Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4615-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4615-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Advances in air quality research – current and emerging challenges
Ranjeet S. Sokhi
CORRESPONDING AUTHOR
Centre for Atmospheric and Climate Physics Research, and Centre for Climate Change Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
Nicolas Moussiopoulos
Laboratory of Heat Transfer and Environmental Engineering, School of Mechanical Engineering, Aristotle University, Thessaloniki, 54124, Greece
Alexander Baklanov
Science and Innovation Department, World Meteorological Organization (WMO), 7 bis, Avenue de la Paix, BP2300, 1211 Geneva 2, Switzerland
John Bartzis
Department of Mechanical Engineering, University of Western Macedonia, Kozani, 50100, Greece
Isabelle Coll
Univ Paris Est Creteil and Université de Paris, CNRS, LISA, 94010 Créteil, France
Sandro Finardi
ARIANET, via Gilino 9, 20128 Milan, Italy
Rainer Friedrich
Institute of Energy Economics and Rational Energy Use, University of Stuttgart, 70180 Stuttgart, Germany
Camilla Geels
Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
Tiia Grönholm
Finnish Meteorological Institute, Erik Palmenin aukio 1, P.O. Box 503, 00101 Helsinki, Finland
Tomas Halenka
Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 182 00 Prague, Czech Republic
Matthias Ketzel
Department of Environmental Science, Aarhus University, Roskilde, 4000, Denmark
Androniki Maragkidou
Finnish Meteorological Institute, Erik Palmenin aukio 1, P.O. Box 503, 00101 Helsinki, Finland
Volker Matthias
Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
Jana Moldanova
IVL Swedish Environmental Research Institute, P.O. Box 530 21, 400 14 Gothenburg, Sweden
Leonidas Ntziachristos
Laboratory of Heat Transfer and Environmental Engineering, School of Mechanical Engineering, Aristotle University, Thessaloniki, 54124, Greece
Klaus Schäfer
Aerosol Akademie, 83404 Ainring, Germany
Peter Suppan
Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), 82467 Garmisch-Partenkirchen, Germany
George Tsegas
Laboratory of Heat Transfer and Environmental Engineering, School of Mechanical Engineering, Aristotle University, Thessaloniki, 54124, Greece
Greg Carmichael
Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA
Vicente Franco
European Commission, DG Environment, Brussels, Belgium
Steve Hanna
Harvard School of Public Health, Boston, MA, USA
Jukka-Pekka Jalkanen
Finnish Meteorological Institute, Erik Palmenin aukio 1, P.O. Box 503, 00101 Helsinki, Finland
Guus J. M. Velders
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, the Netherlands
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Heidelbergerlaan 8, 3584 CS Utrecht, the Netherlands
Jaakko Kukkonen
Finnish Meteorological Institute, Erik Palmenin aukio 1, P.O. Box 503, 00101 Helsinki, Finland
Centre for Atmospheric and Climate Physics Research, and Centre for Climate Change Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
Related authors
Ioannis Kioutsioukis, Christian Hogrefe, Paul A. Makar, Ummugulsun Alyuz, Jessy O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Buttler, Olivia E. Clifton, Philippe Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camaño, John Pleim, Young-Hee Ryu, Robero San Jose, Donna Schwede, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1091, https://doi.org/10.5194/egusphere-2025-1091, 2025
Short summary
Short summary
Deposition is a key in air quality modelling. An evaluation of the AQMEII4 models is performed prior to analysing the different deposition schemes in relation to the LULC used. Such analysis is unprecedented. Among the results, LULC masks have to be harmonised and up-to-date information used in place of outdated and too course masks. Alternatively LULC masks should be evaluated and intercom pared when multiple model results are analysed.
This article is included in the Encyclopedia of Geosciences
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
This article is included in the Encyclopedia of Geosciences
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
EGUsphere, https://doi.org/10.5194/egusphere-2025-225, https://doi.org/10.5194/egusphere-2025-225, 2025
Short summary
Short summary
Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
This article is included in the Encyclopedia of Geosciences
Ailish M. Graham, Richard J. Pope, Martyn P. Chipperfield, Sandip S. Dhomse, Matilda Pimlott, Wuhu Feng, Vikas Singh, Ying Chen, Oliver Wild, Ranjeet Sokhi, and Gufran Beig
Atmos. Chem. Phys., 24, 789–806, https://doi.org/10.5194/acp-24-789-2024, https://doi.org/10.5194/acp-24-789-2024, 2024
Short summary
Short summary
Our paper uses novel satellite datasets and high-resolution emissions datasets alongside a back-trajectory model to investigate the balance of local and external sources influencing NOx air pollution changes in Delhi. We find in the post-monsoon season that NOx from local and non-local transport emissions contributes most to poor air quality in Delhi. Therefore, air quality mitigation strategies in Delhi and surrounding regions are used to control this issue.
This article is included in the Encyclopedia of Geosciences
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
This article is included in the Encyclopedia of Geosciences
Akash Biswal, Vikas Singh, Shweta Singh, Amit P. Kesarkar, Khaiwal Ravindra, Ranjeet S. Sokhi, Martyn P. Chipperfield, Sandip S. Dhomse, Richard J. Pope, Tanbir Singh, and Suman Mor
Atmos. Chem. Phys., 21, 5235–5251, https://doi.org/10.5194/acp-21-5235-2021, https://doi.org/10.5194/acp-21-5235-2021, 2021
Short summary
Short summary
Satellite and surface observations show a reduction in NO2 levels over India during the lockdown compared to business-as-usual years. A substantial reduction, proportional to the population, was observed over the urban areas. The changes in NO2 levels at the surface during the lockdown appear to be present in the satellite observations. However, TROPOMI showed a better correlation with surface NO2 and was more sensitive to the changes than OMI because of the finer resolution.
This article is included in the Encyclopedia of Geosciences
Laura Rautiainen, Milla Johansson, Mikko Lensu, Jani Tyynelä, Jukka-Pekka Jalkanen, Ken Stenbäck, Harry Lonka, and Lauri Laakso
EGUsphere, https://doi.org/10.5194/egusphere-2025-1790, https://doi.org/10.5194/egusphere-2025-1790, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present an experimental Automatic Identification System (AIS) receiver set-up to study anomalous signal propagation over coastal and marine waters in the northern Baltic Sea. Anomalous atmospheric conditions can allow for the AIS messages to be received from farther distances than under normal conditions. The results show that under anomalous conditions, the messages can be received up to 600 km away and have both diurnal and seasonal cycles.
This article is included in the Encyclopedia of Geosciences
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
Atmos. Chem. Phys., 25, 7879–7902, https://doi.org/10.5194/acp-25-7879-2025, https://doi.org/10.5194/acp-25-7879-2025, 2025
Short summary
Short summary
Tiny atmospheric particles from wildfire smoke impact the climate by interacting with sunlight and clouds, the extent of which is uncertain due to gaps in understanding how smoke changes over time. We developed a new method using remote sensing instruments to track how these particles evolve during atmospheric transport. Our results show that the ability of these particles to absorb sunlight increases as they travel. This discovery could help improve predictions of future climate scenarios.
This article is included in the Encyclopedia of Geosciences
Marc Guevara, Augustin Colette, Antoine Guion, Valentin Petiot, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Andrea Bolignano, Paula Camps, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Hugo Denier van der Gon, Gaël Descombes, John Douros, Hilde Fagerli, Yalda Fatahi, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Risto Hänninen, Kaj Hansen, Oriol Jorba, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Victor Lannuque, Frédérik Meleux, Agnes Nyíri, Yuliia Palamarchuk, Carlos Pérez García-Pando, Lennard Robertson, Felicita Russo, Arjo Segers, Mikhail Sofiev, Joanna Struzewska, Renske Timmermans, Andreas Uppstu, Alvaro Valdebenito, and Zhuyun Ye
EGUsphere, https://doi.org/10.5194/egusphere-2025-1287, https://doi.org/10.5194/egusphere-2025-1287, 2025
Short summary
Short summary
Air quality models require hourly emissions to accurately represent dispersion and physico-chemical processes in the atmosphere. Since emission inventories are typically provided at the annual level, emissions are downscaled to a refined temporal resolution using temporal profiles. This study quantifies the impact of using new anthropogenic temporal profiles on the performance of an European air quality multi-model ensemble. Overall, the findings indicate an improvement of the modelling results.
This article is included in the Encyclopedia of Geosciences
Ioannis Kioutsioukis, Christian Hogrefe, Paul A. Makar, Ummugulsun Alyuz, Jessy O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Buttler, Olivia E. Clifton, Philippe Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camaño, John Pleim, Young-Hee Ryu, Robero San Jose, Donna Schwede, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1091, https://doi.org/10.5194/egusphere-2025-1091, 2025
Short summary
Short summary
Deposition is a key in air quality modelling. An evaluation of the AQMEII4 models is performed prior to analysing the different deposition schemes in relation to the LULC used. Such analysis is unprecedented. Among the results, LULC masks have to be harmonised and up-to-date information used in place of outdated and too course masks. Alternatively LULC masks should be evaluated and intercom pared when multiple model results are analysed.
This article is included in the Encyclopedia of Geosciences
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
This article is included in the Encyclopedia of Geosciences
Androniki Maragkidou, Tiia Grönholm, Laura Rautiainen, Juha Nikmo, Jukka-Pekka Jalkanen, Timo Mäkelä, Timo Anttila, Lauri Laakso, and Jaakko Kukkonen
Atmos. Chem. Phys., 25, 2443–2457, https://doi.org/10.5194/acp-25-2443-2025, https://doi.org/10.5194/acp-25-2443-2025, 2025
Short summary
Short summary
The Baltic Sea's designation as a sulfur emission control area in 2006, with subsequent regulations, significantly reduced sulfur emissions from shipping. Our study analysed air quality data from 2003 to 2020 on the island Utö and employed modelling, showing a continuous decrease in SO2 concentrations since 2003 and thus evidencing the effectiveness of such regulations in improving air quality. It also underscored the importance of long-term, high-resolution monitoring at remote marine sites.
This article is included in the Encyclopedia of Geosciences
Giannis Ioannidis, Nikoletta Bouloti, Paul Tremper, Chaofan Li, Christos Boikos, Nikolaos Rapkos, Till Riedel, Miikka Dal Maso, and Leonidas Ntziachristos
EGUsphere, https://doi.org/10.5194/egusphere-2025-193, https://doi.org/10.5194/egusphere-2025-193, 2025
Short summary
Short summary
This study introduces SOMA (Secondary Organic Module for Aerosol) to model SOA formation in urban environments, using VOC oxidation inputs from GECKO-A. Based on SOA formation experiments, SOMA incorporates correction factors for calibration purposes. A CFD model simulates toluene dispersion in Augsburg, and it’s linked to SOMA to show that background SOA contributes 21–53 % of total mass, fading after 7 hours, providing better understanding of SOA formation dynamics.
This article is included in the Encyclopedia of Geosciences
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
EGUsphere, https://doi.org/10.5194/egusphere-2025-225, https://doi.org/10.5194/egusphere-2025-225, 2025
Short summary
Short summary
Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
This article is included in the Encyclopedia of Geosciences
Min Huang, Gregory R. Carmichael, Kevin W. Bowman, Isabelle De Smedt, Andreas Colliander, Michael H. Cosh, Sujay V. Kumar, Alex B. Guenther, Scott J. Janz, Ryan M. Stauffer, Anne M. Thompson, Niko M. Fedkin, Robert J. Swap, John D. Bolten, and Alicia T. Joseph
Atmos. Chem. Phys., 25, 1449–1476, https://doi.org/10.5194/acp-25-1449-2025, https://doi.org/10.5194/acp-25-1449-2025, 2025
Short summary
Short summary
We use model simulations along with multiplatform, multidisciplinary observations and a range of analysis methods to estimate and understand the distributions, temporal changes, and impacts of reactive nitrogen and ozone over the most populous US region that has undergone significant environmental changes. Deposition, biogenic emissions, and extra-regional sources have been playing increasingly important roles in controlling pollutant budgets in this area as local anthropogenic emissions drop.
This article is included in the Encyclopedia of Geosciences
Hyerim Kim, Xi Chen, Jun Wang, Zhendong Lu, Meng Zhou, Gregory R. Carmichael, Sang Seo Park, and Jhoon Kim
Atmos. Meas. Tech., 18, 327–349, https://doi.org/10.5194/amt-18-327-2025, https://doi.org/10.5194/amt-18-327-2025, 2025
Short summary
Short summary
We compare passive aerosol layer height (ALH) retrievals from the Earth Polychromatic Imaging Camera (EPIC), TROPOspheric Monitoring Instrument (TROPOMI), and Geostationary Environment Monitoring Spectrometer (GEMS) with lidar. GEMS shows a lower correlation (R = 0.64) than EPIC and TROPOMI (R > 0.7) but with minimal bias (0.1 km vs. overestimated by ~0.8 km). GEMS performance is improved for an ultraviolet aerosol index ≥ 3. EPIC and GEMS ALH diurnal variation differs slightly.
This article is included in the Encyclopedia of Geosciences
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
This article is included in the Encyclopedia of Geosciences
Megan J. Lickley, John S. Daniel, Laura A. McBride, Ross J. Salawitch, and Guus J. M. Velders
Atmos. Chem. Phys., 24, 13081–13099, https://doi.org/10.5194/acp-24-13081-2024, https://doi.org/10.5194/acp-24-13081-2024, 2024
Short summary
Short summary
The expected ozone recovery date was delayed by 17 years between the 2006 and 2022 international scientific assessments of ozone depletion. We quantify the primary drivers of this delay. Changes in the metric used to estimate ozone recovery explain ca. 5 years of this delay. Of the remaining 12 years, changes in estimated banks, atmospheric lifetimes, and emission projections explain 4, 3.5, and 3 years of this delay, respectively.
This article is included in the Encyclopedia of Geosciences
Jiemei Liu, Jesper H. Christensen, Zhuyun Ye, Shikui Dong, Camilla Geels, Jørgen Brandt, Athanasios Nenes, Yuan Yuan, and Ulas Im
Atmos. Chem. Phys., 24, 10849–10867, https://doi.org/10.5194/acp-24-10849-2024, https://doi.org/10.5194/acp-24-10849-2024, 2024
Short summary
Short summary
China was chosen as an example to conduct a quantitative analysis using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from the Weather Research and Forecasting (WRF) model. Meteorological conditions and emission inventories contributed 46 % (65 %) and 54 % (35 %) to the variations in PM2.5 concentrations (oxidative potential – OP), respectively, highlighting secondary aerosol formation and biomass burning as the primary contributors to PM2.5 and OP levels.
This article is included in the Encyclopedia of Geosciences
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
This article is included in the Encyclopedia of Geosciences
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
This article is included in the Encyclopedia of Geosciences
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
This article is included in the Encyclopedia of Geosciences
Antonin Soulie, Claire Granier, Sabine Darras, Nicolas Zilbermann, Thierno Doumbia, Marc Guevara, Jukka-Pekka Jalkanen, Sekou Keita, Cathy Liousse, Monica Crippa, Diego Guizzardi, Rachel Hoesly, and Steven J. Smith
Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024, https://doi.org/10.5194/essd-16-2261-2024, 2024
Short summary
Short summary
Anthropogenic emissions are the result of transportation, power generation, industrial, residential and commercial activities as well as waste treatment and agriculture practices. This work describes the new CAMS-GLOB-ANT gridded inventory of 2000–2023 anthropogenic emissions of air pollutants and greenhouse gases. The methodology to generate the emissions is explained and the datasets are analysed and compared with publicly available global and regional inventories for selected world regions.
This article is included in the Encyclopedia of Geosciences
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
This article is included in the Encyclopedia of Geosciences
Ville-Veikko Paunu, Niko Karvosenoja, David Segersson, Susana López-Aparicio, Ole-Kenneth Nielsen, Marlene Schmidt Plejdrup, Throstur Thorsteinsson, Dam Thanh Vo, Jeroen Kuenen, Hugo Denier van der Gon, Jukka-Pekka Jalkanen, Jørgen Brandt, and Camilla Geels
Earth Syst. Sci. Data, 16, 1453–1474, https://doi.org/10.5194/essd-16-1453-2024, https://doi.org/10.5194/essd-16-1453-2024, 2024
Short summary
Short summary
Air pollution is an important cause of adverse health effects, even in Nordic countries. To assess their health impacts, emission inventories with high spatial resolution are needed. We studied how national data and methods for the spatial distribution of the emissions compare to a European level inventory. For road transport the methods are well established, but for machinery and off-road emissions the current recommendations for the spatial distribution of these emissions should be improved.
