiganfar, Kerstin Stebel, Frederik Tack, Sorin Nicolae Vâjâiac, Jeni Vasilescu, Jurgen Vanhamel, Thomas Wagner, and Michel Van Roozendael
Atmos. Meas. Tech., 13, 5513–5535, https://doi.org/10.5194/amt-13-5513-2020, https://doi.org/10.5194/amt-13-5513-2020, 2020
Short summary
Short summary
The AROMAT campaigns took place in Romania in 2014 and 2015. They aimed to test airborne observation systems dedicated to air quality studies and to verify the concept of such campaigns in support of the validation of space-borne atmospheric missions. We show that airborne measurements of NO2 can be valuable for the validation of air quality satellites. For H2CO and SO2, the validation should involve ground-based measurement systems at key locations that the AROMAT measurements help identify.
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020, https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
Short summary
Volcanic and desert dust particles affect human activities in manifold ways; consequently, mitigation tools are important. Their early detection and the issuance of early warnings are key elements in the initiation of operational response procedures. A methodology for the early warning of these hazards using European Aerosol Research Lidar Network (EARLINET) data is presented. The tailored product is investigated during a volcanic eruption and mineral dust advected in the eastern Mediterranean.
Cited articles
Ahmadi, O., Mortazavi, S. B., and Mahabadi, H. A.: Review of Atmospheric
Storage Tank Fire Scenarios: Costs and Causes, J. Fail. Anal. Preven.,
20, 384–405, https://doi.org/10.1007/s11668-020-00846-5, 2020.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Al Jazeera: Soldiers die in attack on Libya oil terminals,
https://www.aljazeera.com/news/middleeast/2014/12/soldiers-killed-attack-benghazi-port-2014122673856971767.html
(last access: 12 September 2019), 2014.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cycles, 15, 955–966,
https://doi.org/10.1029/2000GB001382, 2001.
Andreae, M. O. and Ramanathan, V.: Climate's dark forcings, Science, 340,
280–281, 2013.
An Han, H., Han, I., McCurdy, S., Whitworth, K., Delclos, G., Rammah, A.,
and Symanski, E.: The Intercontinental Terminals Chemical Fire Study: A
Rapid Response to an Industrial Disaster to Address Resident Concerns in
Deer Park, Texas, Int. J. Environ. Res. Public Health, 17, 986, https://doi.org/10.3390/ijerph17030986,
2020.
Avery, M. A., Ryan, R. A., Getzewich, B. J., Vaughan, M. A., Winker, D. M., Hu, Y., Garnier, A., Pelon, J., and Verhappen, C. A.: CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles, Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, 2020.
Barth, S. K., Dursa, E. K., Bossarte, R., and Schneiderman, A.: Lifetime
Prevalence of Respiratory Diseases and Exposures Among Veterans of Operation
Enduring Freedom and Operation Iraqi Freedom Veterans: Results From the
National Health Study for a New Generation of U.S. Veterans, J. Occup. Environ. Med., 58, 1175–1180,
https://doi.org/10.1097/JOM.0000000000000885, 2016.
BBC: Libya: Gaddafi troops take rebel oil port of Ras Lanuf,
https://www.bbc.com/news/world-africa-12721908, (last access: 12 September 2019), 2011.
BBC: Libya airstrikes hit Misrata militants for first time,
https://www.bbc.com/news/world-africa-30616817, (last access: 12 September
2019), 2014.
BBC: Gulf of Oman tanker attacks: What we know,
https://www.bbc.com/news/world-middle-east-48627014, (last access: 10 October 2019), 2019.
Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr,
G., Hoffmann, B., Wolf, K., Samoli, E., Fischer, P., Nieuwenhuijsen, M.,
Vineis, P., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Oudin, A.,
Forsberg, B., Modig, L., Havulinna, A. S., Lanki, T., Turunen, A., Oftedal,
B., Nystad, W., Nafstad, P., De Faire, U., Pedersen, N. L., Östenson,
C.-G., Fratiglioni, L., Penell, J., Korek, M., Pershagen, G., Eriksen, K.
T., Overvad, K., Ellermann, T., Eeftens, M., Peeters, P. H., Meliefste, K.,
Wang, M., Bueno-de-Mesquita, B., Sugiri, D., Krämer, U., Heinrich, J.,
de Hoogh, K., Key, T., Peters, A., Hampel, R., Concin, H., Nagel, G.,
Ineichen, A., Schaffner, E., Probst-Hensch, N., Künzli, N., Schindler,
C., Schikowski, T., Adam, M., Phuleria, H., Vilier, A., Clavel-Chapelon, F.,
Declercq, C., Grioni, S., Krogh, V., Tsai, M.-Y., Ricceri, F., Sacerdote,
C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, C.,
Forastiere, F., Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M.,
Trichopoulou, A., Brunekreef, B., and Hoek, G.: Effects of long-term
exposure to air pollution on natural-cause mortality: an analysis of 22
European cohorts within the multicentre ESCAPE project, The Lancet, 383,
785–795, https://doi.org/10.1016/S0140-6736(13)62158-3, 2014.
Bellingcat: Fuel to the Fire: Satellite Imagery Captures Burning Oil Tanks
Libya,
https://www.bellingcat.com/news/mena/2018/06/18/fuel-fire-satellite-imagery-captures-burning-oil-tanks-libya/,
(last access: 12 September 2019), 2018.
Biezma, M. V., Andrés, M. A., Agudo, D., and Briz, E.: Most fatal oil
& gas pipeline accidents through history: A lessons learned approach,
Engineering Failure Analysis, 110, 104446,
https://doi.org/10.1016/j.engfailanal.2020.104446, 2020.
Bloomberg: Nigeria Loses Almost Half Its Power Output After Pipeline Fire,
https://www.bloomberg.com/news/articles/2018-01-03/nigeria-loses-almost-half-its-power-output-after-pipeline-fire,
(last access: 6 May 2019), 2018.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment: Black Carbon in the Climate System, J. Geophys. Res.-Atmos.,
118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Boucher, O., Balkanski, Y., Hodnebrog, Ø., Myhre, C. L., Myhre, G.,
Quaas, J., Samset, B. H., Schutgens, N., Stier, P., and Wang, R.: Jury is
still out on the radiative forcing by black carbon, P. Natl. Acad. Sci. USA,
113, E5092–E5093, https://doi.org/10.1073/pnas.1607005113, 2016.