This article is included in the Encyclopedia of Geosciences
Leena Kangas, Jaakko Kukkonen, Mari Kauhaniemi, Kari Riikonen, Mikhail Sofiev, Anu Kousa, Jarkko V. Niemi, and Ari Karppinen
Atmos. Chem. Phys., 24, 1489–1507, https://doi.org/10.5194/acp-24-1489-2024, https://doi.org/10.5194/acp-24-1489-2024, 2024
Short summary
Short summary
Residential wood combustion is a major source of fine particulate matter. This study has evaluated the contribution of residential wood combustion to fine particle concentrations and its year-to-year and seasonal variation in te Helsinki metropolitan area. The average concentrations attributed to wood combustion in winter were up to 10- or 15-fold compared to summer. Wood combustion caused 12 % to 14 % of annual fine particle concentrations. In winter, the contribution ranged from 16 % to 21 %.
This article is included in the Encyclopedia of Geosciences
Ailish M. Graham, Richard J. Pope, Martyn P. Chipperfield, Sandip S. Dhomse, Matilda Pimlott, Wuhu Feng, Vikas Singh, Ying Chen, Oliver Wild, Ranjeet Sokhi, and Gufran Beig
Atmos. Chem. Phys., 24, 789–806, https://doi.org/10.5194/acp-24-789-2024, https://doi.org/10.5194/acp-24-789-2024, 2024
Short summary
Short summary
Our paper uses novel satellite datasets and high-resolution emissions datasets alongside a back-trajectory model to investigate the balance of local and external sources influencing NOx air pollution changes in Delhi. We find in the post-monsoon season that NOx from local and non-local transport emissions contributes most to poor air quality in Delhi. Therefore, air quality mitigation strategies in Delhi and surrounding regions are used to control this issue.
This article is included in the Encyclopedia of Geosciences
Jörg Beecken, Andreas Weigelt, Simone Griesel, Johan Mellqvist, Alexander V. Conde Jacobo, Daniëlle van Dinther, Jan Duyzer, Jon Knudsen, Bettina Knudsen, and Leonidas Ntziachristos
Atmos. Meas. Tech., 16, 5883–5895, https://doi.org/10.5194/amt-16-5883-2023, https://doi.org/10.5194/amt-16-5883-2023, 2023
Short summary
Short summary
Air pollution from shipping is a debated topic in science and politics. We compare different monitoring systems currently used in different European countries for the enforcement of emission limits regarding air pollution from ships according to regulation. The system performances were individually assessed in the field by comparison with true values. Non-compliant vessels with actual fuel sulfur contents > 0.15–0.19 % Sm/m can be detected by the compared systems with 95 % confidence.
This article is included in the Encyclopedia of Geosciences
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
This article is included in the Encyclopedia of Geosciences
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023, https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary
Short summary
A new version of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) is developed to represent heterogeneities of concentrations in streets. The street volume is discretized vertically and horizontally to limit the artificial dilution of emissions and concentrations. This new version is applied to street networks in Copenhagen and Paris. The comparisons to observations are improved, with higher concentrations of pollutants emitted by traffic at the bottom of the street.
This article is included in the Encyclopedia of Geosciences
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Sara Jutterström, Jana Moldanova, Elisa Majamäki, and Jukka-Pekka Jalkanen
Atmos. Chem. Phys., 23, 10163–10189, https://doi.org/10.5194/acp-23-10163-2023, https://doi.org/10.5194/acp-23-10163-2023, 2023
Short summary
Short summary
The Mediterranean Sea is a heavily trafficked shipping area, and air quality monitoring stations in numerous cities along the Mediterranean coast have detected high levels of air pollutants originating from shipping emissions. The current study investigates how existing restrictions on shipping-related emissions to the atmosphere ensure compliance with legislation. Focus was laid on fine particles and particle species, which were simulated with five different chemical transport models.
This article is included in the Encyclopedia of Geosciences
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys., 23, 6217–6240, https://doi.org/10.5194/acp-23-6217-2023, https://doi.org/10.5194/acp-23-6217-2023, 2023
Short summary
Short summary
A multi-air-pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing by ~40 %. Emissions of other species only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicate that the lockdown only had limited effects on the control of PM2.5 and O3 in China.
This article is included in the Encyclopedia of Geosciences
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
This article is included in the Encyclopedia of Geosciences
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
This article is included in the Encyclopedia of Geosciences
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
This article is included in the Encyclopedia of Geosciences
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
This article is included in the Encyclopedia of Geosciences
Lea Fink, Matthias Karl, Volker Matthias, Sonia Oppo, Richard Kranenburg, Jeroen Kuenen, Jana Moldanova, Sara Jutterström, Jukka-Pekka Jalkanen, and Elisa Majamäki
Atmos. Chem. Phys., 23, 1825–1862, https://doi.org/10.5194/acp-23-1825-2023, https://doi.org/10.5194/acp-23-1825-2023, 2023
Short summary
Short summary
Potential ship impact on air pollution in the Mediterranean Sea was simulated with five chemistry transport models. An evaluation of the results for NO2 and O3 air concentrations and dry deposition is presented. Emission data, modeled year and domain were the same. Model run outputs were compared to measurements from background stations. We focused on comparing model outputs regarding the concentration of regulatory pollutants and the relative ship impact on total air pollution concentrations.
This article is included in the Encyclopedia of Geosciences
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
This article is included in the Encyclopedia of Geosciences
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
This article is included in the Encyclopedia of Geosciences
Svetlana Sofieva, Eija Asmi, Nina S. Atanasova, Aino E. Heikkinen, Emeline Vidal, Jonathan Duplissy, Martin Romantschuk, Rostislav Kouznetsov, Jaakko Kukkonen, Dennis H. Bamford, Antti-Pekka Hyvärinen, and Mikhail Sofiev
Atmos. Meas. Tech., 15, 6201–6219, https://doi.org/10.5194/amt-15-6201-2022, https://doi.org/10.5194/amt-15-6201-2022, 2022
Short summary
Short summary
A new bubble-generating glass chamber design with an extensive set of aerosol production experiments is presented to re-evaluate bubble-bursting-mediated aerosol production as a function of water parameters: bubbling air flow, water salinity, and temperature. Our main findings suggest modest dependence of aerosol production on the water salinity and a strong dependence on temperature below ~ 10 °C.
This article is included in the Encyclopedia of Geosciences
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
This article is included in the Encyclopedia of Geosciences
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
This article is included in the Encyclopedia of Geosciences
Bo Li, Cheng Liu, Qihou Hu, Mingzhai Sun, Chengxin Zhang, Shulin Zhang, Yizhi Zhu, Ting Liu, Yike Guo, Gregory R. Carmichael, and Meng Gao
EGUsphere, https://doi.org/10.5194/egusphere-2022-578, https://doi.org/10.5194/egusphere-2022-578, 2022
Preprint archived
Short summary
Short summary
Ambient particles have an important impact on human health, meteorology and climate change. By building a deep spatiotemporal neural network model we have overcome the long-standing limitations and get the full time and space coverage ground PM2.5 concentrations. We open the neural network black box data model by using sensitivity analysis and visualization techniques. This research will help improve health effects studies, climate effects of aerosols, and air quality prediction.
This article is included in the Encyclopedia of Geosciences
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
This article is included in the Encyclopedia of Geosciences
Min Huang, James H. Crawford, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Colm Sweeney
Atmos. Chem. Phys., 22, 7461–7487, https://doi.org/10.5194/acp-22-7461-2022, https://doi.org/10.5194/acp-22-7461-2022, 2022
Short summary
Short summary
This study demonstrates that ozone dry-deposition modeling can be improved by revising the model's dry-deposition parameterizations to better represent the effects of environmental conditions including the soil moisture fields. Applying satellite soil moisture data assimilation is shown to also have added value. Such advancements in coupled modeling and data assimilation can benefit the assessments of ozone impacts on human and vegetation health.
This article is included in the Encyclopedia of Geosciences
Chenhong Zhou, Fan Wang, Yike Guo, Cheng Liu, Dongsheng Ji, Yuesi Wang, Xiaobin Xu, Xiao Lu, Yan Wang, Gregory Carmichael, and Meng Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-187, https://doi.org/10.5194/essd-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
We develop an eXtreme Gradient Boosting (XGBoost) model integrating high-resolution meteorological data, satellite retrievals of trace gases, etc. to provide reconstructed daily ground-level O3 over 2005–2021 in China. It can facilitate climatological, ecological, and health research. The dataset is freely available at Zenodo (https://zenodo.org/record/6507706#.Yo8hKujP13g; Zhou, 2022).
This article is included in the Encyclopedia of Geosciences
Marc Guevara, Hervé Petetin, Oriol Jorba, Hugo Denier van der Gon, Jeroen Kuenen, Ingrid Super, Jukka-Pekka Jalkanen, Elisa Majamäki, Lasse Johansson, Vincent-Henri Peuch, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2521–2552, https://doi.org/10.5194/essd-14-2521-2022, https://doi.org/10.5194/essd-14-2521-2022, 2022
Short summary
Short summary
To control the spread of the COVID-19 disease, European governments implemented mobility restriction measures that resulted in an unprecedented drop in anthropogenic emissions. This work presents a dataset of emission adjustment factors that allows quantifying changes in 2020 European primary emissions per country and pollutant sector at the daily scale. The resulting dataset can be used as input in modelling studies aiming at quantifying the impact of COVID-19 on air quality levels.
This article is included in the Encyclopedia of Geosciences
Jaakko Kukkonen, Juha Nikmo, Kari Riikonen, Ilmo Westerholm, Pekko Ilvessalo, Tuomo Bergman, and Klaus Haikarainen
Geosci. Model Dev., 15, 4027–4054, https://doi.org/10.5194/gmd-15-4027-2022, https://doi.org/10.5194/gmd-15-4027-2022, 2022
Short summary
Short summary
A mathematical model has been developed for the dispersion of plumes originating from major fires. We have refined the model for the early evolution of the fire plumes; such a module has not been previously presented. We have evaluated the model against experimental field-scale data. The predicted concentrations agreed well with the aircraft measurements. We have also compiled an operational version of the model, which can be used for emergency contingency planning in the case of major fires.
This article is included in the Encyclopedia of Geosciences
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
This article is included in the Encyclopedia of Geosciences
Guus J. M. Velders, John S. Daniel, Stephen A. Montzka, Isaac Vimont, Matthew Rigby, Paul B. Krummel, Jens Muhle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 22, 6087–6101, https://doi.org/10.5194/acp-22-6087-2022, https://doi.org/10.5194/acp-22-6087-2022, 2022
Short summary
Short summary
The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past as a result of the phasing out of ozone-depleting substances. Observations indicate that HFCs are used much less in certain refrigeration applications than previously projected. Current policies are projected to reduce emissions and the surface temperature contribution of HFCs from 0.28–0.44 °C to 0.14–0.31 °C in 2100. The Kigali Amendment is projected to reduce the contributions further to 0.04 °C in 2100.
This article is included in the Encyclopedia of Geosciences
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
This article is included in the Encyclopedia of Geosciences
Petri Kiuru, Marjo Palviainen, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, Vincent Gauci, Iñaki Urzainki, and Annamari Laurén
Biogeosciences, 19, 1959–1977, https://doi.org/10.5194/bg-19-1959-2022, https://doi.org/10.5194/bg-19-1959-2022, 2022
Short summary
Short summary
Peatlands are large sources of methane (CH4), and peat structure controls CH4 production and emissions. We used X-ray microtomography imaging, complex network theory methods, and pore network modeling to describe the properties of peat macropore networks and the role of macropores in CH4-related processes. We show that conditions for gas transport and CH4 production vary with depth and are affected by hysteresis, which may explain the hotspots and episodic spikes in peatland CH4 emissions.
This article is included in the Encyclopedia of Geosciences
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
This article is included in the Encyclopedia of Geosciences
Jeroen Kuenen, Stijn Dellaert, Antoon Visschedijk, Jukka-Pekka Jalkanen, Ingrid Super, and Hugo Denier van der Gon
Earth Syst. Sci. Data, 14, 491–515, https://doi.org/10.5194/essd-14-491-2022, https://doi.org/10.5194/essd-14-491-2022, 2022
Short summary
Short summary
This paper presents an 18-year time series for anthropogenic emissions for the main air pollutants in Europe, distinguishing 15 main source categories. It provides a complete overview of emissions to air and is designed to support air quality modelling. The data build where possible on official country total emissions used in the policy processes, but where necessary alternative data were used. The emission data are spatially distributed at high resolution (~ 6 km x 6 km) in a consistent way.
This article is included in the Encyclopedia of Geosciences
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
This article is included in the Encyclopedia of Geosciences
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys., 22, 1–46, https://doi.org/10.5194/acp-22-1-2022, https://doi.org/10.5194/acp-22-1-2022, 2022
Short summary
Short summary
Between July and October, biomass burning smoke is advected over the southeastern Atlantic Ocean, leading to climate forcing. Model calculations of forcing by this plume vary significantly in both magnitude and sign. This paper compares aerosol and cloud properties observed during three NASA ORACLES field campaigns to the same in four models. It quantifies modeled biases in properties key to aerosol direct radiative forcing and evaluates how these biases propagate to biases in forcing.
This article is included in the Encyclopedia of Geosciences
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
This article is included in the Encyclopedia of Geosciences
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
This article is included in the Encyclopedia of Geosciences
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
This article is included in the Encyclopedia of Geosciences
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
This article is included in the Encyclopedia of Geosciences
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
This article is included in the Encyclopedia of Geosciences
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
Short summary
In this study, we set up new shipping emissions scenarios and use two chemistry transport models and a health assessment model to assess the development of air quality and related health impacts in the Nordic region. Shipping alone is associated with about 850 premature deaths during present-day conditions, decreasing to approximately 550–600 cases in the 2050 scenarios.
This article is included in the Encyclopedia of Geosciences
Jaroslav Resler, Kryštof Eben, Jan Geletič, Pavel Krč, Martin Rosecký, Matthias Sühring, Michal Belda, Vladimír Fuka, Tomáš Halenka, Peter Huszár, Jan Karlický, Nina Benešová, Jana Ďoubalová, Kateřina Honzáková, Josef Keder, Šárka Nápravníková, and Ondřej Vlček
Geosci. Model Dev., 14, 4797–4842, https://doi.org/10.5194/gmd-14-4797-2021, https://doi.org/10.5194/gmd-14-4797-2021, 2021
Short summary
Short summary
We describe validation of the PALM model v6.0 against measurements collected during two observational campaigns in Dejvice, Prague. The study focuses on the evaluation of the newly developed or improved radiative and energy balance modules in PALM related to urban modelling. In addition to the energy-related quantities, it also evaluates air flow and air quality under street canyon conditions.
This article is included in the Encyclopedia of Geosciences
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
This article is included in the Encyclopedia of Geosciences
Roman Nuterman, Alexander Mahura, Alexander Baklanov, Bjarne Amstrup, and Ashraf Zakey
Atmos. Chem. Phys., 21, 11099–11112, https://doi.org/10.5194/acp-21-11099-2021, https://doi.org/10.5194/acp-21-11099-2021, 2021
Short summary
Short summary
The street air pollution is usually higher than the pollution at regional and urban scales. It mostly associated with both local emission sources and urban weather conditions. We present the downscaling system for regional, subregional-urban and street scales and evaluate it for acute air-pollution episode. Its evaluation showed a good prediction score across various spatiotemporal scales as well as feasibility of deterministic modelling approach for the operational street scale forecasting.
This article is included in the Encyclopedia of Geosciences
Min Huang, James H. Crawford, Joshua P. DiGangi, Gregory R. Carmichael, Kevin W. Bowman, Sujay V. Kumar, and Xiwu Zhan
Atmos. Chem. Phys., 21, 11013–11040, https://doi.org/10.5194/acp-21-11013-2021, https://doi.org/10.5194/acp-21-11013-2021, 2021
Short summary
Short summary
This study evaluates the impact of satellite soil moisture data assimilation on modeled weather and ozone fields at various altitudes above the southeastern US during the summer. It emphasizes the importance of soil moisture in the understanding of surface ozone pollution and upper tropospheric chemistry, as well as air pollutants’ source–receptor relationships between the US and its downwind areas.
This article is included in the Encyclopedia of Geosciences
Kristina Pistone, Paquita Zuidema, Robert Wood, Michael Diamond, Arlindo M. da Silva, Gonzalo Ferrada, Pablo E. Saide, Rei Ueyama, Ju-Mee Ryoo, Leonhard Pfister, James Podolske, David Noone, Ryan Bennett, Eric Stith, Gregory Carmichael, Jens Redemann, Connor Flynn, Samuel LeBlanc, Michal Segal-Rozenhaimer, and Yohei Shinozuka
Atmos. Chem. Phys., 21, 9643–9668, https://doi.org/10.5194/acp-21-9643-2021, https://doi.org/10.5194/acp-21-9643-2021, 2021
Short summary
Short summary
Using aircraft-based measurements off the Atlantic coast of Africa, we found the springtime smoke plume was strongly correlated with the amount of water vapor in the atmosphere (more smoke indicated more humidity). We see the same general feature in satellite-assimilated and free-running models. Our analysis suggests this relationship is not caused by the burning but originates due to coincident continental meteorology plus fires. This air is transported over the ocean without further mixing.