Brain, J. D., Long, N. C., Wolfthal, S. F., Dumyahn, T., and Dockery, D. W.:
Pulmonary toxicity in hamsters of smoke particles from Kuwaiti oil fires,
Environ. Health Persp., 106, 141–146,
https://doi.org/10.1289/ehp.98106141, 1998.
Brauer, M., Freedman, G., Frostad, J., van Donkelaar, A., Martin, R. V.,
Dentener, F., Dingenen, R. van, Estep, K., Amini, H., Apte, J. S.,
Balakrishnan, K., Barregard, L., Broday, D., Feigin, V., Ghosh, S., Hopke,
P. K., Knibbs, L. D., Kokubo, Y., Liu, Y., Ma, S., Morawska, L., Sangrador,
J. L. T., Shaddick, G., Anderson, H. R., Vos, T., Forouzanfar, M. H.,
Burnett, R. T., and Cohen, A.: Ambient Air Pollution Exposure Estimation for
the Global Burden of Disease 2013, Environ. Sci. Technol., 50, 79–88,
https://doi.org/10.1021/acs.est.5b03709, 2015.
Brunekreef, B. and Holgate, S. T.: Air pollution and health, The Lancet,
360, 1233–1242, https://doi.org/10.1016/S0140-6736(02)11274-8, 2002.
Bulmer, M. H.: Military Use Of Environmental Degradation by Islamic State,
Northern Iraq, SCIM, 46, 123–147, https://doi.org/10.5787/46-1-1228, 2018.
Business-humanrights: Actual conditions On the assessment of fire accident
happened on December 4, 2015 in Deep Sea Platform No. 10 of Guneshli
Oilfield owned by SOCAR,
https://www.business-humanrights.org/sites/default/files/documents/SOCAR-response-re-Guneshli-oil-field-accident.pdf, (last access: 12 September 2019), 2015.
Business Insider: Militants attack storage tanks near Libya's Ras Lanuf oil
terminal,
https://www.businessinsider.com/militants-attack-near-libyas-ras-lanuf-oil-terminal-2016-1,
(last access: 12 September 2019), 2016.
Cahalan, R. F.: The Kuwait oil fires as seen by Landsat, J. Geophys. Res.-Amos.,
97, 14565, https://doi.org/10.1029/92JD00799, 1992.
Ceolato, R., Paulien, L., Maughan, J. B., Sorensen, C. M., and Berg, M. J.:
Radiative properties of soot fractal superaggregates including
backscattering and depolarization, J. Quant. Spectrosc. Ra., 247, 106940,
https://doi.org/10.1016/j.jqsrt.2020.106940, 2020.
Ceolato, R., Bedoya-Velasquez, A., Fossard, F., Mouysset, V., Paulien, L.,
Lefebvre, S., Mazzoleni, C., Sorensen, C., Berg, M., and Yon, J.: Black
carbon aerosol number and mass concentration measurements by picosecond
short-range elastic backscatter lidar,
https://doi.org/10.21203/rs.3.rs-806433/v1, in review, 2021.
Daum, P. H., Al-Sunaid, A., Busness, K. M., Hales, J. M., and Mazurek, M.:
Studies of the Kuwait oil fire plume during midsummer 1991, J. Geophys.
Res., 98, 16809, https://doi.org/10.1029/93JD01204, 1993.
Deaconu, L. T., Waquet, F., Josset, D., Ferlay, N., Peers, F., Thieuleux, F., Ducos, F., Pascal, N., Tanré, D., Pelon, J., and Goloub, P.: Consistency of aerosols above clouds characterization from A-Train active and passive measurements, Atmos. Meas. Tech., 10, 3499–3523, https://doi.org/10.5194/amt-10-3499-2017, 2017.
Deng, X., Shi, C., Wu, B., Chen, Z., Nie, S., He, D., and Zhang, H.:
Analysis of aerosol characteristics and their relationships with
meteorological parameters over Anhui province in China, Atmos. Res., 109–110, 52–63, https://doi.org/10.1016/j.atmosres.2012.02.011,
2012.
Draxler, R. R., McQueen, J. T., and Stunder, B. J.: An evaluation of air
pollutant exposures due to the 1991 Kuwait oil fires using a Lagrangian
model, Atmos. Environ., 28, 2197–2210, 1994.
Dubovik, O., Holben, B. N., Kaufman, Y. J., Yamasoe, M., Smirnov, A.,
Tanré, D., and Slutsker, I.: Single-scattering albedo of smoke retrieved
from the sky radiance and solar transmittance measured from ground, J.
Geophys. Res., 103, 31903–31923, https://doi.org/10.1029/98JD02276, 1998.
Dubovik, O., Li, Z., Mishchenko, M. I., Tanre, D., Karol, Y., Bojkov, B.,
Cairns, B., Diner, D. J., Espinosa, W. R., and Goloub, P.: Polarimetric
remote sensing of atmospheric aerosols: Instruments, methodologies, results,
and perspectives, J. Quant. Spectrosc. Ra., 224, 474–511, 2019.
Dutkiewicz, V. A., Alvi, S., Ghauri, B. M., Choudhary, M. I., and Husain,
L.: Black carbon aerosols in urban air in South Asia, Atmos. Environ., 43, 1737–1744, https://doi.org/10.1016/j.atmosenv.2008.12.043,
2009.
Eck, T. F., Holben, B. N., Slutsker, I., and Setzer, A.: Measurements of
irradiance attenuation and estimation of aerosol single scattering albedo
for biomass burning aerosols in Amazonia, J. Geophys. Res., 103,
31865–31878, https://doi.org/10.1029/98JD00399, 1998.