This article is included in the Encyclopedia of Geosciences
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
This article is included in the Encyclopedia of Geosciences
Antti Hellsten, Klaus Ketelsen, Matthias Sühring, Mikko Auvinen, Björn Maronga, Christoph Knigge, Fotios Barmpas, Georgios Tsegas, Nicolas Moussiopoulos, and Siegfried Raasch
Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, https://doi.org/10.5194/gmd-14-3185-2021, 2021
Short summary
Short summary
Large-eddy simulation (LES) of the urban atmospheric boundary layer involves a large separation of turbulent scales, leading to prohibitive computational costs. An online LES–LES nesting scheme is implemented into the PALM model system 6.0 to overcome this problem. Test results show that the accuracy within the high-resolution nest domains approach the non-nested high-resolution reference results. The nesting can reduce the CPU by time up to 80 % compared to the fine-resolution reference runs.
This article is included in the Encyclopedia of Geosciences
Jukka-Pekka Jalkanen, Lasse Johansson, Magda Wilewska-Bien, Lena Granhag, Erik Ytreberg, K. Martin Eriksson, Daniel Yngsell, Ida-Maja Hassellöv, Kerstin Magnusson, Urmas Raudsepp, Ilja Maljutenko, Hulda Winnes, and Jana Moldanova
Ocean Sci., 17, 699–728, https://doi.org/10.5194/os-17-699-2021, https://doi.org/10.5194/os-17-699-2021, 2021
Short summary
Short summary
This modelling study describes a methodology for describing pollutant discharges from ships to the sea. The pilot area used is the Baltic Sea area and discharges of bilge, ballast, sewage, wash water as well as stern tube oil are reported for the year 2012. This work also reports the release of SOx scrubber effluents. This technique may be used by ships to comply with tight sulfur limits inside Emission Control Areas, but it also introduces a new pollutant stream from ships to the sea.
This article is included in the Encyclopedia of Geosciences
Jérôme Barré, Hervé Petetin, Augustin Colette, Marc Guevara, Vincent-Henri Peuch, Laurence Rouil, Richard Engelen, Antje Inness, Johannes Flemming, Carlos Pérez García-Pando, Dene Bowdalo, Frederik Meleux, Camilla Geels, Jesper H. Christensen, Michael Gauss, Anna Benedictow, Svetlana Tsyro, Elmar Friese, Joanna Struzewska, Jacek W. Kaminski, John Douros, Renske Timmermans, Lennart Robertson, Mario Adani, Oriol Jorba, Mathieu Joly, and Rostislav Kouznetsov
Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, https://doi.org/10.5194/acp-21-7373-2021, 2021
Short summary
Short summary
This study provides a comprehensive assessment of air quality changes across the main European urban areas induced by the COVID-19 lockdown using satellite observations, surface site measurements, and the forecasting system from the Copernicus Atmospheric Monitoring Service (CAMS). We demonstrate the importance of accounting for weather and seasonal variability when calculating such estimates.
This article is included in the Encyclopedia of Geosciences
Akash Biswal, Vikas Singh, Shweta Singh, Amit P. Kesarkar, Khaiwal Ravindra, Ranjeet S. Sokhi, Martyn P. Chipperfield, Sandip S. Dhomse, Richard J. Pope, Tanbir Singh, and Suman Mor
Atmos. Chem. Phys., 21, 5235–5251, https://doi.org/10.5194/acp-21-5235-2021, https://doi.org/10.5194/acp-21-5235-2021, 2021
Short summary
Short summary
Satellite and surface observations show a reduction in NO2 levels over India during the lockdown compared to business-as-usual years. A substantial reduction, proportional to the population, was observed over the urban areas. The changes in NO2 levels at the surface during the lockdown appear to be present in the satellite observations. However, TROPOMI showed a better correlation with surface NO2 and was more sensitive to the changes than OMI because of the finer resolution.
This article is included in the Encyclopedia of Geosciences
Sami D. Seppälä, Joel Kuula, Antti-Pekka Hyvärinen, Sanna Saarikoski, Topi Rönkkö, Jorma Keskinen, Jukka-Pekka Jalkanen, and Hilkka Timonen
Atmos. Chem. Phys., 21, 3215–3234, https://doi.org/10.5194/acp-21-3215-2021, https://doi.org/10.5194/acp-21-3215-2021, 2021
Short summary
Short summary
The effects of fuel sulfur content restrictions implemented by the International Maritime Organization in the Baltic Sea (in July 2010 and January 2015) on the particle properties of ship exhaust plumes and ambient aerosol were studied. The restrictions reduced the particle number concentrations and median particle size in plumes and number concentrations in ambient aerosol. These changes may improve human health in coastal areas and decrease the cooling effect of exhaust emissions from ships.
This article is included in the Encyclopedia of Geosciences
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Tao Song, Fei Li, Haitao Zheng, Guanglin Jia, Miaomiao Lu, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 13, 529–570, https://doi.org/10.5194/essd-13-529-2021, https://doi.org/10.5194/essd-13-529-2021, 2021
Short summary
Short summary
China's air pollution has changed substantially since 2013. Here we have developed a 6-year-long high-resolution air quality reanalysis dataset over China from 2013 to 2018 to illustrate such changes and to provide a basic dataset for relevant studies. Surface fields of PM2.5, PM10, SO2, NO2, CO, and O3 concentrations are provided, and the evaluation results indicate that the reanalysis dataset has excellent performance in reproducing the magnitude and variation of air pollution in China.
This article is included in the Encyclopedia of Geosciences
Yilin Chen, Huizhong Shen, Jennifer Kaiser, Yongtao Hu, Shannon L. Capps, Shunliu Zhao, Amir Hakami, Jhih-Shyang Shih, Gertrude K. Pavur, Matthew D. Turner, Daven K. Henze, Jaroslav Resler, Athanasios Nenes, Sergey L. Napelenok, Jesse O. Bash, Kathleen M. Fahey, Gregory R. Carmichael, Tianfeng Chai, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, and Armistead G. Russell
Atmos. Chem. Phys., 21, 2067–2082, https://doi.org/10.5194/acp-21-2067-2021, https://doi.org/10.5194/acp-21-2067-2021, 2021
Short summary
Short summary
Ammonia (NH3) emissions can exert adverse impacts on air quality and ecosystem well-being. NH3 emission inventories are viewed as highly uncertain. Here we optimize the NH3 emission estimates in the US using an air quality model and NH3 measurements from the IASI satellite instruments. The optimized NH3 emissions are much higher than the National Emissions Inventory estimates in April. The optimized NH3 emissions improved model performance when evaluated against independent observation.
This article is included in the Encyclopedia of Geosciences
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020, https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Short summary
Cities are characterized by their impact on various meteorological variables. Our study aims to generalize these modifications into a single phenomenon – the urban meteorology island (UMI). A wide ensemble of Weather Research and Forecasting (WRF) and Regional Climate Model (RegCM) simulations investigated urban-induced modifications as individual UMI components. Significant changes are found in most of the discussed meteorological variables with a strong impact of specific model simulations.
This article is included in the Encyclopedia of Geosciences
Peter Huszar, Jan Karlický, Jana Ďoubalová, Tereza Nováková, Kateřina Šindelářová, Filip Švábik, Michal Belda, Tomáš Halenka, and Michal Žák
Atmos. Chem. Phys., 20, 11655–11681, https://doi.org/10.5194/acp-20-11655-2020, https://doi.org/10.5194/acp-20-11655-2020, 2020
Short summary
Short summary
The paper shows how extreme meteorological conditions change due to the urban land-cover forcing and how this translates to the impact on the extreme air pollution over central European cities. It focuses on ozone, nitrogen dioxide, and particulate matter with a diameter of less than 2.5 μm and shows that, while for the extreme daily maximum 8 h ozone, changes are same as for the mean ones, much larger modifications are calculated for extreme NO2 and PM2.5 compared to their mean changes.
This article is included in the Encyclopedia of Geosciences
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
This article is included in the Encyclopedia of Geosciences
Jan Eiof Jonson, Michael Gauss, Michael Schulz, Jukka-Pekka Jalkanen, and Hilde Fagerli
Atmos. Chem. Phys., 20, 11399–11422, https://doi.org/10.5194/acp-20-11399-2020, https://doi.org/10.5194/acp-20-11399-2020, 2020
Short summary
Short summary
We have calculated the effects of air pollution in Europe from shipping on levels of PM2.5 and ozone and depositions of oxidised nitrogen and sulfur from individual sea areas and from all global shipping. Model results are shown for Europe as a whole but also focusing on select, mainly coastal, countries. Calculations are made using 2017 emissions supplemented by calculations reducing sulfur emissions from ships by about 80 % following the implementation of the 2020 global sulfur cap.
This article is included in the Encyclopedia of Geosciences
Lasse Johansson, Erik Ytreberg, Jukka-Pekka Jalkanen, Erik Fridell, K. Martin Eriksson, Maria Lagerström, Ilja Maljutenko, Urmas Raudsepp, Vivian Fischer, and Eva Roth
Ocean Sci., 16, 1143–1163, https://doi.org/10.5194/os-16-1143-2020, https://doi.org/10.5194/os-16-1143-2020, 2020
Short summary
Short summary
Very little is currently known about the activities and emissions of private leisure boats. To change this, a new model was created (BEAM). The model was used for the Baltic Sea to estimate leisure boat emissions, also considering antifouling paint leach. When compared to commercial shipping, the modeled leisure boat emissions were seen to be surprisingly large for some pollutant species, and these emissions were heavily concentrated on coastal inhabited areas during summer and early autumn.
This article is included in the Encyclopedia of Geosciences
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
Short summary
The effects of shipping emissions on air quality and health in the harbour city of Gothenburg were simulated for different scenarios for the year 2040 with coupled regional and city-scale chemistry transport models to evaluate the impact of regional emission regulations and onshore electricity for ships at berth. The results show that contributions of shipping to exposure and associated health impacts from particulate matter and NO2 decrease significantly compared to 2012 in all scenarios.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abhijith, K. V., Kumar, P., Gallagher, J., McNabola, A., Baldauf, R., Pilla,
F., Broderick, B., Di Sabatino, S., and Pulvirenti, B.: Air pollution
abatement performances of green infrastructure in open road and built-up
street canyon environments – A review, Atmos. Environ., 162, 71–86, 2017.
Achilleos, S., Kioumourtzoglou, M.-A., Wu, C.-D., Schwartz, J. D.,
Koutrakis, P., and Papatheodorou, S. I.: Acute effects of fine particulate
matter constituents on mortality: A systematic review and meta-regression
analysis, Environ. Int., 109, 89–100, https://doi.org/10.1016/j.envint.2017.09.010, 2017.
Adam, M., Schikowski, T., Carsin, A. E., Cai, Y., Jacquemin, B., Sanchez,
M., Vierkötter, A., Marcon, A., Keidel, D., Sugiri, D., Al Kanani, Z.,
Nadif, R., Siroux, V., Hardy, R., Kuh, D., Rochat, T., Bridevaux, P.-O.,
Eeftens, M., Tsai, M.-Y., Villani, S., Phuleria, H. C., Birk, M., Cyrys, J.,
Cirach, M., Nazelle, A. d., Nieuwenhuijsen, M. J., Forsberg, B., Hoogh, K.
d., Declerq, C., Bono, R., Piccioni, P., Quass, U., Heinrich, J., Jarvis,
D., Pin, I., Beelen, R., Hoek, G., Brunekreef, B., Schindler, C., Sunyer,
J., Krämer, U., Kauffmann, F., Hansell, A. L., Künzli, N., and
Probst-Hensch, N.: Adult lung function and long-term air pollution exposure.
ESCAPE: a multicentre cohort study and meta-analysis, Eur. Respir. J., 45,
38–50, https://doi.org/10.1183/09031936.00130014, 2015.
Adams, K., Greenbaum, D. S., Shaikh, R., van Erp, A. M., and Russell, A. G.:
Particulate matter components, sources, and health: Systematic approaches to
testing effects, J. Air Waste Manage., 65, 544–558,
https://doi.org/10.1080/10962247.2014.1001884, 2015.
Ahangar, F., Freedman, F., and Venkatram, A.: Using Low-Cost Air Quality
Sensor Networks to Improve the Spatial and Temporal Resolution of
Concentration Maps, Int. J. Env. Res. Pub. He., 16, 1252,
https://doi.org/10.3390/ijerph16071252, 2019.
Ajtai, N., Stefanie, H., Botezan, C., Ozunu, A., Radovici, A., Dumitrache,
R., Iriza-Burcă, A., Diamandi, A., and Hirtl, M.: Support tools for land
use policies based on high resolution regional air quality modelling, Land
Use Policy, 95, 103909, https://doi.org/10.1016/j.landusepol.2019.03.022, 2020.
Aleksandrov, V. V. and Stenchikov, G. I.: On the modeling of the climatic
consequences of the nuclear war, The Proceeding of Appl. Mathematics, The Computing Center of the AS USSR, Moscow, 21 pp., http://climate.envsci.rutgers.edu/pdf/AleksandrovStenchikov.pdf (last access: 21 February 2022), 1983.
Alfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G.,
Esposito, E., Formisano, F., Massera, E., Miglietta, M. L., and Polichetti,
T.: A Review of Low-Cost Particulate Matter Sensors from the Developers'
Perspectives, Sensors, 20, 6819, https://doi.org/10.3390/s20236819, 2020.
Alimissis, A., Philippopoulos, K., Tzanis, C. G., and Deligiorgi, D.:
Spatial estimation of urban air pollution with the use of artificial neural
network models, Atmos. Environ., 191, 205–213, 2018.
Amann, M., Holland, M., Maas, R., Vandyck, T., and Saveyn, B.: Costs, benefits and economic impacts of the EU Clean Air Strategy and their implications on innovation and competitiveness, IIASA, https://ec.europa.eu/environment/air/pdf/clean_air_outlook_economic_impact_report.pdf (last access 25 February 2022), 2017.
Analitis, A., de' Donato, F., Scortichini, M., Lanki, T., Basagana, X.,
Ballester, F., Astrom, C., Paldy, A., Pascal, M., Gasparrini, A.,
Michelozzi, P., and Katsouyanni, K.: Synergistic Effects of Ambient
Temperature and Air Pollution on Health in Europe: Results from the PHASE
Project, Int. J. Env. Res. Pub. He., 15, 1856, https://doi.org/10.3390/ijerph15091856, 2018.
Andersen, Z. J., Pedersen, M., Weinmayr, G., Stafoggia, M., Galassi, C.,
Jørgensen, J. T., Sommar, J. N., Forsberg, B., Olsson, D., Oftedal, B.,
Aasvang, G. M., Schwarze, P., Pyko, A., Pershagen, G., Korek, M., Faire, U.
d., Östenson, C.-G., Fratiglioni, L., Eriksen, K. T., Poulsen, A. H.,
Tjønneland, A., Bräuner, E. V., Peeters, P. H., Bueno-de-Mesquita,
B., Jaensch, A., Nagel, G., Lang, A., Wang, M., Tsai, M.-Y., Grioni, S.,
Marcon, A., Krogh, V., Ricceri, F., Sacerdote, C., Migliore, E., Vermeulen,
R., Sokhi, R., Keuken, M., Hoogh, K. d., Beelen, R., Vineis, P., Cesaroni,
G., Brunekreef, B., Hoek, G., and Raaschou-Nielsen, O.: Long-term exposure
to ambient air pollution and incidence of brain tumor: the European Study of
Cohorts for Air Pollution Effects (ESCAPE), Neuro-Oncology, 20, 420–432,
https://doi.org/10.1093/neuonc/nox163, 2018.
Anderson, H. A.: Air pollution and mortality: A history, Atmos. Environ.,
43, 142–152, 2009.
Anderson, M., Salo, K., and Fridell, E.: Particle- and Gaseous Emissions
from an LNG Powered Ship, Environ. Sci. Technol., 49, 12568–12575, 2015.
Anderson, V. and Gough, W. A.: Evaluating the potential of nature-based
solutions to reduce ozone, nitrogen dioxide, and carbon dioxide through a
multi-type green infrastructure study in Ontario, Canada, City and
Environment Interactions, 6, 100043, https://doi.org/10.1016/j.cacint.2020.100043, 2020.