Etzel, R. A. and Ashley, D. L.: Volatile organic compounds in the blood of
persons in Kuwait during the oil fires, Int. Arch. Occ. Env. Hea., 66,
125–129, https://doi.org/10.1007/BF00383368, 1994.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol – Cloud
Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73, 4221–4252,
https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
Fan, X. and Qu, Y.: Retrieval of High Spatial Resolution Aerosol Optical
Depth from HJ-1 A/B CCD Data, Remote Sensing, 11, 832,
https://doi.org/10.3390/rs11070832, 2019.
Ferek, R. J., Hobbs, P. V., Herring, J. A., Laursen, K. K., Weiss, R. E.,
and Rasmussen, R. A.: Chemical composition of emissions from the Kuwait oil
fires, J. Geophys. Res., 97, 14483, https://doi.org/10.1029/92JD01247, 1992.
Fierce, L., Riemer, N., and Bond, T. C.: Explaining variance in black carbon's aging timescale, Atmos. Chem. Phys., 15, 3173–3191, https://doi.org/10.5194/acp-15-3173-2015, 2015.
Financial Tribune: Oil, LNG Pipeline Blast Prompts Evacuation in Khuzestan
Village,
https://financialtribune.com/articles/energy/97831/oil-lng-pipeline-blast-prompts-evacuation-in-khuzestan-village, last access: 9 October 2019.
Getzewich, B. J., Vaughan, M. A., Hunt, W. H., Avery, M. A., Powell, K. A., Tackett, J. L., Winker, D. M., Kar, J., Lee, K.-P., and Toth, T. D.: CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm, Atmos. Meas. Tech., 11, 6309–6326, https://doi.org/10.5194/amt-11-6309-2018, 2018.
Giannakaki, E., van Zyl, P. G., Müller, D., Balis, D., and Komppula, M.: Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements, Atmos. Chem. Phys., 16, 8109–8123, https://doi.org/10.5194/acp-16-8109-2016, 2016.
Guarnieri, M. and Balmes, J. R.: Outdoor air pollution and asthma, The
Lancet, 383, 1581–1592, https://doi.org/10.1016/S0140-6736(14)60617-6,
2014.
Gullett, B. K., Hays, M. D., Tabor, D., and Wal, R. V.: Characterization of
the particulate emissions from the BP Deepwater Horizon surface oil burns,
Mar. Pollut. Bull., 107, 216–223,
https://doi.org/10.1016/j.marpolbul.2016.03.069, 2016.
Gullett, B. K., Aurell, J., Holder, A., Mitchell, W., Greenwell, D., Hays,
M., Conmy, R., Tabor, D., Preston, W., George, I., Abrahamson, J. P., Vander
Wal, R., and Holder, E.: Characterization of emissions and residues from
simulations of the Deepwater Horizon surface oil burns, Mar. Pollut. Bull., 117, 392–405, https://doi.org/10.1016/j.marpolbul.2017.01.083,
2017.
Gupta, P., Remer, L. A., Levy, R. C., and Mattoo, S.: Validation of MODIS 3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions, Atmos. Meas. Tech., 11, 3145–3159, https://doi.org/10.5194/amt-11-3145-2018, 2018.
Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen, D.: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke, Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, 2018.
Health and Safety Executive and Buncefield Major Incident Investigation
Board (Great Britain): The Buncefield incident, 11 December 2005: the final
report of the Major Incident Investigation Board, Vol. 1., Health
and Safety Executive, Sudbury, ISBN: 978 0 7176 6270 8, 2008.
He, C., Liou, K.-N., Takano, Y., Zhang, R., Levy Zamora, M., Yang, P., Li, Q., and Leung, L. R.: Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison, Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, 2015.
Heller, J. M.: Oil Well Fires of Operation Desert Storm – Defining Troop
Exposures and Determining Health Risks, Mil. Med., 176, 46–51,
https://doi.org/10.7205/MILMED-D-11-00079, 2011.
Hobbs, P. V. and Radke, L. F.: Airborne Studies of the Smoke from the Kuwait
Oil Fires, Science, 256, 987–991,
https://doi.org/10.1126/science.256.5059.987, 1992.
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef,
B., and Kaufman, J. D.: Long-term air pollution exposure and
cardio-respiratory mortality: a review, J. Environ. Health, 12, 1–16, 2013.
Hoek, M. R., Bracebridge, S., and Oliver, I.: Health impact of the
Buncefield oil depot fire, December 2005: Study of accident and emergency
case records, J. Public Health., 29, 298–302,
https://doi.org/10.1093/pubmed/fdm036, 2007.
Holben, B. N., Eck, T. F., Slutsker, I., al Tanre, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., and Nakajima, T.:
AERONET – A federated instrument network and data archive for aerosol
characterization, Remote Sens. Environ., 66, 1–16, 1998.
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Aerosol Properties
Over Bright-Reflecting Source Regions, IEEE T. Geosci. Remote,
42, 557–569, https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Deep Blue
Retrievals of Asian Aerosol Properties During ACE-Asia, IEEE T. Geosci.
Remote, 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540,
2006.
Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R.,
Seftor, C. S., Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol
retrieval algorithm: The second generation, J. Geophys. Res.-Atmos., 118,
9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L.,
and Weimer, C.: CALIPSO Lidar Description and Performance Assessment, J. Atmos. Ocean. Technol., 26,
1214–1228, https://doi.org/10.1175/2009JTECHA1223.1, 2009.
Husain, Tahir: Kuwaiti Oil Fires, Elsevier, https://doi.org/10.1016/B978-0-08-042418-7.X5000-2, 1995.
Hu, Y., Winker, D., Vaughan, M., Lin, B., Omar, A., Trepte, C., Flittner,
D., Yang, P., Nasiri, S. L., Baum, B., Holz, R., Sun, W., Liu, Z., Wang, Z.,
Young, S., Stamnes, K., Huang, J., and Kuehn, R.: CALIPSO/CALIOP Cloud Phase
Discrimination Algorithm, J. Atmos. Ocean. Technol., 26, 2293–2309,
https://doi.org/10.1175/2009JTECHA1280.1, 2009.