Andre, M., Sartelet, K., Moukhtar, S., Andre, J. M., and Redaelli, M.:
Diesel, petrol or electric vehicles: What choices to improve urban air
quality in the Ile-de-France region? A simulation platform and case study,
Atmos. Environ., 241, 117752, https://doi.org/10.1016/j.atmosenv.2020.117752, 2020.
Andronopoulos, S., Bartzis, J. G., Efthimiou, G. C., and Venetsanos, A. G.:
Puff-dispersion variability assessment through Lagrangian and Eulerian
modelling based on the JU2003 campaign, Bound.-Lay. Meteorol., 171,
395–422, 2019.
Antonsen, S., Mok, P. L. H., Webb, R. T., Mortensen, P. B., McGrath, J. J.,
Agerbo, E., Brandt, J., Geels, C., Christensen, J. H., and Pedersen, C. B.:
Exposure to air pollution during childhood and risk of developing
schizophrenia: a national cohort study, The Lancet, 4, E64–E73, https://doi.org/10.1016/s2542-5196(20)30004-8, 2020.
Aron, R. H.: Forecasting high level oxidant concentrations in the Los Angeles
basin, J. Air Pollut. Control Assoc., 20, 1227–1228, 1980.
Aulinger, A., Matthias, V., and Quante, M.: An Approach to Temporally
Disaggregate Benzo(a)pyrene Emissions and Their Application to a 3D Eulerian
Atmospheric Chemistry Transport Model, Water Air Soil Poll., 216, 643–655,
2011.
Aulinger, A., Matthias, V., Zeretzke, M., Bieser, J., Quante, M., and Backes, A.: The impact of shipping emissions on air pollution in the greater North Sea region – Part 1: Current emissions and concentrations, Atmos. Chem. Phys., 16, 739–758, https://doi.org/10.5194/acp-16-739-2016, 2016.
Aunan, K., Ma, Q., Lund, M. T., and Wang, S.: Population-weighted exposure
to PM2.5 pollution in China: An integrated approach, Environ. Int., 120,
111–120, https://doi.org/10.1016/j.envint.2018.07.042, 2018.
Bachmann, T. M.: Considering environmental costs of greenhouse gas emissions
for setting a CO2 tax: A review, Sci. Total Environ., 720, 137524,
https://doi.org/10.1016/j.scitotenv.2020.137524, 2020.
Backes, A., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.: Ammonia
emissions in Europe, part I: Development of a dynamical ammonia emission
inventory, Atmos. Environ., 131, 55–66, 2016.
Badeke, R., Matthias, V., and Grawe, D.: Parameterizing the vertical downward dispersion of ship exhaust gas in the near field, Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, 2021.
Badia, A., Segura, R., Gilabert, J., Ventura, S., Vidal, V., and Villalba,
G.: Air quality modeling study using wrf-chem over Barcelona, in:
Proceedings of 12th International Conference on Air Quality, Science and
Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 161, https://doi.org/10.18745/pb.22217, 2020.
Bai, L., Wang, J., Ma, X., and Lu, H.: Air Pollution Forecasts: An Overview,
Int. J. Env. Res. Pub. He., 15, 780, https://doi.org/10.3390/ijerph15040780, 2018.
Baklanov, A. and Zhang, Y.: Advances in air quality modeling and
forecasting, Global Transitions, 2, 261–270, https://doi.org/10.1016/j.glt.2020.11.001, 2020.
Baklanov, A., Lawrence, M., Pandis, S., Mahura, A., Finardi, S., Moussiopoulos, N., Beekmann, M., Laj, P., Gomes, L., Jaffrezo, J.-L., Borbon, A., Coll, I., Gros, V., Sciare, J., Kukkonen, J., Galmarini, S., Giorgi, F., Grimmond, S., Esau, I., Stohl, A., Denby, B., Wagner, T., Butler, T., Baltensperger, U., Builtjes, P., van den Hout, D., van der Gon, H. D., Collins, B., Schluenzen, H., Kulmala, M., Zilitinkevich, S., Sokhi, R., Friedrich, R., Theloke, J., Kummer, U., Jalkinen, L., Halenka, T., Wiedensholer, A., Pyle, J., and Rossow, W. B.: MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate, Adv. Sci. Res., 4, 115–120, https://doi.org/10.5194/asr-4-115-2010, 2010.
Baklanov, A., Mestayer, P. G., Clappier, A., Zilitinkevich, S., Joffre, S., Mahura, A., and Nielsen, N. W.: Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description, Atmos. Chem. Phys., 8, 523–543, https://doi.org/10.5194/acp-8-523-2008, 2008.
Baklanov, A., Mahura, A., Grimmond, S., and Athanassiadou, M.:
Meteorological and Air Quality Models for Urban Areas, Springer-Verlag
Berlin Heidelberg, Berlin, Heidelberg, 184 pp., https://doi.org/10.1007/978-3-642-00298-4, 2009.
Baklanov, A., Mahura, A., and Sokhi, R.: Integrated Systems of
Meso-Meteorological and Chemical Transport Models, Springer Berlin
Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-13980-2, 2011.
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.
Baklanov, A., Molina, L. T., and Gauss, M.: Megacities, air quality and
climate, Atmos. Environ., 126, 235–249, https://doi.org/10.1016/j.atmosenv.2015.11.059, 2016.
Baklanov, A., Brunner, D., Carmichael, G., Flemming, J., Freitas, S., Gauss,
M., Hov, Ø., Mathur, R., Schlünzen, K., Seigneur, C., and Vogel, B.:
Key Issues for Seamless Integrated Chemistry-Meteorology Modeling, B.
Am. Meteorol. Soc., 98, 2285–2292, https://doi.org/10.1175/bams-d-15-00166.1, 2018a.
Baklanov, A., Grimmond, C. S. B., Carlson, D., Terblanche, D., Tang, X.,
Bouchet, V., Lee, B., Langendijk, G., Kolli, R. K., and Hovsepyan, A.: From
urban meteorology, climate and environment research to integrated city
services, Urban Climate, 23, 330–341, https://doi.org/10.1016/j.uclim.2017.05.004, 2018b.
Baldasano, J. M.: COVID-19 lockdown effects on air quality by NO2 in the
cities of Barcelona and Madrid (Spain), Sci. Total Environ., 741, 140353, https://doi.org/10.1016/j.scitotenv.2020.140353, 2020.
Baldasano, J. M., Güereca, L. P., López, E., Gassó, S., and
Jiménez-Guerrero, P.: Development of a high resolution (1 km × 1 km, 1 h) emission model for Spain: the High-Elective Resolution Modeling Emission System (HERMES), Atmos. Environ., 42, 7215–7233, https://doi.org/10.1016/j.atmosenv.2008.07.026, 2008.
Balogun, H. A., Rantala, A. K., Antikainen, H., Siddika, N., Amegah, A. K.,
Ryti, N. R. I., Kukkonen, J., Sofiev, M., Jaakkola, M. S., and Jaakkola, J.
J. K.: Effects of Air Pollution on the Risk of Low Birth Weight in a Cold
Climate, Appl. Sci., 10, 6399, https://doi.org/10.3390/app10186399, 2020.
Barbero, D., Tinarelli, G., Silibello, C., et al.: A microscale hybrid modelling system to assess the air quality over a large portion of a large European city, Atmos. Environ., 264, 118656, https://doi.org/10.1016/j.atmosenv.2021.118656, 2021.
Barmpas, F., Tsegas, G., Moussiopoulos, N., and Chourdakis, E.: Interpreting
measurements from air quality sensor networks: data assimilation and
physical modelling, in: Proceedings of 12th International Conference on Air
Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S.,
Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 112, https://doi.org/10.18745/pb.22217, 2020.
Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V.-H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., Kaminski, J. W., Douros, J., Timmermans, R., Robertson, L., Adani, M., Jorba, O., Joly, M., and Kouznetsov, R.: Estimating lockdown-induced European NO2 changes using satellite and surface observations and air quality models, Atmos. Chem. Phys., 21, 7373–7394, https://doi.org/10.5194/acp-21-7373-2021, 2021.
Bartzis, J., Wolkoff, P., Stranger, M., Efthimiou, G., Tolis, E. I., Maes,
F., Nørgaard, A. W., Ventura, G., Kalimeri, K. K., Goelen, E., and
Fernandes, O.: On organic emissions testing from indoor consumer products'
use, J. Hazard. Mater., 285, 37–45, https://doi.org/10.1016/j.jhazmat.2014.11.024, 2015.
Bartzis, J. G., Andronopoulos, S., and Efthimiou, G. C.: Simplified
approaches in quantifying exposure statistical behaviour due to airborne
hazardous releases of short time duration, in: Proceedings of 12th
International Conference on Air Quality, Science and Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, https://doi.org/10.18745/pb.22217, 2020.
Bauer, S. E., Im, U., Mezuman, K., and Gao, C. Y.: Desert dust,
industrialization and agricultural fires: Health impacts of outdoor air
pollution in Africa, J. Geophys. Res.-Atmos., 124, 4104–4120,
https://doi.org/10.1029/2018JD029336, 2019.
Baumol, W. J.: On Taxation and the Control of Externalities, Am. Econ. Rev.,
62, 307–322, 1972.
Baumol, W. J. and Oates, W. E.: The Use of Standards and Prices for
Protection of the Environment, Swed. J. Econ., 73, 42–54, https://doi.org/10.2307/3439132, 1971.
Beddows, D. C. S. and Harrison, R. M.: PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles, Atmos. Environ., 244, 117886, https://doi.org/10.1016/j.atmosenv.2020.117886, 2021.
Beekmann, M., Prévôt, A. S. H., Drewnick, F., Sciare, J., Pandis, S. N., Denier van der Gon, H. A. C., Crippa, M., Freutel, F., Poulain, L., Ghersi, V., Rodriguez, E., Beirle, S., Zotter, P., von der Weiden-Reinmüller, S.-L., Bressi, M., Fountoukis, C., Petetin, H., Szidat, S., Schneider, J., Rosso, A., El Haddad, I., Megaritis, A., Zhang, Q. J., Michoud, V., Slowik, J. G., Moukhtar, S., Kolmonen, P., Stohl, A., Eckhardt, S., Borbon, A., Gros, V., Marchand, N., Jaffrezo, J. L., Schwarzenboeck, A., Colomb, A., Wiedensohler, A., Borrmann, S., Lawrence, M., Baklanov, A., and Baltensperger, U.: In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity, Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, 2015.
Beelen, R., Hoek, G., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J.,
Weinmayr, G., Hoffmann, B., Wolf, K., Samoli, E., Fischer, P. H.,
Nieuwenhuijsen, M. J., Xun, W. W., Katsouyanni, K., Dimakopoulou, K.,
Marcon, A., Vartiainen, E., Lanki, T., Yli-Tuomi, T., Oftedal, B., Schwarze,
P. E., Nafstad, P., Faire, U. d., Pedersen, N. L., Östenson, C.-G.,
Fratiglioni, L., Penell, J., Korek, M., Pershagen, G., Eriksen, K. T.,
Overvad, K., Sørensen, M., Eeftens, M., Peeters, P. H., Meliefste, K.,
Wang, M., Bueno-de-Mesquita, H. B., Sugiri, D., Krämer, U., Heinrich,
J., Hoogh, K. d., Key, T., Peters, A., Hampel, R., Concin, H., Nagel, G.,
Jaensch, A., Ineichen, A., Tsai, M.-Y., Schaffner, E., Probst-Hensch, N. M.,
Schindler, C., Ragettli, M. S., Vilier, A., Clavel-Chapelon, F., Declercq,
C., Ricceri, F., Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A.,
Cesaroni, G., Badaloni, C., Forastiere, F., Katsoulis, M., Trichopoulou, A.,
Keuken, M., Jedynska, A., Kooter, I. M., Kukkonen, J., Sokhi, R. S., Vineis,
P., and Brunekreef, B.: Natural-Cause Mortality and Long-Term Exposure to
Particle Components: An Analysis of 19 European Cohorts within the
Multi-Center ESCAPE Project, Environ. Health Persp., 123, 525–533,
https://doi.org/10.1289/ehp.1408095, 2015.
Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr,
G., Hoffmann, B., Wolf, K., Samoli, E., Fischer, P., Nieuwenhuijsen, M.,
Vineis, P., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Oudin, A.,
Forsberg, B., Modig, L., Havulinna, A. S., Lanki, T., Turunen, A., Oftedal,
B., Nystad, W., Nafstad, P., Faire, U. d., Pedersen, N. L., Östenson,
C.-G., Fratiglioni, L., Penell, J., Korek, M., Pershagen, G., Eriksen, K.
T., Overvad, K., Ellermann, T., Eeftens, M., Peeters, P. H., Meliefste, K.,
Wang, M., Bueno-de-Mesquita, B., Sugiri, D., Krämer, U., Heinrich, J.,
Hoogh, K. d., Key, T., Peters, A., Hampel, R., Concin, H., Nagel, G.,
Ineichen, A., Schaffner, E., Probst-Hensch, N., Künzli, N., Schindler,
C., Schikowski, T., Adam, M., Phuleria, H., Vilier, A., Clavel-Chapelon, F.,
Declercq, C., Grioni, S., Krogh, V., Tsai, M.-Y., Ricceri, F., Sacerdote,
C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, C.,
Forastiere, F., Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M.,
Trichopoulou, A., Brunekreef, B., and Hoek, G.: Effects of long-term
exposure to air pollution on natural-cause mortality: an analysis of 22
European cohorts within the multicentre ESCAPE project, Lancet, 383,
785–795, https://doi.org/10.1016/s0140-6736(13)62158-3, 2014.
Belis, C. A., Pikridas, M., Lucarelli, F., Petralia, E., Cavalli, F.,
Calzolai, G., Berico, M., and Sciare, J.: Source apportionment of fine PM by
combining high time resolution organic and inorganic chemical composition
datasets, Atmos. Environ. X, 3, 100046, https://doi.org/10.1016/j.aeaoa.2019.100046, 2019.
Belis, C. A., Pernigotti, D., Pirovano, G., Favez, O., Jaffrezo, J.L.,
Kuenen, J., Denier van Der Gon, H., Reizer, M., Riffault, V., Alleman, L.Y.,
Almeida, M., Amato, F., Angyal, A., Argyropoulos, G., Bande, S., Beslic, I.,
Besombes, J.-L., Bove, M.C., Brotto, P., Calori, G., Cesari, D., Colombi,
C., Contini, D., De Gennaro, G., Di Gilio, A., Diapouli, E., El Haddad, I.,
Elbern, H., Eleftheriadis, K., Ferreira, J., Vivanco, M.G., Gilardoni, S.,
Golly, B., Hellebust, S., Hopke, P.K., Izadmanesh, Y., Jorquera, H.,
Krajsek, K., Kranenburg, R., Lazzeri, P., Lenartz, F., Lucarelli, F.,
Maciejewska, K., Manders, A., Manousakas, M., Masiol, M., Mircea, M.,
Mooibroek, D., Nava, S., Oliveira, D., Paglione, M., Pandolfi, M., Perrone,
M., Petralia, E., Pietrodangelo, A., Pillon, S., Pokorna, P., Prati, P.,
Salameh, D., Samara, C., Samek, L., Saraga, D., Sauvage, S., Schaap, M.,
Scotto, F., Sega, K., Siour, G., Tauler, R., Valli, G., Vecchi, R.,
Venturini, E., Vestenius, M., Waked, A.,, and Yubero, E.: Evaluation of
receptor and chemical transport models for PM10 source apportionment, Atmos. Environ. X, 5, 100053, https://doi.org/10.1016/j.aeaoa.2019.100053, 2020.
Benedetti, A. and Vitart, F.: Can the Direct Effect of Aerosols Improve
Subseasonal Predictability?, Mon. Weather Rev., 146, 3481–3498,
https://doi.org/10.1175/MWR-D-17-0282.1, 2018.
Benedetti, A., Reid, J. S., Knippertz, P., Marsham, J. H., Di Giuseppe, F., Rémy, S., Basart, S., Boucher, O., Brooks, I. M., Menut, L., Mona, L., Laj, P., Pappalardo, G., Wiedensohler, A., Baklanov, A., Brooks, M., Colarco, P. R., Cuevas, E., da Silva, A., Escribano, J., Flemming, J., Huneeus, N., Jorba, O., Kazadzis, S., Kinne, S., Popp, T., Quinn, P. K., Sekiyama, T. T., Tanaka, T., and Terradellas, E.: Status and future of numerical atmospheric aerosol prediction with a focus on data requirements, Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, 2018.