Ichoku, C., Kahn, R., and Chin, M.: Satellite contributions to the
quantitative characterization of biomass burning for climate modeling,
Atmos. Res., 111, 1–28,
https://doi.org/10.1016/j.atmosres.2012.03.007, 2012.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H.,
Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez,
A., Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE
Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, B. Am. Meteorol. Soc., 96, 1311–1332,
https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
Jethva, H., Torres, O., Waquet, F., Chand, D., and Hu, Y.: How do A-train
sensors intercompare in the retrieval of above-cloud aerosol optical depth?
A case study-based assessment: A-TRAIN ABOVE-CLOUD AEROSOL OPTICAL DEPTH,
Geophys. Res. Lett., 41, 186–192, https://doi.org/10.1002/2013GL058405,
2014.
Johnson, D. W., Kilsby, C. G., McKenna, D. S., Saunders, R. W., Jenkins, G.
J., Smith, F. B., and Foot, J. S.: Airborne observations of the physical and
chemical characteristics of the Kuwait oil smoke plume, Nature, 353,
617–621, https://doi.org/10.1038/353617a0, 1991.
Kahn, R., Limbacher, J., Flower, V., and Val Martin, M.: Learning About
Earth from Space-Based, Multi-Angle Imaging, in: UMBC Earth Day Symposium, Baltimore, MD, https://ntrs.nasa.gov/api/citations/20190025311/downloads/20190025311.pdf, (last access: 05 January 2022), 2019.
Kallos, G., Astitha, M., Katsafados, P., and Spyrou, C.: Long-Range
Transport of Anthropogenically and Naturally Produced Particulate Matter in
the Mediterranean and North Atlantic: Current State of Knowledge, J. Appl. Meteorol. Clim., 46,
1230–1251, https://doi.org/10.1175/JAM2530.1, 2007.
Kanngießer, F. and Kahnert, M.: Calculation of optical properties of
light-absorbing carbon with weakly absorbing coating: A model with tunable
transition from film-coating to spherical-shell coating, J. Quant. Spectrosc. Ra., 216, 17–36,
https://doi.org/10.1016/j.jqsrt.2018.05.014, 2018.
Kar, J., Vaughan, M. A., Lee, K.-P., Tackett, J. L., Avery, M. A., Garnier, A., Getzewich, B. J., Hunt, W. H., Josset, D., Liu, Z., Lucker, P. L., Magill, B., Omar, A. H., Pelon, J., Rogers, R. R., Toth, T. D., Trepte, C. R., Vernier, J.-P., Winker, D. M., and Young, S. A.: CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm, Atmos. Meas. Tech., 11, 1459–1479, https://doi.org/10.5194/amt-11-1459-2018, 2018.
Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., and
Holben, B. N.: Operational remote sensing of tropospheric aerosol over land
from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res.,
102, 17051–17067, https://doi.org/10.1029/96JD03988, 1997.
Kelsall, H. L.: Respiratory health status of Australian veterans of the 1991
Gulf War and the effects of exposure to oil fire smoke and dust storms,
Thorax, 59, 897–903, https://doi.org/10.1136/thx.2003.017103, 2004.
Khan, A. and Zhaoying, H.: Conflict escalation in the Middle East revisited:
thinking through interstate rivalries and state-sponsored terrorism, Isr. Aff., 26, 242–256, https://doi.org/10.1080/13537121.2020.1720115, 2020.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
King, M. D.: Directional and spectral reflectance of the Kuwait oil-fire smoke, J. Geophys. Res. Atmos., 97, 14545–14549, 1992.
Kokhanovsky, A. (Ed.): Springer Series in Light Scattering: Volume 4: Light
Scattering and Radiative Transfer, Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-030-20587-4, 2019.
Konovalov, I. B., Lvova, D. A., Beekmann, M., Jethva, H., Mikhailov, E. F., Paris, J.-D., Belan, B. D., Kozlov, V. S., Ciais, P., and Andreae, M. O.: Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths, Atmos. Chem. Phys., 18, 14889–14924, https://doi.org/10.5194/acp-18-14889-2018, 2018.
Kovalets, I. V., Maistrenko, S. Yà, Khalchenkov, O. V., Zagreba, T. O.,
Khurtsilava, K. V., Anulich, S. M., Bespalov, V. P., and Udovenko, O. I.:
“Povitrya” Web-Based Software System for Operational Forecasting
Atmospheric Pollution after Manmade Accidents in Ukraine, Nauka Innov., 13,
13–24, https://doi.org/10.15407/scin13.06.013, 2017.
Krausmann, E. and Cruz, A. M.: Impact of the 11 March 2011, Great East Japan
earthquake and tsunami on the chemical industry, Nat. Hazards, 67, 811–828,
https://doi.org/10.1007/s11069-013-0607-0, 2013.
Lange, J. L., Schwartz, D. A., Doebbeling, B. N., Heller, J. M., and Thorne,
P. S.: Exposures to the Kuwait oil fires and their association with asthma
and bronchitis among gulf war veterans, Environ. Health Persp.,
110, 1141–1146, 2002.
Laumbach, R. J. and Kipen, H. M.: Respiratory health effects of air
pollution: Update on biomass smoke and traffic pollution, J. Aller. Cl. Immun., 129, 3–11,
https://doi.org/10.1016/j.jaci.2011.11.021, 2012.
Laursen, K. K., Ferek, R. J., Hobbs, P. V., and Rasmussen, R. A.: Emission
factors for particles, elemental carbon, and trace gases from the Kuwait oil
fires, J. Geophys. Res., 97, 14491, https://doi.org/10.1029/92JD01370, 1992.
Leahy, L. V., Anderson, T. L., Eck, T. F., and Bergstrom, R. W.: A synthesis
of single scattering albedo of biomass burning aerosol over southern Africa
during SAFARI 2000, Geophys. Res. Lett., 34, L12814,
https://doi.org/10.1029/2007GL029697, 2007.
Lee, B.-J., Kim, B., and Lee, K.: Air Pollution Exposure and Cardiovascular
Disease, Toxicological Research, 30, 71–75,
https://doi.org/10.5487/TR.2014.30.2.071, 2014.
Lequy, É., Conil, S., and Turpault, M.-P.: Impacts of Aeolian dust
deposition on European forest sustainability: A review, Forest Ecology and
Management, For. Ecol. Manag., 267, 240–252, https://doi.org/10.1016/j.foreco.2011.12.005,
2012.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical
properties and application to Moderate Resolution Imaging Spectroradiometer
aerosol retrieval over land, J. Geophys. Res., 112, 2006JD007815,
https://doi.org/10.1029/2006JD007815, 2007a.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.:
Second-generation operational algorithm: Retrieval of aerosol properties
over land from inversion of Moderate Resolution Imaging Spectroradiometer
spectral reflectance, J. Geophys. Res., 112, 2006JD007811,
https://doi.org/10.1029/2006JD007811, 2007b.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res.-Atmos., 112, D13211, https://doi.org/10.1029/2006JD007811, 2007c.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Li, J., Li, X., Carlson, B. E., Kahn, R. A., Lacis, A. A., Dubovik, O., and
Nakajima, T.: Reducing multisensor satellite monthly mean aerosol optical
depth uncertainty: 1. Objective assessment of current AERONET locations, J.
Geophys. Res. Atmos., 121, 13609–13627, 2016.
Li, J., Kahn, R. A., Wei, J., Carlson, B. E., Lacis, A. A., Li, Z., Li, X.,
Dubovik, O., and Nakajima, T.: Synergy of Satellite- and Ground-Based
Aerosol Optical Depth Measurements Using an Ensemble Kalman Filter Approach,
J. Geophys. Res.-Atmos., 125, 1–17, https://doi.org/10.1029/2019JD031884, 2020.
Limaye, S. S., Ackerman, S. A., Fry, P. M., Isa, M., Ali, H., Ali, G.,
Wright, A., and Rangno, A.: Satellite monitoring of smoke from the Kuwait
oil fires, J. Geophys. Res. Atmos., 97, 14551–14563, 1992.
Lim, S. S., Vos, T., Flaxman, A. D., et al.: A comparative risk assessment of burden of disease
and injury attributable to 67 risk factors and risk factor clusters in 21
regions, 1990–2010: a systematic analysis for the Global Burden of Disease
Study 2010, The Lancet, 380, 2224–2260,
https://doi.org/10.1016/S0140-6736(12)61766-8, 2012.
Li, S., Kahn, R., Chin, M., Garay, M. J., and Liu, Y.: Improving satellite-retrieved aerosol microphysical properties using GOCART data, Atmos. Meas. Tech., 8, 1157–1171, https://doi.org/10.5194/amt-8-1157-2015, 2015.
Liu, Z., Omar, A. H., Hu, Y., Vaughan, M. A., and Winker, D. M.: CALIOP
algorithm theoretical basis document – Part 3: Scene classification
algorithms, Release 1.0, PC-SCI-202 [preprint],
http://www-calipso.larc.nasa.gov/resources/pdfs/PC-SCI-202_Part3_v1.0.pdf, (last access: 5 January 2022), 2005.
Liu, Z., Vaughan, M., Winker, D., Kittaka, C., Getzewich, B., Kuehn, R.,
Omar, A., Powell, K., Trepte, C., and Hostetler, C.: The CALIPSO Lidar Cloud
and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of
Performance, J. Atmos. Ocean. Tech., 26, 1198–1213,
https://doi.org/10.1175/2009JTECHA1229.1, 2009.
Li, Y., Yu, H., Wang, Z., Li, Y., Pan, Q., Meng, S., Yang, Y., Lu, W., and
Guo, K.: The forecasting and analysis of oil spill drift trajectory during
the Sanchi collision accident, East China Sea, Ocean Eng., 187,
106231, https://doi.org/10.1016/j.oceaneng.2019.106231, 2019.
Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P., and
Balkanski, Y.: Global connections between aeolian dust, climate and ocean
biogeochemistry at the present day and at the last glacial maximum,
Earth-Sci. Rev., 99, 61–97,
https://doi.org/10.1016/j.earscirev.2009.12.001, 2010.
Mather, T. A., Harrison, R. G., Tsanev, V. I., Pyle, D. M., Karumudi, M. L.,
Bennett, A. J., Sawyer, G. M., and Highwood, E. J.: Observations of the
plume generated by the December 2005 oil depot explosions and prolonged fire
at Buncefield (Hertfordshire, UK) and associated atmospheric changes, Proc.
R. Soc. A., 463, 1153–1177, https://doi.org/10.1098/rspa.2006.1810, 2007.
McTainsh, G. and Strong, C.: The role of aeolian dust in ecosystems,
Geomorphology, 89, 39–54, 2007.
Mikhailov, E. F., Vlasenko, S. S., Podgorny, I. A., Ramanathan, V., and
Corrigan, C. E.: Optical properties of soot–water drop agglomerates: An
experimental study, J. Geophys. Res., 111, D07209,
https://doi.org/10.1029/2005JD006389, 2006.
MODIS Atmosphere Science Team: MODIS/Terra Aerosol 5-Min L2 Swath 10 km, Earth data [data set], https://doi.org/10.5067/MODIS/MOD04_L2.061, 2017a.
MODIS Atmosphere Science Team: MYD04_L2 MODIS/Aqua Aerosol
5-Min L2 Swath 10 km, Earth data [data set], https://doi.org/10.5067/MODIS/MYD04_L2.061, 2017b.
Morgan, O., Verlander, N. Q., Kennedy, F., Moore, M., Birch, S., Kearney,
J., Lewthwaite, P., Lewis, R., O'Brian, S., Osman, J., and Reacher, M.:
Exposures and reported symptoms associated with occupational deployment to
the Buncefield fuel depot fire, England 2005, Occup. Environ.
Med., 65, 404–411, https://doi.org/10.1136/oem.2007.035303, 2008.
Nakajima, T., Hayasaka, T., Higurashi, A., Hashida, G., Moharram-Nejad, N.,
Najafi, Y., and Valavi, H.: Aerosol optical properties in the Iranian region
obtained by ground-based solar radiation measurements in the summer of 1991,
J. Appl. Meteorol., 35, 1265–1278, 1996.
Necci, A., Tarantola, S., Vamanu, B., Krausmann, E., and Ponte, L.: Lessons
learned from offshore oil and gas incidents in the Arctic and other
ice-prone seas, Ocean Eng., 185, 12–26,
https://doi.org/10.1016/j.oceaneng.2019.05.021, 2019.