Benešová, N., Belda, M., Eben, K., Geletič, J., Huszár, P.,
Juruš, P., Krč, P., Resler, J., and Vlček, O.: New open source
emission processor for air quality models, in: Proceedings of Abstracts 11th
International Conference on Air Quality Science and Application, edited by:
Sokhi, R., Tiwari, P. R., Gállego, M. J., Craviotto Arnau, J. M.,
Castells Guiu, C., and Singh, V., University of Hertfordshire, UK, p. 27,
https://doi.org/10.18745/pb.19829, 2018.
Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A., Berchet, A., Vermeulen, A. T., Arnold, T., Janssens-Maenhout, G., Hammer, S., Levin, I., Schmidt, M., Ramonet, M., Lopez, M., Lavric, J., Aalto, T., Chen, H., Feist, D. G., Gerbig, C., Haszpra, L., Hermansen, O., Manca, G., Moncrieff, J., Meinhardt, F., Necki, J., Galkowski, M., O'Doherty, S., Paramonova, N., Scheeren, H. A., Steinbacher, M., and Dlugokencky, E.: Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations, Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, 2018.
Berrocal, V. J., Guan, Y., Muyskens, A., Wang, H., Reich, B. J., Mulholland,
J. A., and Chang, H. H.: A comparison of statistical and machine learning
methods for creating national daily maps of ambient PM2.5 concentration,
Atmos. Environ., 222, 117130, https://doi.org/10.1016/j.atmosenv.2019.117130, 2020.
Bi, P., Wang, J., and Hiller, J. E.: Weather: driving force behind the
transmission of severe acute respiratory syndrome in China?, Intern. Med. J., 37, 550–554, https://doi.org/10.1111/j.1445-5994.2007.01358.x, 2007.
Bickel, P. and Friedrich, R. (Eds.): ExternE – Externalities of Energy, Methodology 2005 Update, EUR 21951, https://doi.org/10.18419/opus-11923, 2005.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Builtjes, P.: SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe, Geosci. Model Dev., 4, 47–68, https://doi.org/10.5194/gmd-4-47-2011, 2011a.
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Denier van der Gon,
H. A. C.: Vertical emission profiles for Europe based on plume rise
calculations, Environ. Pollut., 159, 2935–2946,
https://doi.org/10.1016/j.envpol.2011.04.030, 2011b.
BImSchV: Erste Verordnung zur Durchführung des
Bundes-Immissionsschutzgesetzes (Verordnung über kleine und mittlere
Feuerungsanlagen) – 1. BImSchV, https://www.gesetze-im-internet.de/bimschv_1_2010/BJNR003800010.html (last access: 25 February 2022), 2021.
Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G. R., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J. L., Saide, P. E., San Jose, R., Sofiev, M., Vira, J., Baklanov, A., Carnevale, C., Grell, G., and Seigneur, C.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models, Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015, 2015.
Borge, R., Lumbreras, J., Pérez, J., de la Paz, D., Vedrenne, M.,
de Andrés, J. M., and Rodríguez, M. E.: Emission inventories and
modeling requirements for the development of air quality plans. Application
to Madrid (Spain), Sci. Total Environ., 466-467, 809–819,
https://doi.org/10.1016/j.scitotenv.2013.07.093, 2014.
Borken-Kleefeld, J. and Chen, Y.: New emission deterioration rates for
gasoline cars – Results from long-term measurements, Atmos. Environ., 101,
58–64, https://doi.org/10.1016/j.atmosenv.2014.11.013, 2015.
Brandt, J., Silver, J. D., Frohn, L. M., Geels, C., Gross, A., Hansen, A.
B., Hansen, K. M., Hedegaard, G. B., Skjøth, C. A., Villadsen, H., Zare,
A., and Christensen, J. H.: An integrated model study for Europe and North
America using the Danish Eulerian Hemispheric Model with focus on
intercontinental transport, Atmos. Environ., 53, 156–176,
https://doi.org/10.1016/j.atmosenv.2012.01.011, 2012.
Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, L. M.: Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system – an integrated modelling approach, Atmos. Chem. Phys., 13, 7725–7746, https://doi.org/10.5194/acp-13-7725-2013, 2013.
Brattich, E., Bracci, A., Zappi, A., Morozzi, P., Di Sabatino, S.,
Porcù, F., Di Nicola, F., and Tositti, L.: How to Get the Best from
Low-Cost Particulate Matter Sensors: Guidelines and Practical
Recommendations, Sensors, 20, 3073, https://doi.org/10.3390/s20113073, 2020.
Briggs, D. J.: A framework for integrated environmental health impact
assessment of systemic risks, Environ. Health, 7, 61, https://doi.org/10.1186/1476-069x-7-61, 2008.
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A.,
Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A.,
Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., and Kaufman, J. D.:
Particulate Matter Air Pollution and Cardiovascular Disease, Circulation,
121, 2331–2378, https://doi.org/10.1161/CIR.0b013e3181dbece1, 2010.
Brousse, O., Martilli, A., Foley, M., Mills, G., and Bechtel, B.: WUDAPT, an
efficient land use producing data tool for mesoscale models? Integration of
urban LCZ in WRF over Madrid, Urban Climate, 17, 116–134,
https://doi.org/10.1016/j.uclim.2016.04.001, 2016.
Brunekreef, B. and Holgate, S. T.: Air pollution and health, Lancet, 360,
1233–1242, https://doi.org/10.1016/s0140-6736(02)11274-8, 2002.
Buccolieri, R., Santiago, J. L., and Martilli, A.: CFD modelling: The most
useful tool for developing mesoscale urban canopy parameterizations, Build.
Simul., 14, 407–419, https://doi.org/10.1007/s12273-020-0689-z, 2021.
Budde, M., Riedel, T., Beigl, M., Schäfer, K., Emeis, S., Cyrys, J.,
Schnelle-Kreis, J., Philipp, A., Ziegler, V., Grimm, H., and Gratza, T.:
SmartAQnet – Remote and In-Situ Sensing of Urban Air Quality, in: Remote Sensing of Clouds and the Atmosphere XXII, Bellingham, WA, USA, 6 October 2017, edited by: Comerón, A., Kassianov, E. I., Schäfer, K., Picard, R. H., Weber, K., SPIE, https://doi.org/10.1117/12.2282698, 2017.
Burgués, J. and Marco, S.: Environmental chemical sensing using small
drones: A review, Sci. Total Environ., 748, 141172,
https://doi.org/10.1016/j.scitotenv.2020.141172, 2020.
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston,
G. D., Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D.,
Gapstur, S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L.,
Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., van Donkelaar, A.,
Villeneuve, P. J., Miller, A. B., Yin, P., Zhou, M., Wang, L., Janssen, N.
A. H., Marra, M., Atkinson, R. W., Tsang, H., Quoc Thach, T., Cannon, J. B.,
Allen, R. T., Hart, J. E., Laden, F., Cesaroni, G., Forastiere, F.,
Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global
estimates of mortality associated with long-term exposure to outdoor fine
particulate matter, P. Natl. Acad. Sci. USA, 115, 9592–9597,
https://doi.org/10.1073/pnas.1803222115, 2018.
Cai, Y., Zijlema, W. L., Doiron, D., Blangiardo, M., Burton, P. R., Fortier,
I., Gaye, A., Gulliver, J., Hoogh, K. d., Hveem, K., Mbatchou, S., Morley,
D. W., Stolk, R. P., Elliott, P., Hansell, A. L., and Hodgson, S.: Ambient
air pollution, traffic noise and adult asthma prevalence: a BioSHaRE
approach, Eur. Respir. J., 49, 1502127, https://doi.org/10.1183/13993003.02127-2015, 2017.
Cai, Y., Hodgson, S., Blangiardo, M., Gulliver, J., Morley, D., Fecht, D.,
Vienneau, D., de Hoogh, K., Key, T., Hveem, K., Elliott, P., and Hansell, A.
L.: Road traffic noise, air pollution and incident cardiovascular disease: A
joint analysis of the HUNT, EPIC-Oxford and UK Biobank cohorts, Environ.
Int., 114, 191–201, https://doi.org/10.1016/j.envint.2018.02.048, 2018.
Campbell, P., Zhang, Y., Yahya, K., Wang, K., Hogrefe, C., Pouliot, G.,
Knote, C., Hodzic, A., San Jose, R., Perez, J. L., Jimenez Guerrero, P.,
Baro, R., and Makar, P.: A multi-model assessment for the 2006 and 2010
simulations under the Air Quality Model Evaluation International Initiative
(AQMEII) phase 2 over North America: Part I. Indicators of the sensitivity
of O3 and PM2.5 formation regimes, Atmos. Environ., 115, 569–586,
https://doi.org/10.1016/j.atmosenv.2014.12.026, 2015.
Cao, Y., Chen, M., Dong, D., Xie, S., and Liu, M.: Environmental pollutants
damage airway epithelial cell cilia: Implications for the prevention of
obstructive lung diseases, Thorac. Cancer, 11, 505–510,
https://doi.org/10.1111/1759-7714.13323, 2020.
Carbajal-Hernández, J. J., Luis P. Sánchez-Fernández, J. A.
C.-O., and Martínez-Trinidad, J. F.: Assessment and prediction of air
quality using fuzzy logic and autoregressive Models, Atmos. Environ., 60,
37–50, 2012.
Carmichael, G. R., Sandu, A., Chai, T., Daescu, D., Constantinescu, E., and
Tang, Y.: Predicting air quality: Improvements through advanced methods to
integrate models and measurements, J. Comput. Phys., 227, 3540–3571, 2008.
Cecinato, A., Guerriero, E., Balducci, C., and Muto, V.: Use of the PAH
fingerprints for identifying pollution sources, Urban Climate, 10, 630–643,
https://doi.org/10.1016/j.uclim.2014.04.004, 2014.
Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z. J., Badaloni, C.,
Beelen, R., Caracciolo, B., Faire, U. d., Erbel, R., Eriksen, K. T.,
Fratiglioni, L., Galassi, C., Hampel, R., Heier, M., Hennig, F., Hilding,
A., Hoffmann, B., Houthuijs, D., Jockel, K.-H., Korek, M., Lanki, T.,
Leander, K., Magnusson, P. K. E., Migliore, E., Ostenson, C.-G., Overvad,
K., Pedersen, N. L., J, J. P., Penell, J., Pershagen, G., Pyko, A.,
Raaschou-Nielsen, O., Ranzi, A., Ricceri, F., Sacerdote, C., Salomaa, V.,
Swart, W., Turunen, A. W., Vineis, P., Weinmayr, G., Wolf, K., de Hoogh, K., Hoek, G., Brunekreef, B., and Peters, A.: Long term exposure to ambient air
pollution and incidence of acute coronary events: prospective cohort study
and meta-analysis in 11 European cohorts from the ESCAPE Project, BMJ, 348,
f7412, https://doi.org/10.1136/bmj.f7412, 2014.
Chapizanis, D., Karakitsios, S., Gotti, A., and Sarigiannis, D. A.:
Assessing personal exposure using Agent Based Modelling informed by sensors
technology, Environ. Res., 192, 110141, https://doi.org/10.1016/j.envres.2020.110141, 2021.
Chatzimichailidis, A. C., Argyropoulos, C. D., Assael, M. J., and Kakosimos,
K. E.: Using the K-means clustering method to identify flow patterns in a
street canyon, in: Proceedings of 12th International Conference on Air
Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S.,
Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 75, https://doi.org/10.18745/pb.22217, 2020.
Chen, G., Zhang, W., Li, S., Zhang, Y., Williams, G., Huxley, R., Ren, H.,
Cao, W., and Guo, Y.: The impact of ambient fine particles on influenza
transmission and the modification effects of temperature in China: A
multi-city study, Environ. Int., 98, 82–88, https://doi.org/10.1016/j.envint.2016.10.004, 2017.
Ching, J. K. S.: A perspective on urban canopy layer modeling for weather,
climate, and air quality applications, Urban Climate, 3, 13–39,
https://doi.org/10.1016/j.uclim.2013.02.001, 2013.
Christodoulou, A., Sauvage, S., Afif, C., Sarda-Estève, R., Stavroulas,
I., Pikridas, M., Unga, F., Oikonomou, K., Iakovides, M., and Sciare, J.:
Source apportionment of organic carbon at an urban site of the eastern
Mediterranean during wintertime, in: Proceedings of 12th International
Conference on Air Quality, Science and Application, edited by: Moussiopoulos,
N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 25, https://doi.org/10.18745/pb.22217, 2020.
Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., and
Butler, T. M.: Effect of VOC Emissions from Vegetation on Air Quality in
Berlin during a Heatwave, Environ. Sci. Technol., 51, 6120–6130,
https://doi.org/10.1021/acs.est.6b06514, 2017.
Clappier, A., Belis, C. A., Pernigotti, D., and Thunis, P.: Source apportionment and sensitivity analysis: two methodologies with two different purposes, Geosci. Model Dev., 10, 4245–4256, https://doi.org/10.5194/gmd-10-4245-2017, 2017.
Concas, F., Mineraud, J., Lagerspetz, E., Varjonen, S., Liu, X.,
Puolamäki, K., Nurmi, P., and Tarkoma, S.: Low-Cost Outdoor Air Quality
Monitoring and Sensor Calibration: A Survey and Critical Analysis, ACM T. Sensor Network., 17, 20, https://doi.org/10.1145/3446005, 2021.
Conticini, E., Frediani, B., and Caro, D.: Can atmospheric pollution be
considered a co-factor in extremely high level of SARS-CoV-2 lethality in
Northern Italy?, Environ. Pollut., 261, 114465,
https://doi.org/10.1016/j.envpol.2020.114465, 2020.
Coulombel, N., Dablanc, L., Gardrat, M., and Koning, M.: The environmental
social cost of urban road freight: Evidence from the Paris region,
Transport. Res. D-Tr. E., 63, 514–532, 2019.
Cremona, G., Finardi, S., Mircea, M., Pepe, N., and Silibello, C.: Biogenic
Emissions from Urban Vegetation: Impact of Detailed Inventories in Different
European Cities, in: Proceedings of 12th International Conference on Air
Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S.,
Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 162, https://doi.org/10.18745/pb.22217, 2020.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution
temporal profiles in the Emissions Database for Global Atmospheric Research,
Scientific Data, 7, 121, https://doi.org/10.1038/s41597-020-0462-2, 2020.
Crutzen, P. J. and Birks, J. W.: The Atmosphere after a Nuclear War: Twilight
at Noon, Ambio, 11, 114–125, https://www.jstor.org/stable/4312777 (last access: 3 June 2021), 1982.
Cui, L. and Shi, J.: Urbanization and its environmental effects in Shanghai,
China, Urban Climate, 2, 1–15, https://doi.org/10.1016/j.uclim.2012.10.008, 2012.
Cui, Y., Zhang, Z.-F., Froines, J., Zhao, J., Wang, H., Yu, S.-Z., and
Detels, R.: Air pollution and case fatality of SARS in the People's Republic
of China: an ecologic study, Environ. Health, 2, 15, https://doi.org/10.1186/1476-069x-2-15, 2003.
Dai, L., Zanobetti, A., Koutrakis, P., and Schwartz, J. D.: Associations of
fine particulate matter species with mortality in the United States: A
multicity time-series analysis, Environ. Health Persp., 122, 837–842, https://doi.org/10.1289/ehp.1307568, 2014.
DBEIS: Valuation of energy use and greenhouse gas, Supplementary guidance to
the HM Treasury Green Book on Appraisal and Evaluation in Central
Government, Data tables 1 to 19: supporting the toolkit and the guidance,
Department of Business, Energy and Industrial Strategy, London, 2019.
Delle Monache, L., Wilczak, J., Mckeen, S., Grell, G., Pagowski, M., Peckham, S., Stull, R., Mchenry, J., and Mcqueen, J.: A Kalman-filter bias correction method applied to deterministic, ensemble averaged and probabilistic forecasts of surface ozone, Tellus B, 60, 238–249, https://doi.org/10.1111/j.1600-0889.2007.00332.x, 2008.
Denby, B. R., Sundvor, I., Johansson, C., Pirjola, L., Ketzel, M., Norman,
M., Kupiainen, K., Gustafsson, M., Blomqvist, G., Kauhaniemi, M., and
Omstedt, G.: A coupled road dust and surface moisture model to predict
non-exhaust road traffic induced particle emissions (NORTRIP). Part 2:
Surface moisture and salt impact modelling, Atmos. Environ., 81, 485–503,
2013.
Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A., and
Visschedijk, A.: Description of current temporal emission patterns and
sensitivity of predicted AQ for temporal emission patterns, EU, https://atmosphere.copernicus.eu/sites/default/files/2019-07/MACC_TNO_del_1_3_v2.pdf, (last access 25 February 2022), 2011.
Desaigues, B., Ami, D., Bartczak, A., Braun Kohlová, M., Chilton, S.,
Mikołaj Czajkowski, M., Farreras, V., Hunt, A., Hutchinson, M.,
Jeanrenaud, C., Kaderjack, P., Máca, V., Markiewicz, O., Markowska, A.,
Metcalf, H., Navrud, S., Seested Nielsen, J., Ortiz, R., Pellegrini, S.,
Rabl, A., Riera, P., Scasny, M., Stoeckl, M., Szánto, R., and Urban, J.:
Economic Valuation of Air Pollution Mortality: A 9-Country Contingent
Valuation Survey of a Value of a Life Year (VOLY), Ecol. Indic., 11,
902–910, 2011.
Dessimond, B., Annesi-Maesano, I., Pepin, J.-L., Srairi, S., and Pau, G.:
Academically Produced Air Pollution Sensors for Personal Exposure
Assessment: The Canarin Project, Sensors, 21, 1876, https://doi.org/10.3390/s21051876, 2021.
Dias, D., Tchepel, O., and Antunes, A. P.: Integrated modelling approach for
the evaluation of low emission zones, J. Environ. Manage., 177, 253–263,
https://doi.org/10.1016/j.jenvman.2016.04.031, 2016.
Diémoz, H., Tombolato, I., Zublena, M., Magri, T., and Ferrero, L.: The
impact of biomass burning emissions on PM concentration in the Greater
Alpine region, in: Proceedings of 12th International Conference on Air
Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S.,
Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 26, https://doi.org/10.18745/pb.22217, 2020.
DNV-GL: Maritime Forecast To 2050, Energy Transition Outlook, DNV GL – Maritime, 118 pp., 2019.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M.
E., Ferris, B. G., and Speizer, F. E.: An Association between Air Pollution
and Mortality in Six U.S. Cities, New Engl. J. Med., 329, 1753–1759,
https://doi.org/10.1056/nejm199312093292401, 1993.
Dorber, M., Kuipers, K., and Verones, F.: Global characterization factors
for terrestrial biodiversity impacts of future land inundation in Life Cycle
Assessment, Sci. Total Environ., 712, 134582,
https://doi.org/10.1016/j.scitotenv.2019.134582, 2020.
Doulgeris, S., Toumasatos, Z., Raptopoulos, A., Kontses, A., Dimaratos, A.,
Kolokotronis, D., and Samaras, Z.: Experimental assessment of the power
management and pollutant emissions of plug-in hybrid vehicles, in:
Proceedings of 12th International Conference on Air Quality, Science and
Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 161, https://doi.org/10.18745/pb.22217, 2020.
Duvall, R. M., Hagler, G. S. W., Clements, A. L., Benedict, K., Barkjohn, K.,
Kilaru, V., Hanley, T., Watkins, N., Kaufman, A., Kamal, A., Reece, S.,
Fransioli, P., Gerboles, M., Gillerman, G., Habre, R., Hannigan, M., Ning,
Z., Papapostolou, V., Pope, R., Quintana, P. J. E., and Lam Snyder, J.:
Deliberating Performance Targets: Follow-on workshop discussing PM10, NO2, CO, and SO2 air sensor targets, Atmos. Environ., 246, 118099,
https://doi.org/10.1016/j.atmosenv.2020.118099, 2021.
EC: Impact Assessment – Annex to the Communication on Thematic Strategy on Air Pollution and the Directive on Ambient Air Quality and Cleaner Air for Europe, Commission of the European Communities, SEC (2005) 1133, https://ec.europa.eu/environment/archives/cafe/pdf/ia_report_en050921_final.pdf (last access: 22 February 2022), 2005.
EC: Communication from the Commission COM(2019) 640 final: The European Green Deal, https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (last access: 25 February 2022), 2019.
EC: Communication from the Commission to the European Parliament, the
Council, the European Economic and Social Committee and the Committee of the
Regions: An EU-wide assessment of National Energy and Climate Plans, Driving
forward the green transition and promoting economic recovery through
integrated energy and climate planning, https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2020)564&lang=en (last access: 22 February 2022), 2020.
EC: Communication from the Commission to the European Parliament, the
Council, the European Economic and Social Committee and the Committee of the
Regions: The Second Clean Air Outlook, https://op.europa.eu/en/publication-detail/-/publication/453fbba1-519a-11eb-b59f-01aa75ed71a1/language-en/format-PDF/source-225358842 (last access: 22 February 2022), 2021.
EEA: Air quality in Europe – 2019 report, European Environment Agency, https://doi.org/10.2800/02825, 2019a.
EEA: Contribution of the transport sector to total emissions of the main air pollutants, EEA, https://www.eea.europa.eu/data-and-maps/daviz/contribution-of-the-transport-sector-6#tab-chart_4 (last access: 22 February 2022), 2019b.
EEA: Air quality in Europe: 2020 report, European Environmental Agency, Publications Office, https://doi.org/10.2800/602793, 2020a.
EEA: European Union emission inventory report 1990–2018 under the UNECE
Convention on Long-range Transboundary Air Pollution (LRTAP), European
Environment Agency, Copenhagen, Denmark, 1990–2018, https://doi.org/10.2800/233574, 2020b.
EIONET: EIONET Central Data Repository – Data for Germany,
European Environment Agency, https://cdr.eionet.europa.eu/de (last access: 22 February 2022), 2019.
Elessa Etuman, A. and Coll, I.: OLYMPUS v1.0: development of an integrated air pollutant and GHG urban emissions model – methodology and calibration over greater Paris, Geosci. Model Dev., 11, 5085–5111, https://doi.org/10.5194/gmd-11-5085-2018, 2018.
Elessa Etuman, A., Coll, I., Makni, I., and Benoussaid, T.: Addressing the
issue of exposure to primary pollution in urban areas: Application to
Greater Paris, Atmos. Environ., 239, 117661, https://doi.org/10.1016/j.atmosenv.2020.117661, 2020.
Ellermann, T., Nygaard, J., Nøjgaard, J. K., Nordstrøm, C., Brandt,
J., Christensen, J., Ketzel, M., Massling, A., Bossi, R., Frohn, L. M.,
Geels, C., and Jensen, S. S.: The Danish Air Quality Monitoring Programme.
Annual Summary for 2018, Aarhus University, DCE – Danish Centre for
Environment and Energy, 83 pp., ISBN: 978-87-7156-293-4, 2018.
EMEP/EEA: Chapter 7: Spatial mapping of emissions, in:
EMEP/EEA air pollutant emission inventory guidebook 2019:
Technical guidance to prepare national emission inventories, EEA report No 13/2019, https://doi.org/10.2800/293657, 2019.
Engemann, K., Svenning, J.-C., Arge, L., Brandt, J., Geels, C., Mortensen,
P. B., Plana-Ripoll, O., Tsirogiannis, C., and Pedersen, C. B.: Natural
surroundings in childhood are associated with lower schizophrenia rates,
Schizophr. Res., 216, 488–495, https://doi.org/10.1016/j.schres.2019.10.012, 2020.
English, P., Amato, H., Bejarano, E., Carvlin, G., Lugo, H., Jerrett, M.,
King, G., Madrigal, D., Meltzer, D., Northcross, A., Olmedo, L., Seto, E.,
Torres, C., Wilkie, A., and Wong, M.: Performance of a Low-Cost Sensor
Community Air Monitoring Network in Imperial County, CA, Sensors, 20, 3031,
https://doi.org/10.3390/s20113031, 2020.
Esau, I., Wolf, T., and Pettersson, L.: High-resolution assessment of urban
air quality with a 3D turbulence resolving model (PALM), in: Proceedings of
12th International Conference on Air Quality, Science and Application,
edited by: Moussiopoulos, N., Sokhi, R.S., Tsegas, G., Fragkou, E.,
Chourdakis, E., and Pipilis, I., Hatfield, UK, 9–13, https://doi.org/10.18745/pb.22217, 2020.
ExternE: ExternE – External Costs of Energy, Universitaet Stuttgart,
https://www.ExternE.info (last access: 22 February 2022), 2012.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fairburn, J., Schüle, S. A., Dreger, S., Karla Hilz, L., and Bolte, G.:
Social Inequalities in Exposure to Ambient Air Pollution: A Systematic
Review in the WHO European Region, Int. J. Env. Res. Pub. He., 16, 3127,
https://doi.org/10.3390/ijerph16173127, 2019.
Falcon-Rodriguez, C. I., Osornio-Vargas, A. R., Sada-Ovalle, I., and
Segura-Medina, P.: Aeroparticles, Composition, and Lung Diseases, Front.
Immunol., 7, 3, https://doi.org/10.3389/fimmu.2016.00003, 2016.
Fallah-Shorshani, M., Shekarrizfard, M., and Hatzopoulou, M.: Integrating a
street-canyon model with a regional Gaussian dispersion model for improved
characterisation of near-road air pollution, Atmos. Environ., 153, 21–31,
https://doi.org/10.1016/j.atmosenv.2017.01.006, 2017.
Fallmann, J., Forkel, R., and Emeis, S.: Secondary effects of urban heat
island mitigation measures on air quality, Atmos. Environ., 125, 199–211,
2016.
Fameli, K.-M. and Assimakopoulos, V. D.: Residential heating in Athens,
Greece: emissions and important parameters, in: Proceedings of 12th
International Conference on Air Quality, Science and Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 27, https://doi.org/10.18745/pb.22217, 2020.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol–Cloud
Interactions: Mechanisms, Significance, and Challenges, J. Atmos. Sci., 73,
4221–4252, 2016.
Farmer, D. K., Vance, M. E., Abbatt, J. P. D., Abeleira, A., Alves, M. R.,
Arata, C., Boedicker, E., Bourne, S., Cardoso-Saldaña, F., Corsi, R.,
DeCarlo, P. F., Goldstein, A. H., Grassian, V. H., Hildebrandt Ruiz, L.,
Jimenez, J. L., Kahan, T. F., Katz, E. F., Mattila, J. M., Nazaroff, W. W.,
Novoselac, A., O'Brien, R. E., Or, V. W., Patel, S., Sankhyan, S., Stevens,
P. S., Tian, Y., Wade, M., Wang, C., Zhou, S., and Zhou, Y.: Overview of
HOMEChem: House Observations of Microbial and Environmental Chemistry,
Environ. Sci.-Proc. Imp., 21, 1280–1300, https://doi.org/10.1039/c9em00228f, 2019.
Feng, L., Yang, T., Wang, D., Wang, Z., Pan, Y., Matsui, I., Chen, Y., Xin,
J., and Huang, H.: Identify the contribution of elevated industrial plume to
ground air quality by optical and machine learning methods, Environmental
Research Communications, 2, 021005, https://doi.org/10.1088/2515-7620/ab7634, 2020.
Filella, M.: Nanomaterials, in: Comprehensive Sampling and Sample
Preparation, Elsevier, 109–124, https://doi.org/10.1016/b978-0-12-381373-2.00032-6, 2012.
Finardi, S., Radice, P., Cecinato, A., Gariazzo, C., Gherardi, M., and
Romagnoli, P.: Seasonal variation of PAHs concentration and source
attribution through diagnostic ratios analysis, Urban Climate, 22, 19–34,
https://doi.org/10.1016/j.uclim.2015.12.001, 2017.
Finardi, S., Agrillo, G., Baraldi, R., Calori, G., Carlucci, P., Ciccioli,
P., D'Allura, A., Gasbarra, D., Gioli, B., Magliulo, V., Radice, P.,
Toscano, P., and Zaldei, A.: Atmospheric Dynamics and Ozone Cycle during Sea
Breeze in a Mediterranean Complex Urbanized Coastal Site, J. Appl. Meteorol.
Clim., 57, 1083–1099, https://doi.org/10.1175/jamc-d-17-0117.1, 2018.
Firket, J.: Fog along the Meuse Valley, T. Faraday Soc., 32, 1192–1197,
1936.
Fisher, K. and Gershuny, J.: Multinational Time Use Study, User's Guide and
Documentation – Version 9, Centre for Time Use Research, https://www.timeuse.org/sites/default/files/9727/mtus-user-guide-r9-february-2016.pdf (last access: 25 February 2022), 2016.
Fisher, B. E. A., Kukkonen, J., and Schatzmann, M.: Meteorology applied to
urban air pollution problems COST 715, Int. J. Environ. Pollut., 16,
560–570, https://doi.org/10.1504/IJEP.2001.000650, 2001.
Fisher, B., Joffre, S., Kukkonen, J., Piringer, M., Rotach, M., and
Schatzmann, M.: Meteorology applied to urban air pollution problems: Final
report COST-715 Action, Demetra Ltd. Publ, Bulgaria, 276 pp., ISBN 954-9526-30-5, 2005.
Fisher, B., Kukkonen, J., Piringer, M., Rotach, M. W., and Schatzmann, M.: Meteorology applied to urban air pollution problems: concepts from COST 715, Atmos. Chem. Phys., 6, 555–564, https://doi.org/10.5194/acp-6-555-2006, 2006.
Flageul, C., Kim, Y., Ferrand, M., Bresson, R., and Carissimo, B.:
Neighborhood scale air quality simulations with street network model and
CFD, in: Proceedings of 12th International Conference on Air Quality,
Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 172,
https://doi.org/10.18745/pb.22217, 2020.
Flemming, J., Inness, A., Flentje, H., Huijnen, V., Moinat, P., Schultz, M. G., and Stein, O.: Coupling global chemistry transport models to ECMWF's integrated forecast system, Geosci. Model Dev., 2, 253–265, https://doi.org/10.5194/gmd-2-253-2009, 2009.
Foken, T. (Ed.): Springer Handbook of Atmospheric Measurements, Springer
Nature, Springer International Publishing, Cham, Germany,
https://doi.org/10.1007/978-3-030-52171-4, 2021.
Folberth, G. A., Butler, T. M., Collins, W. J., and Rumbold, S. T.:
Megacities and climate change – A brief overview, Environ. Pollut., 203,
235–242, https://doi.org/10.1016/j.envpol.2014.09.004, 2015.
Förster, J., Schmidt, S., Bartkowski, B., Lienhoop, N., Albert, C., and
Wittmer, H.: Incorporating environmental costs of ecosystem service loss in
political decision making: A synthesis of monetary values for Germany, PLOS
ONE, 14, e0211419, https://doi.org/10.1371/journal.pone.0211419, 2019.
Fowler, D., Brimblecombe, P., Burrows, J., Heal, M. R., Grennfelt, P.,
Stevenson, D. S., Jowett, A., Nemitz, E., Coyle, M., Lui, X., Chang, Y.,
Fuller, G. W., Sutton, M. A., Klimont, Z., Unsworth, M. H., and Vieno, M.: A
chronology of global air quality, Philos. T. Roy. Soc. A, 378, 20190314,
https://doi.org/10.1098/rsta.2019.0314, 2020.
Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S.,
and Dilara, P.: Road vehicle emission factors development: A review, Atmos.
Environ., 70, 84–97, 2013.
Friedrich, R. (Ed.): Natural and Biogenic Emissions of Environmentally
Relevant Atmospheric Trace Constituents in Europe, Atmos. Environ., 43,
1377–1486, 2009.
Friedrich, R.: Integrated Assessment of Policies for Reducing Health Impacts
Caused by Air Pollution, in: Environmental Determinants of Human Health,
edited by: Pacyna, J. and Pacyna, M., Springer International Publishing,
Switzerland, 117–132, https://doi.org/10.1007/978-3-319-43142-0, 2016.
Friedrich, R. and Kuhn, A. (Eds.): Integrated Environmental Health Impact Assessment for Europe – Methods and Results of the HEIMTSA/INTARESE Common Case Study, Universitaet Stuttgart, https://doi.org/10.18419/opus-11913, 2011.
Friedrich, R. and Li, N.: Life-long Exposure to PM2.5 and NO2 and Resulting Health Effects for Population Subgroups in Europe, in: Proceedings of 12th International Conference on Air Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 72, https://doi.org/10.18745/pb.22217, 2020.
Frohn, L. M., Ketzel, M., Christensen, J. H., Brandt, J., Im, U., Massling, A., Andersen, C., Plejdrup, M.S., Nielsen, O.-K., Manders, A., and Raaschou-Nielsen, O.: Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979 to 2018 – Part 1: regional and urban scale modelling and
evaluation, Atmos. Environ., 264, 118631, https://doi.org/10.1016/j.atmosenv.2021.118631, 2021.
Fulton, E. A., Boschetti, F., Sporcic, M., Jones, T., Little, L. R.,
Dambacher, J. M., Gray, R., Scott, R., and Gorton, R.: A multi-model
approach to engaging stakeholder and modellers in complex environmental
problems, Environ. Sci. Policy, 48, 44–56, https://doi.org/10.1016/j.envsci.2014.12.006,
2015.