New York Times: Two Major Saudi Oil Installations Hit by Drone Strike, and
U.S. Blames Iran,
https://www.nytimes.com/2019/09/14/world/middleeast/saudi-arabia-refineries-drone-attack.html,
last access: 12 November 2019.
Noyes, K. J., Kahn, R., Sedlacek, A., Kleinman, L., Limbacher, J., and Li,
Z.: Wildfire Smoke Particle Properties and Evolution, from Space-Based
Multi-Angle Imaging, Remote Sensing, 12, 769,
https://doi.org/10.3390/rs12050769, 2020.
Okada, K., Ikegami, M., Uchino, O., Nikaidou, Y., Zaizen, Y., Tsutsumi, Y.,
and Makino, Y.: Extremely high proportions of soot particles in the upper
troposphere over Japan, Geophys. Res. Lett., 19, 921–924,
https://doi.org/10.1029/92GL00487, 1992.
Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare,
R. A., Lee, K.-P., Hostetler, C. A., Kittaka, C., Rogers, R. R., Kuehn, R.
E., and Liu, Z.: The CALIPSO Automated Aerosol Classification and Lidar
Ratio Selection Algorithm, J. Atmos. Ocean. Tech., 26, 1994–2014,
https://doi.org/10.1175/2009JTECHA1231.1, 2009.
Pascal, M., Corso, M., Chanel, O., Declercq, C., Badaloni, C., Cesaroni, G.,
Henschel, S., Meister, K., Haluza, D., Martin-Olmedo, P., and Medina, S.:
Assessing the public health impacts of urban air pollution in 25 European
cities: Results of the Aphekom project, Sci. Total Environ., 449, 390–400,
https://doi.org/10.1016/j.scitotenv.2013.01.077, 2013.
Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D., Levy Zamora, M.,
Zeng, L., Shao, M., Wu, Y.-S., Zheng, J., Wang, Y., Glen, C. R., Collins, D.
R., Molina, M. J., and Zhang, R.: Markedly enhanced absorption and direct
radiative forcing of black carbon under polluted urban environments, P.
Natl. Acad. Sci. USA, 113, 4266–4271, https://doi.org/10.1073/pnas.1602310113,
2016.
Piafom: Ras Lanuf Oil Complex – Ras Lanuf, Libya 2008,
https://www.pifoam.ch/incidents (last access: 12 September 2019), 2018.
Pilewskie, P. and Valero, F. P. J.: Radiative effects of the smoke clouds
from the Kuwait oil fires, J. Geophys. Res., 97, 14541,
https://doi.org/10.1029/92JD01371, 1992.
Pokhrel, R. P., Wagner, N. L., Langridge, J. M., Lack, D. A., Jayarathne, T., Stone, E. A., Stockwell, C. E., Yokelson, R. J., and Murphy, S. M.: Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with for aerosol emissions from biomass burning, Atmos. Chem. Phys., 16, 9549–9561, https://doi.org/10.5194/acp-16-9549-2016, 2016.
Pope III, C. A., Burnett, R. T., Thun, M., J., Calle, E., E., Krewski, D.,
Ito, K., and Thurston, G. D.: Lung Cancer, Cardiopulmonary Mortality, and
Long-term Exposure to Fine Particulate Air Pollution, JAMA, 287, 1132,
https://doi.org/10.1001/jama.287.9.1132, 2002.
Popp, T., De Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A.,
Clarisse, L., Dubovik, O., Grainger, R., and Griesfeller, J.: Development,
production and evaluation of aerosol climate data records from European
satellite observations (Aerosol_cci), Remote Sensing, 8, 421, https://doi.org/10.3390/rs8050421, 2016.
Powell, K. A., Hostetler, C. A., Vaughan, M. A., Lee, K.-P., Trepte, C. R.,
Rogers, R. R., Winker, D. M., Liu, Z., Kuehn, R. E., and Hunt, W. H.:
CALIPSO lidar calibration algorithms. Part I: Nighttime 532-nm parallel
channel and 532 nm perpendicular channel, J. Atmos. Ocean. Tech., 26,
2015–2033, 2009.
Qiao, F., Wang, G., Yin, L., Zeng, K., Zhang, Y., Zhang, M., Xiao, B.,
Jiang, S., Chen, H., and Chen, G.: Modelling oil trajectories and
potentially contaminated areas from the Sanchi oil spill, Sci. Total
Environ., 685, 856–866, https://doi.org/10.1016/j.scitotenv.2019.06.255,
2019.
Radke, L. F., Hegg, D. A., Hobbs, P. V., Nance, J. D., Lyons, J. H.,
Laursen, K. K., Weiss, R. E., Riggan, P. J., and Ward, D. E.: Particulate
and trace gas emissions from large biomass fire in North America, in: Global
Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, edited by: Levine, J. S, The MIT Press, Cambridge, Massachusetts, 209–216, https://doi.org/10.7551/mitpress/3286.003.0032 1991.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227,
https://doi.org/10.1038/ngeo156, 2008.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS Aerosol Algorithm, Products,
and Validation, J. Atmos. Sci., 62, 947–973,
https://doi.org/10.1175/JAS3385.1, 2005.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,
Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B.
N.: Global aerosol climatology from the MODIS satellite sensors, J. Geophys.
Res., 113, D14S07, https://doi.org/10.1029/2007JD009661, 2008.
Remer, L. A., Mattoo, S., Levy, R. C., and Munchak, L. A.: MODIS 3 km aerosol product: algorithm and global perspective, Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, 2013.
Reuters: Fire at Libyan oil port destroys up to 1.8 million barrels of
crude,
https://www.reuters.com/article/us-libya-security-oil/fire-at-libyan-oil-port-destroys-up-to-1-8-million-barrels-of-crude-idUSKBN0K810S20141230,
(last access: 12 September 2019), 2014.
Reuters: Fuel depot blaze in Ukraine kills five,
https://www.reuters.com/article/us-ukraine-crisis-fire-idUSKBN0OP0HB20150609,
(last access: 22 May 2019), 2015.