Galmarini, S. and Hogrefe, C. (Eds.): Special Issue Section: Evaluating Coupled Models (AQMEII P2), Atmos. Environ., 115, 340–755,
https://www.sciencedirect.com/journal/atmospheric-environment/vol/115/suppl/C#article-37
(last access: 25 February 2022), 2015.
Galmarini, S., Bianconi, R., Appel, W., Solazzo, E., Mosca, S., Grossi, P.,
Moran, M., Schere, K., and Rao, S. T.: ENSEMBLE and AMET: Two systems and
approaches to a harmonized, simplified and efficient facility for air
quality models development and evaluation, Atmos. Environ., 53, 51–59,
https://doi.org/10.1016/j.atmosenv.2011.08.076, 2012.
Galmarini, S., Koffi, B., Solazzo, E., Keating, T., Hogrefe, C., Schulz, M., Benedictow, A., Griesfeller, J. J., Janssens-Maenhout, G., Carmichael, G., Fu, J., and Dentener, F.: Technical note: Coordination and harmonization of the multi-scale, multi-model activities HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, boundary conditions, and model output formats, Atmos. Chem. Phys., 17, 1543–1555, https://doi.org/10.5194/acp-17-1543-2017, 2017.
Galmarini, S., Kioutsioukis, I., Solazzo, E., Alyuz, U., Balzarini, A., Bellasio, R., Benedictow, A. M. K., Bianconi, R., Bieser, J., Brandt, J., Christensen, J. H., Colette, A., Curci, G., Davila, Y., Dong, X., Flemming, J., Francis, X., Fraser, A., Fu, J., Henze, D. K., Hogrefe, C., Im, U., Garcia Vivanco, M., Jiménez-Guerrero, P., Jonson, J. E., Kitwiroon, N., Manders, A., Mathur, R., Palacios-Peña, L., Pirovano, G., Pozzoli, L., Prank, M., Schultz, M., Sokhi, R. S., Sudo, K., Tuccella, P., Takemura, T., Sekiya, T., and Unal, A.: Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more?, Atmos. Chem. Phys., 18, 8727–8744, https://doi.org/10.5194/acp-18-8727-2018, 2018.
Gao, D., Godri Pollitt, K. J., Mulholland, J. A., Russell, A. G., and Weber, R. J.: Characterization and comparison of PM2.5 oxidative potential assessed by two acellular assays, Atmos. Chem. Phys., 20, 5197–5210, https://doi.org/10.5194/acp-20-5197-2020, 2020.
Gao, Z., Bresson, R., Qu, Y., Milliez, M., Demunck, C., and Carissimo, B.:
High resolution unsteady RANS simulation of wind, thermal effects and
pollution dispersion for studying urban renewal scenarios in a neighborhood
of Toulouse, Urban Climate, 23, 114–130, 2018.
Gariazzo, C., Carlino, G., Silibello, C., Renzi, M., Finardi, S., Pepe, N.,
Radice, P., Forastiere, F., Michelozzi, P., Viegi, G., and Stafoggia, M.: A
multi-city air pollution population exposure study: Combined use of
chemical-transport and random-Forest models with dynamic population data,
Sci. Total Environ., 724, 138102, https://doi.org/10.1016/j.scitotenv.2020.138102, 2020.
GBDS: The Global Burden of Disease Study 2019, The Lancet, 396, 1129–1306, https://www.thelancet.com/journals/lancet/issue/vol396no10258/PIIS0140-6736(20)X0042-0#closeFullCover, (last access: 28 February 2022), 2020.
Geels, C., Andersson, C., Hänninen, O., Lansø, A., Schwarze, P.,
Skjøth, C., and Brandt, J.: Future Premature Mortality Due to O3,
Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to
Changes in Climate, Anthropogenic Emissions, Population and Building Stock,
Int. J. Env. Res. Pub. He., 12, 2837–2869, https://doi.org/10.3390/ijerph120302837, 2015.
Geels, C., Winther, M., Andersson, C., Jalkanen, J.-P., Brandt, J., Frohn,
L. M., Im, U., Leung, W., and Christensen, J. H.: EPITOME ship emissions:
Projections of shipping emissions towards 2050, Version 1, Zenodo [data set], https://doi.org/10.5281/zenodo.4322247, 2020.
Geels, C., Winther, M., Andersson, C., Jalkanen, J.-P., Brandt, J., Frohn, L. M., Im, U., Leung, W., and Christensen, J. H.: Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region, Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021, 2021.
Gehring, U., Gruzieva, O., Agius, R. M., Beelen, R., Custovic, A., Cyrys,
J., Eeftens, M., Flexeder, C., Fuertes, E., Heinrich, J., Hoffmann, B.,
Jongste, J. C. d., Kerkhof, M., Klümper, C., Korek, M., Mölter, A.,
Schultz, E. S., Simpson, A., Sugiri, D., Svartengren, M., Berg, A. v.,
Wijga, A. H., Pershagen, G., and Brunekreef, B.: Air Pollution Exposure and
Lung Function in Children: The ESCAPE Project, Environ. Health Persp., 121,
1357–1364, https://doi.org/10.1289/ehp.1306770, 2013.
Genc, S., Zadeoglulari, Z., Fuss, S. H., and Genc, K.: The Adverse Effects
of Air Pollution on the Nervous System, J. Toxicol., 2012, 782462 ,
https://doi.org/10.1155/2012/782462, 2012.
Genz, C., Schrödner, R., Heinold, B., Henning, S., Baars, H., Spindler, G., and Tegen, I.: Estimation of cloud condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE experiments, Atmos. Chem. Phys., 20, 8787–8806, https://doi.org/10.5194/acp-20-8787-2020, 2020.
Ghorani-Azam, A., Riahi-Zanjani, B., and Balali-Mood M.: Effects of air
pollution on human health and practical measures for prevention in Iran, J.
Res. Med. Sci., 21, 65, https://doi.org/10.4103/1735-1995.189646, 2016.
Gilliam, R. C., Hogrefe, C., Godowitch, J. M., Napelenok, S., Mathur, R.,
and Rao, S. T.: Impact of inherent meteorology uncertainty on air quality
model predictions, J. Geophys. Res.-Atmos., 120, 12259–12280, https://doi.org/10.1002/2015jd023674, 2015.
Gioli, B., Gualtieri, G., Busillo, C., Calastrini, F., Zaldei, A., and
Toscano, P.: Improving high resolution emission inventories with local
proxies and urban eddy covariance flux measurements, Atmos. Environ., 115,
246–256, https://doi.org/10.1016/j.atmosenv.2015.05.068, 2015.
Gkatzelis, G. I., Gilman, J. B., Brown, S. S., Eskes, H., Gomes, A. R.,
Lange, A. C., McDonald, B. C., Peischl, J., Petzold, A., Thompson, C. R.,
and Kiendler-Scharr, A.: The global impacts of COVID-19 lockdowns on urban
air pollution: A critical review and recommendations, Elementa: Science of the Anthropocene, 9, 00176,
https://doi.org/10.1525/elementa.2021.00176, 2021.
Gohil, K. and Jin, M. S.: Validation and Improvement of the WRF Building
Environment Parametrization (BEP) Urban Scheme, Climate, 7, 109,
https://doi.org/10.3390/cli7090109, 2019.
González-Aparicio, I., Baklanov, A., Hidalgo, J., Korsholm, U., and
Nuterman, R.: Impact of city expansion and increased heat fluxes scenarios
on the urban boundary layer of Bilbao using Enviro-HIRLAM, Urban Climate,
10, 831–845, 2014.
Gou, H., Lu, J., Li, S., Tong, Y., Xie, C., and Zheng, X.: Assessment of
microbial communities in PM1 and PM10 of Urumqi during winter, Environ. Pollut., 214, 202–210, https://doi.org/10.1016/j.envpol.2016.03.073, 2016.
Goulier, L., Paas, B., Ehrnsperger, L., and Klemm, O.: Modelling of Urban Air
Pollutant Concentrations with Artificial Neural Networks Using Novel Input
Variables, Int. J. Env. Res. Pub. He., 17, 2025, https://doi.org/10.3390/ijerph17062025, 2020.
Grange, S. K., Lötscher, H., Fischer, A., Emmenegger, L., and Hueglin,
C.: Exploring equivalent black carbon (EBC) concentrations in Switzerland
with the aethalometer model, in: Proceedings of 12th International
Conference on Air Quality, Science and Application, edited by: Moussiopoulos,
N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 17, https://doi.org/10.18745/pb.22217, 2020.
Grell, G. A. and Baklanov, A.: Integrated modelling for forecasting weather
and air quality: A call for fully coupled approaches, Atmos. Environ., 45,
6845–6851, https://doi.org/10.1016/j.atmosenv.2011.01.017, 2011.
Gressent, A., Malherbe, L., Colette, A., Rollin, H., and Scimia, R.: Data
fusion for air quality mapping using low-cost sensor observations:
Feasibility and added-value, Environ. Int., 143, 105965,
https://doi.org/10.1016/j.envint.2020.105965, 2020.
Grimmond, S., Bouchet, V., Molina, L. T., Baklanov, A., Tan, J.,
Schlünzen, K. H., Mills, G., Golding, B., Masson, V., Ren, C., Voogt,
J., Miao, S., Lean, H., Heusinkveld, B., Hovespyan, A., Teruggi, G.,
Parrish, P., and Joe, P.: Integrated urban hydrometeorological, climate and
environmental services: Concept, methodology and key messages, Urban
Climate, 33, 100623, https://doi.org/10.1016/j.uclim.2020.100623, 2020.
Grythe, H., Lopez-Aparicio, S., Vogt, M., Vo Thanh, D., Hak, C., Halse, A. K., Hamer, P., and Sousa Santos, G.: The MetVed model: development and evaluation of emissions from residential wood combustion at high spatio-temporal resolution in Norway, Atmos. Chem. Phys., 19, 10217–10237, https://doi.org/10.5194/acp-19-10217-2019, 2019.
Gu, J., Wensing, M., Uhde, E., and Salthammer, T.: Characterization of
particulate and gaseous pollutants emitted during operation of a desktop 3D
printer, Environ. Int., 123, 476–485, https://doi.org/10.1016/j.envint.2018.12.014, 2019.
Gu, Q., Michanowicz, D. R., and Jia, C.: Developing a Modular Unmanned
Aerial Vehicle (UAV) Platform for Air Pollution Profiling, Sensors, 18,
4363, https://doi.org/10.3390/s18124363, 2018.
Guevara, M., Martínez, F., Arévalo, G., Gassó, S., and Baldasano, J. M.:
Improved system for modeling Spanish emissions: HERMESv2.0, Atmos. Environ., 81, 209–221 https://doi.org/10.1016/j.atmosenv.2013.08.053, 2013.
Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a stand-alone multi-scale atmospheric emission modelling framework – Part 1: global and regional module, Geosci. Model Dev., 12, 1885–1907, https://doi.org/10.5194/gmd-12-1885-2019, 2019.
Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a stand-alone multi-scale atmospheric emission modelling framework – Part 2: The bottom–up module, Geosci. Model Dev., 13, 873–903, https://doi.org/10.5194/gmd-13-873-2020, 2020.
Guevara, M., Jorba, O., Tena, C., Denier van der Gon, H., Kuenen, J., Elguindi, N., Darras, S., Granier, C., and Pérez García-Pando, C.: Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission temporal profile maps for atmospheric chemistry modelling, Earth Syst. Sci. Data, 13, 367–404, https://doi.org/10.5194/essd-13-367-2021, 2021.
Gurney, K. R., Liang, J., Patarasuk, R., O'Keeffe, D., Huang, J., Hutchins,
M., Lauvaux, T., Turnbull, J. C., and Shepson, P. B.: Reconciling the
differences between a bottom-up and inverse-estimated FFCO2 emissions
estimate in a large US urban area, Elementa: Science of the Anthropocene, 5, 44, https://doi.org/10.1525/elementa.137, 2017.
Gwaze, P.: Physical and chemical properties of aerosol particles in the
troposphere: An approach from microscopy methods, Sierke, Göttingen, 187 pp., http://hdl.handle.net/11858/00-001M-0000-0014-89C8-0 (last access: 11 August 2020), 2007.
Halenka, T., Belda, M., Huszar, P., Karlicky, J., Novakova, T., and Zak, M.:
On the comparison of urban canopy effects parameterisation, Int. J. Environ.
Pollut., 65, 177–194, https://doi.org/10.1504/IJEP.2019.101840, 2019.
Hamer, P. D., Walker, S.-E., Sousa-Santos, G., Vogt, M., Vo-Thanh, D., Lopez-Aparicio, S., Schneider, P., Ramacher, M. O. P., and Karl, M.: The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions, Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020, 2020.
Hampel, R., Peters, A., Beelen, R., Brunekreef, B., Cyrys, J., Faire, U. d.,
Hoogh, K. d., Fuks, K., Hoffmann, B., Hüls, A., Imboden, M., Jedynska,
A., Kooter, I., Koenig, W., Künzli, N., Leander, K., Magnusson, P.,
Männistö, S., Penell, J., Pershagen, G., Phuleria, H.,
Probst-Hensch, N., Pundt, N., Schaffner, E., Schikowski, T., Sugiri, D.,
Tiittanen, P., Tsai, M.-Y., Wang, M., Wolf, K., and Lanki, T.: Long-term
effects of elemental composition of particulate matter on inflammatory blood
markers in European cohorts, Environ. Int., 82, 76–84,
https://doi.org/10.1016/j.envint.2015.05.008, 2015.
Hänninen, O., Lebret, E., Ilacqua, V., Katsouyanni, K., Künzli, N.,
Sram, R., and Jantunen, M.: Infiltration of ambient PM2.5 and levels of
indoor generated non-ETS PM2.5 in residences of four European cities, Atmos. Environ., 38, 6411–6423, https://doi.org/10.1016/j.atmosenv.2004.07.015, 2004.
Hänninen, O., Palonen, J., Tuomisto, J., Yli-Tuomi, T., Seppänen,
O., and Jantunen, M. J.: Reduction potential of urban PM2.5 mortality risk using modern ventilation systems in buildings, Indoor Air, 15, 246–256,
https://doi.org/10.1111/j.1600-0668.2005.00365.x, 2005.
Hänninen, O., Knol, A., Jantunen, M., Lim, T., Conrad, A., Rappolder, M., Carrer P., Fanetti, A., Kim, R., Buekers, J., Torfs, R., Iavarone, I., Classen, T., Hornberg, C., and Mekel, O.: Environmental burden of disease in Europe: assessing nine risk factors in six countries, Environ. Health Perspect., 122, 439–446, https://doi.org/10.1289/ehp.1206154, 2014.
Hassan, A. M., ELMokadem, A. A., Megahed, N. A., and Abo Eleinen, O. M.:
Urban morphology as a passive strategy in promoting outdoor air quality,
Journal of Building Engineering, 29, 101204, https://doi.org/10.1016/j.jobe.2020.101204, 2020.
Hausberger, S., Rodler, J., Sturm, P., and Rexeis, M.: Emission factors for
heavy-duty vehicles and validation by tunnel measurements, Atmos. Environ.,
37, 5237–5245, 2003.
He, L., Norris, C., Cui, X., Li, Z., Barkjohn, K. K., Brehmer, C., Teng, Y., Fang, L., Lin, L., Wang, Q., Zhou, X., Hong, J., Li, F., Zhang, Y., Schauer, J. J., Black, M., Bergin, M. H., and Zhang, J. J.: Personal Exposure to PM2.5 Oxidative Potential in Association with Pulmonary Pathophysiologic Outcomes in Children with Asthma, Environ Sci Technol., 55, 3101–3111,
https://doi.org/10.1021/acs.est.0c06114, 2021.
Health Effects Institute (HEI): Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality: A Special Report of the Institute’s Particle Epidemiology Reanalysis Project, Health Effects Institute, Cambridge, MA, https://www.healtheffects.org/system/files/HEI-Reanalysis-2000.pdf (last access: 30 September 2020), 2000.
Health Effects Institute (HEI): State of Global Air 2020. Special Report on Global Exposure to Air Pollution and its Health Effects, Health Effects Institute, Boston, MA, 2578–6873, 2020.
Heinold, B., Assmann, D., Käthner, R., Knoth, O., Macke, A., Müller,
T., Tõnisson, L., Voigtländer, J., Weger, M., and Wolke, R.:
Assessing the spatio-temporal distribution of urban air pollutants – an
integrated system based on crowdsourcing with mobile sensors and multi-scale
modelling, in: Proceedings of 12th International Conference on Air Quality,
Science and Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 116,
https://doi.org/10.18745/pb.22217, 2020.
Hellsten, A., Aarnio, M. A., and Hannuniemi, H.: Fast pre-computed
large-eddy simulation based dispersion modelling method for hazardous
material releases in urban environments – Part 1: the concept, in:
Proceedings of 12th International Conference on Air Quality, Science and
Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 73, https://doi.org/10.18745/pb.22217, 2020.