Reuters: Storage tank at Libya's Ras Lanuf oil port has collapsed: oil
workers,
https://www.reuters.com/article/us-libya-oil-security-tank/storage-tank-at-libyas-ras-lanuf-oil-port-has-collapsed-oil-workers-idUSKBN1JF1XS,
(last access: 12 September 2019), 2018.
Reuters: Costly Saudi defenses prove no match for drones, cruise missiles,
https://www.reuters.com/article/us-saudi-aramco-security/costly-saudi-defenses-prove-no-match-for-drones-cruise-missiles-idUSKBN1W22FR,
(last access: 12 November 2019), 2019.
Riemer, N., West, M., Zaveri, R., and Easter, R.: Estimating black carbon
aging time-scales with a particle-resolved aerosol model, J. Aerosol Sci., 41,
143–158, https://doi.org/10.1016/j.jaerosci.2009.08.009, 2010.
Ross, J. L., Waggoner, A. P., Hobbs, P. V., and Ferek, R. J.: Airborne lidar
measurements of a smoke plume produced by a controlled burn of crude oil on
the ocean, J. Air Waste Manag. Assoc., 46, 327–334, 1996.
Sadiq, M. and McCain, J. C.: The Gulf War Aftermath: an Environmental Tragedy, Springer Netherlands, Imprint, Springer, Dordrecht, https://doi.org/10.1007/978-94-011-1685-5, 1993.
Samset, B. H., Stjern, C. W., Andrews, E., Kahn, R. A., Myhre, G., Schulz,
M., and Schuster, G. L.: Aerosol Absorption: Progress Towards Global and
Regional Constraints, Curr. Clim. Change Rep., 4, 65–83,
https://doi.org/10.1007/s40641-018-0091-4, 2018.
Sayer, A. M., Govaerts, Y., Kolmonen, P., Lipponen, A., Luffarelli, M., Mielonen, T., Patadia, F., Popp, T., Povey, A. C., Stebel, K., and Witek, M. L.: A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing, Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, 2020.
Schmidt, S., Mishra, B. K., and Wehrstedt, K.-D.: Cfd based reproduction of
amuay refinery accident 2012, Chem. Eng. Trans., 48, 7–12,
https://doi.org/10.3303/CET1648002, 2016.
Schutgens, N., Sayer, A. M., Heckel, A., Hsu, C., Jethva, H., de Leeuw, G., Leonard, P. J. T., Levy, R. C., Lipponen, A., Lyapustin, A., North, P., Popp, T., Poulsen, C., Sawyer, V., Sogacheva, L., Thomas, G., Torres, O., Wang, Y., Kinne, S., Schulz, M., and Stier, P.: An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation, Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, 2020.
Smith, T. C.: Are Gulf War Veterans Experiencing Illness due to Exposure to
Smoke from Kuwaiti Oil Well Fires? Examination of Department of Defense
Hospitalization Data, Am. J. Epidemiol., 155, 908–917,
https://doi.org/10.1093/aje/155.10.908, 2002.
Sogacheva, L., Popp, T., Sayer, A. M., Dubovik, O., Garay, M. J., Heckel, A., Hsu, N. C., Jethva, H., Kahn, R. A., Kolmonen, P., Kosmale, M., de Leeuw, G., Levy, R. C., Litvinov, P., Lyapustin, A., North, P., Torres, O., and Arola, A.: Merging regional and global aerosol optical depth records from major available satellite products, Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, 2020.
Soulen, P. F., King, M. D., Tsay, S.-C., Arnold, G. T., and Li, J. Y.:
Airborne spectral measurements of surface-atmosphere anisotropy during the
SCAR-A, Kuwait oil fire, and TARFOX experiments, J. Geophys. Res., 105,
10203–10218, https://doi.org/10.1029/1999JD901115, 2000.
Stevens, R., Pinto, J., Mamane, Y., Ondov, J., Abdulraheem, M., Al-Majed,
N., Sadek, M., Cofer, W., Ellenson, W., and Kellogg, R.: Chemical and
Physical Properties of Emissions from Kuwaiti Oil Fires, Water Sci.
Technol., 27, 223–233, https://doi.org/10.2166/wst.1993.0555, 1993.
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate change
2013: the physical science basis: Working Group I contribution to the Fifth
assessment report of the Intergovernmental Panel on Climate Change,
Cambridge university press, Cambridge, United Kingdom, New York, NY, USA,
1535 pp., ISBN: 1-107-05799-X, 2014.
Tackett, J. L., Winker, D. M., Getzewich, B. J., Vaughan, M. A., Young, S. A., and Kar, J.: CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design, Atmos. Meas. Tech., 11, 4129–4152, https://doi.org/10.5194/amt-11-4129-2018, 2018.
Tanré, D., Kaufman, Y. J., Herman, M., and Mattoo, S.: Remote sensing of
aerosol properties over oceans using the MODIS/EOS spectral radiances, J.
Geophys. Res.-Atmos., 102, 16971–16988, 1997.
Targa, J., Kent, A., Stewart, R., Coleman, P., Bower, J., Webster, H.,
Taylor, J., Murray, V., Mohan, R., and Aus, C.: Initial review of Air
Quality aspects of the Buncefield Oil Depot Explosion, ED 48692, https://uk-air.defra.gov.uk/assets/documents/reports/cat05/0606201126_Buncefield_report_vF3_text2.pdf (last access: 5 January 2022), 2006.
The Christian Science Monitor: Qaddafi bombs oil facility in blow to Libya's
oil infrastructure,
https://www.csmonitor.com/World/Middle-East/2011/0309/Qaddafi-bombs-oil-facility-in-blow-to-Libya-s-oil-infrastructure,
(last access: 12 September 2019), 2011.
The Guardian: Gaddafi troops pound Libya rebels out of Ras Lanuf,
https://www.theguardian.com/world/2011/mar/10/ras-lanuf-rebel-retreat-libya,
(last access: 12 September 2019), 2011.
The Indian Express: Butcher Island fire put out after four days,
https://indianexpress.com/article/cities/mumbai/butcher-island-fire-put-out-after-four-days-4884375/,
(last acess: 6 July 2019), 2017.
The Telegraph: Environmental disaster averted: how Libya (mis)handled recent
oil tank blaze,
https://www.telegraph.co.uk/news/wikileaks-files/libya-wikileaks/8294856/ENVIRONMENTAL-DISASTER-AVERTED-HOW-LIBYA-MISHANDLED-RECENT-OIL-TANK-BLAZE.html,
(last access: 12 September 2019), 2011.
Tichý, L.: The Islamic State oil and gas strategy in North Africa,
Energy Strateg. Rev., 24, 254–260, 2019.
Tichý, L. and Eichler, J.: Terrorist Attacks on the Energy Sector: The
Case of Al Qaeda and the Islamic State, Stud. Confl. Terror.,
41, 450–473, https://doi.org/10.1080/1057610X.2017.1323469, 2018.
Vasanth, S., Tauseef, S. M., Abbasi, T., and Abbasi, S. A.: Multiple pool
fires: Occurrence, simulation, modeling and management, J. Loss Prevent. Proc., 29, 103–121, https://doi.org/10.1016/j.jlp.2014.01.005, 2014.
Vaughan, M. A., Powell, K. A., Winker, D. M., Hostetler, C. A., Kuehn, R.
E., Hunt, W. H., Getzewich, B. J., Young, S. A., Liu, Z., and McGill, M. J.:
Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar
Measurements, J. Atmos. Ocean. Tech., 26, 2034–2050,
https://doi.org/10.1175/2009JTECHA1228.1, 2009.
Vaughan, M., Garnier, A., Josset, D., Avery, M., Lee, K.-P., Liu, Z., Hunt, W., Pelon, J., Hu, Y., Burton, S., Hair, J., Tackett, J. L., Getzewich, B., Kar, J., and Rodier, S.: CALIPSO lidar calibration at 1064 nm: version 4 algorithm, Atmos. Meas. Tech., 12, 51–82, https://doi.org/10.5194/amt-12-51-2019, 2019.
Vautard, R., Ciais, P., Fisher, R., Lowry, D., Bréon, F. M., Vogel, F.,
Levin, I., Miglietta, F., and Nisbet, E.: The dispersion of the Buncefield
oil fire plume: An extreme accident without air quality consequences, Atmos.
Environ., 41, 9506–9517, https://doi.org/10.1016/j.atmosenv.2007.08.055,
2007.
Virtanen, T. H., Kolmonen, P., Sogacheva, L., Rodríguez, E., Saponaro, G., and de Leeuw, G.: Collocation mismatch uncertainties in satellite aerosol retrieval validation, Atmos. Meas. Tech., 11, 925–938, https://doi.org/10.5194/amt-11-925-2018, 2018.
Wang, Y., Jiang, J. H., and Su, H.: Atmospheric responses to the
redistribution of anthropogenic aerosols, J. Geophys. Res.-Atmos., 120,
9625–9641, https://doi.org/10.1002/2015JD023665, 2015.
Wei, X., Chang, N.-B., Bai, K., and Gao, W.: Satellite remote sensing of
aerosol optical depth: advances, challenges, and perspectives, Crit. Rev.
Env. Sci. Tec., 50, 1640–1725,
https://doi.org/10.1080/10643389.2019.1665944, 2020.
Winker, D.: CALIPSO LID L1 Standard HDF File – Version 4.10, Earth data [data set], https://doi.org/10.5067/CALIOP/CALIPSO/LID_L1-STANDARD-V4-10, 2016.
Winker, D.: CALIPSO Lidar Level 2 5 km Aerosol Layer Data V4-20,
Earth data [data set], https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMALAY-STANDARD-V4-20, 2018a.
Winker, D.: CALIPSO Lidar Level 2 Aerosol Profile Data V4-20, Earth data [data set], https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20, 2018b.
Winker, D.: CALIPSO Lidar Level 2 Vertical Feature Mask Data V4-20, Earth data [data set],
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_VFM-STANDARD-V4-20, 2018c.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
World Meteorological Organization: Report of the second WMO meeting of experts to assess the response to the atmospheric effects of the Kuwait oil
fires, WMO/TD No. 512, 1993.
Young, S. A. and Vaughan, M. A.: The Retrieval of Profiles of Particulate
Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite
Observations (CALIPSO) Data: Algorithm Description, J. Atmos. Ocean.
Tech., 26, 1105–1119, https://doi.org/10.1175/2008JTECHA1221.1, 2009.
Young, S. A., Vaughan, M. A., Kuehn, R. E., and Winker, D. M.: The Retrieval
of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error
Sensitivity Analyses, J. Atmos. Ocean. Tech., 30, 395–428,
https://doi.org/10.1175/JTECH-D-12-00046.1, 2013.
Young, S. A., Vaughan, M. A., Garnier, A., Tackett, J. L., Lambeth, J. D., and Powell, K. A.: Extinction and optical depth retrievals for CALIPSO's Version 4 data release, Atmos. Meas. Tech., 11, 5701–5727, https://doi.org/10.5194/amt-11-5701-2018, 2018.
Zhang, K. and Batterman, S.: Air pollution and health risks due to vehicle
traffic, Sci. Total Environ., 450, 307–316, 2013.
Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T.,
Zheng, B., Lu, Z., Streets, D. G., Ni, R., Brauer, M., van Donkelaar, A.,
Martin, R. V., Huo, H., Liu, Z., Pan, D., Kan, H., Yan, Y., Lin, J., He, K.,
and Guan, D.: Transboundary health impacts of transported global air
pollution and international trade, Nature, 543, 705–709,
https://doi.org/10.1038/nature21712, 2017.
Short summary
In this study we analysed oil smoke plumes from 30 major industrial events within a 12-year timeframe. To our knowledge, this is the first study of its kind that uses a synergetic approach based on satellite remote sensing techniques. Satellite data offer access to these events, which are mainly located in war-prone or hazardous areas. Our study highlights the need for improved aerosol models and algorithms for these types of aerosols with implications on air quality and climate change.
In this study we analysed oil smoke plumes from 30 major industrial events within a 12-year...
Altmetrics
Final-revised paper
Preprint