Hellsten, A., Ketelsen, K., Sühring, M., Auvinen, M., Maronga, B., Knigge, C., Barmpas, F., Tsegas, G., Moussiopoulos, N., and Raasch, S.: A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0, Geosci. Model Dev., 14, 3185–3214, https://doi.org/10.5194/gmd-14-3185-2021, 2021.
Hendriks, C.: Ammonia emission time profiles based on manure transport data
improve ammonia modelling across north western Europe, Elsevier Ltd., 2016.
Henne, S., Brunner, D., Oney, B., Leuenberger, M., Eugster, W., Bamberger, I., Meinhardt, F., Steinbacher, M., and Emmenegger, L.: Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, 2016.
Héroux, M. E., Anderson, H. R., Atkinson, R., Brunekreef, B., Cohen, A.,
Forastiere, F., Hurley, F., Katsouyanni, K., Krewski, D., Krzyzanowski, M.,
Kunzli, N., Mills, I., Querol, X., Ostro, B., and Walton, H.: Quantifying
the health impacts of ambient air pollutants: recommendations of a
WHO/Europe project, Int. J. Public Health, 60, 619–627,
https://doi.org/10.1007/s00038-015-0690-y, 2015.
Hidalgo, J., Masson, V., Baklanov, A., Pigeon, G., and Gimeno, L.: Advances
in Urban Climate Modeling, Ann. N.Y. Acad. Sci., 1146, 354–374,
https://doi.org/10.1196/annals.1446.015, 2008.
Hime, N., Marks, G., and Cowie, C.: A Comparison of the Health Effects of
Ambient Particulate Matter Air Pollution from Five Emission Sources, Int. J.
Env. Res. Pub. He., 15, 1206, https://doi.org/10.3390/ijerph15061206, 2018.
Hirtl, M., Arnold, D., Briese, C., Figuera, R. M., Flandorfer, C.,
Haselsteiner, M., Humer, H., Maurer, C., Natali, S., Ng, T., Placho, T.,
Santillan, D., Scherllin-Pirscher, B., Skarbal, B., Triebnig, G., and
Uhrner, U.: Innovative applications for the augmented use of satellite
observations to support air quality management, in: Proceedings of 12th
International Conference on Air Quality, Science and Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 9, https://doi.org/10.18745/pb, 2020.
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef,
B., and Kaufman, J. D.: Long-term air pollution exposure and cardio-respiratory mortality: a review, Environ. Health, 12, 43,
https://doi.org/10.1186/1476-069x-12-43, 2013.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hoffmann, B., Weinmayr, G., Hennig, F., Fuks, K., Moebus, S., Weimar, C.,
Dragano, N., Hermann, D. M., Kälsch, H., Mahabadi, A. A., Erbel, R., and
Jöckel, K.-H.: Air Quality, Stroke, and Coronary Events, Dtsch. Arztebl.
Online, 112, 195–201, https://doi.org/10.3238/arztebl.2015.0195, 2015.
Hood, C., MacKenzie, I., Stocker, J., Johnson, K., Carruthers, D., Vieno, M., and Doherty, R.: Air quality simulations for London using a coupled regional-to-local modelling system, Atmos. Chem. Phys., 18, 11221–11245, https://doi.org/10.5194/acp-18-11221-2018,
2018.
Hopke, P. K.: Review of receptor modeling methods for source apportionment,
J. Air Waste Manage., 66, 237–259, https://doi.org/10.1080/10962247.2016.1140693, 2016.
Horne, B. D., Joy, E. A., Hofmann, M. G., Gesteland, P. H., Cannon, J. B.,
Lefler, J. S., Blagev, D. P., Korgenski, E. K., Torosyan, N., Hansen, G. I.,
Kartchner, D., and Pope, C. A.: Short-Term Elevation of Fine Particulate
Matter Air Pollution and Acute Lower Respiratory Infection, Am. J. Resp.
Crit. Care, 198, 759–766, https://doi.org/10.1164/rccm.201709-1883OC, 2018.
Host, S., Honoré, C., Joly, F., Saunal, A., Le Tertre, A., and Medina,
S.: Implementation of various hypothetical low emission zone scenarios in
Greater Paris: Assessment of fine-scale reduction in exposure and expected
health benefits, Environ. Res., 185, 109405, https://doi.org/10.1016/j.envres.2020.109405, 2020.
Hu, J., Li, X., Huang, L., Ying, Q., Zhang, Q., Zhao, B., Wang, S., and Zhang, H.: Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China, Atmos. Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-13103-2017, 2017.
Hu, T., Singer, B. C., and Logue, J. M.: Compilation of Published PM2.5
Emission Rates for Cooking, Candles and Incense for Use in Modeling of
Exposures in Residences, Tech. report, United States. Dept. of Energy. Office
of Science, Washington, D.C., 29 pp., https://doi.org/10.2172/1172959, 2012.
Huang, G.: Integrated assessment of atmospheric environmental management in
China, dissertation, University of Stuttgart, https://doi.org/10.18419/opus-9852, 2018.
Huang, G., Schmid, D., Friedrich, R., Vogt, U., Mahami, G., Struschka, M.,
and Juschka, W.: Ganzheitliche Bewertung von Holzheizungen,
https://doi.org/10.18419/opus-11108, 2016.
Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C., Dore, C., Guizzardi, D., Muntean, M., Schaaf, E., and Friedrich, R.: Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012, Atmos. Chem. Phys., 17, 7683–7701, https://doi.org/10.5194/acp-17-7683-2017, 2017.
Huang, M., Gao, Z., Miao, S., and Chen, F.: Sensitivity of urban boundary
layer simulation to urban canopy models and PBL schemes in Beijing,
Meteorol. Atmos. Phys., 131, 1235–1248, https://doi.org/10.1007/s00703-018-0634-1, 2019.
Huszár, P., Belda, M., Karlický, J., Pišoft, P., and Halenka, T.: The regional impact of urban emissions on climate over central Europe: present and future emission perspectives, Atmos. Chem. Phys., 16, 12993–13013, https://doi.org/10.5194/acp-16-12993-2016, 2016.
Huszar, P., Belda, M., Karlický, J., Bardachova, T., Halenka, T., and Pisoft, P.: Impact of urban canopy meteorological forcing on aerosol concentrations, Atmos. Chem. Phys., 18, 14059–14078, https://doi.org/10.5194/acp-18-14059-2018, 2018.
Huszar, P., Karlický, J., Ďoubalová, J., Nováková, T., Šindelářová, K., Švábik, F., Belda, M., Halenka, T., and Žák, M.: The impact of urban land-surface on extreme air pollution over central Europe, Atmos. Chem. Phys., 20, 11655–11681, https://doi.org/10.5194/acp-20-11655-2020, 2020.
Hvidtfeldt, U. A., Geels, C., Sørensen, M., Ketzel, M., Khan, J.,
Tjønneland, A., Christensen, J. H., Brandt, J., and Raaschou-Nielsen, O.:
Long-term residential exposure to PM2.5 constituents and mortality in a
Danish cohort, Environ. Int., 133, 105268, https://doi.org/10.1016/j.envint.2019.105268,
2019a.
Hvidtfeldt, U. A., Sørensen, M., Geels, C., Ketzel, M., Khan, J.,
Tjønneland, A., Overvad, K., Brandt, J., and Raaschou-Nielsen, O.:
Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone
and mortality in a Danish cohort, Environ. Int., 123, 265–272,
https://doi.org/10.1016/j.envint.2018.12.010, 2019b.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., Denier van der Gon, H., Flemming, J., Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Makar, P. A, Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R S., Syrakov, D., Torian, A., Tuccella, P., Wang, K., Werhahn, J., Wolke, R., Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of operational online coupled
regional air quality models over Europe and North America in the context of
AQMEII phase 2, Part II: particulate matter, Atmos. Environ., 115, 421–441,
2015a.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., Flemming, J.,
Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L.,
Jorba, O., Knote, C., Kuenen, J. J. P., Makar, P. A., Manders-Groot, A.,
Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2, Part I: Ozone, Atmos. Environ., 115, 404–420, 2015b.
Im, U., Brandt, J., Geels, C., Hansen, K. M., Christensen, J. H., Andersen, M. S., Solazzo, E., Kioutsioukis, I., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., Bianconi, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming, J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Liang, C.-K., Nopmongcol, U., Pirovano, G., Pozzoli, L., Prank, M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M. G., West, J., Yarwood, G., Hogrefe, C., and Galmarini, S.: Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3, Atmos. Chem. Phys., 18, 5967–5989, https://doi.org/10.5194/acp-18-5967-2018, 2018.
Im, U., Christensen, J. H., Nielsen, O.-K., Sand, M., Makkonen, R., Geels, C., Anderson, C., Kukkonen, J., Lopez-Aparicio, S., and Brandt, J.: Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic, Atmos. Chem. Phys., 19, 12975–12992, https://doi.org/10.5194/acp-19-12975-2019, 2019.
IMO: Prevention of Air Pollution from Ships, International Maritime
Organization, https://www.imo.org/en/OurWork/Environment/Pages/Air-Pollution.aspx (last access: 22 February 2022), 2019.
IMO: IMO's work to cut GHG emissions from ships, International Maritime Organisation, https://www.imo.org/en/MediaCentre/HotTopics/Pages/Cutting-GHG-emissions.aspx (last access: 25 February 2022), 2021.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
IOM (Institute of Medicine): Long-Term Health Consequences of Exposure to
Burn Pits in Iraq and Afghanistan, The National Academies Press, Washington,
DC, https://doi.org/10.17226/13209, 2011.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, IPCC, Geneva, Switzerland, 151 pp., 2014.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, edited be: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, https://www.ipcc.ch/report/ar6/wg1/#FullReport (last access: 28 February 2022.
Jalkanen, J.-P., Brink, A., Kalli, J., Pettersson, H., Kukkonen, J., and Stipa, T.: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, https://doi.org/10.5194/acp-9-9209-2009, 2009.
Jalkanen, J.-P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J., and Stipa, T.: Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide, Atmos. Chem. Phys., 12, 2641–2659, https://doi.org/10.5194/acp-12-2641-2012, 2012.
Jalkanen, J.-P., Johansson, L., and Kukkonen, J.: A comprehensive inventory
of ship traffic exhaust emissions in the European sea areas in 2011, Atmos.
Chem. Phys., 16, 71–84, 2016.
Jeanjean, A. P. R., Buccolieri, R., Eddy, J., Monks, P. S., and Leigh, R.
J.: Air quality affected by trees in real street canyons: The case of
Marylebone neighbourhood in central London, Urban For. Urban Gree., 22,
41–53, https://doi.org/10.1016/j.ufug.2017.01.009, 2017.
Jensen, S. S., Ketzel, M., Becker, T., Christensen, J., Brandt, J.,
Plejdrup, M., Winther, M., Nielsen, O. K., Hertel, O., and Ellermann, T.:
High resolution multi-scale air quality modelling for all streets in
Denmark, Transport. Res. D-Tr. E., 52, 322–339, 2017.
Jesus, A. L. d., Rahman, M. M., Mazaheri, M., Thompson, H., Knibbs, L. D.,
Jeong, C., Evans, G., Nei, W., Ding, A., Qiao, L., Li, L., Portin, H.,
Niemi, J. V., Timonen, H., Luoma, K., Petäjä, T., Kulmala, M.,
Kowalski, M., Peters, A., Cyrys, J., Ferrero, L., Manigrasso, M., Avino, P.,
Buonano, G., Reche, C., Querol, X., Beddows, D., Harrison, R. M., Sowlat, M.
H., Sioutas, C., and Morawska, L.: Ultrafine particles and PM2.5 in the air
of cities around the world: Are they representative of each other?, Environ.
Int., 129, 118–135, https://doi.org/10.1016/j.envint.2019.05.021, 2019.
Johansson, L., Jalkanen, J.-P., Kalli, J., and Kukkonen, J.: The evolution
of shipping emissions and the costs of regulation changes in the northern EU
area, Atmos. Chem. Phys., 13, 11375-11389, 2013.
Johansson, L., Epitropou, V., Karatzas, K., Karppinen, A., Wanner, L.,
Vrochidis, S., Bassoukos, A., Kukkonen, J., and Kompatsiaris, I.: Fusion of
meteorological and air quality data extracted from the web for personalized
environmental information services, Environmental Modelling & Software
64, 143-155, 2015.
Johansson, L., Jalkanen, J.-P., and Kukkonen, J.: Global assessment of
shipping emissions in 2015 on a high spatial and temporal resolution.,
Atmos. Environ., 167, 403–415, 2017.
Jones, L., Vieno, M., Fitch, A., Carnell, E., Steadman, C., Cryle, P.,
Holland, M., Nemitz, E., Morton, D., Hall, J., Mills, G., Dickie, I., and
Reis, S.: Urban natural capital accounts: developing a novel approach to
quantify air pollution removal by vegetation, Journal of Environmental
Economics and Policy, 8, 413–428, https://doi.org/10.1080/21606544.2019.1597772, 2019.
Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M., and Denier van der Gon, H. A. C.: Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea, Atmos. Chem. Phys., 15, 783–798, https://doi.org/10.5194/acp-15-783-2015, 2015.
Just, A. C., Arfer, K. B., Rush, J., Dorman, M., Shtein, A., Lyapustin, A., and Kloog, I.: Advancing methodologies for applying machine learning and evaluating spatiotemporal models of fine particulate matter (PM2.5) using satellite data over large regions, Atmos. Environ., 239, 117649, https://doi.org/10.1016/j.atmosenv.2020.117649, 2020.
Kalisa, E., Archer, S., Nagato, E., Bizuru, E., Lee, K., Tang, N., Pointing,
S., Hayakawa, K., and Lacap-Bugler, D.: Chemical and Biological Components
of Urban Aerosols in Africa: Current Status and Knowledge Gaps, Int. J. Env.
Res. Pub. He., 16, 941, https://doi.org/10.3390/ijerph16060941, 2019.
Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M.,
Lagler, F., Redon, N., Crunaire, S., and Borowiak, A.: Review of the
Performance of Low-Cost Sensors for Air Quality Monitoring, Atmosphere, 10, 506, https://doi.org/10.3390/atmos10090506, 2019.
Karakitsios, S., Busker, R., Tjärnhage, T., Armand, P., Dybwad, M.,
Nielsen, M. F., Burman, J., Burke, J., Brinek, J., Bartzis, J., Maggos, T.,
Theocharidou, M., Gattinesi, P., Giannopoulos, G., and Sarigiannis, D.:
Challenges on detection, identification and monitoring of indoor airborne
chemical-biological agents, Safety Sci., 129, 104789,
https://doi.org/10.1016/j.ssci.2020.104789, 2020.
Karl, M., Jonson, J. E., Uppstu, A., Aulinger, A., Prank, M., Sofiev, M., Jalkanen, J.-P., Johansson, L., Quante, M., and Matthias, V.: Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models, Atmos. Chem. Phys., 19, 7019–7053, https://doi.org/10.5194/acp-19-7019-2019, 2019a.
Karl, M., Walker, S.-E., Solberg, S., and Ramacher, M. O. P.: The Eulerian urban dispersion model EPISODE – Part 2: Extensions to the source dispersion and photochemistry for EPISODE–CityChem v1.2 and its application to the city of Hamburg, Geosci. Model Dev., 12, 3357–3399, https://doi.org/10.5194/gmd-12-3357-2019, 2019b.
Karl, M., Bieser, J., Geyer, B., Matthias, V., Jalkanen, J.-P., Johansson, L., and Fridell, E.: Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region, Atmos. Chem. Phys., 19, 1721–1752, https://doi.org/10.5194/acp-19-1721-2019, 2019c
Karl, M., Pirjola, L., Karppinen, A., Jalkanen, J.-P., Ramacher, M. O. P.,
and Kukkonen, J.: Modeling of the Concentrations of Ultrafine Particles in
the Plumes of Ships in the Vicinity of Major Harbors, Int. J. Env. Res. Pub.
He., 17, 777, https://doi.org/10.3390/ijerph17030777, 2020.
Karttunen, S., Kurppa, M., Auvinen, M., Hellsten, A., and Järvi, L.:
Large-eddy simulation of the optimal street-tree layout for pedestrian-level
aerosol particle concentrations – A case study from a city-boulevard,
Atmos. Environ. X, 6, 100073, https://doi.org/10.1016/j.aeaoa.2020.100073, 2020.
Katsouyanni, K., Samet, J. M., Anderson, H. R., Atkinson, R., Le Tertre, A.,
Medina, S., Samoli, E., Touloumi, G., Burnett, R. T., Krewski, D., Ramsay,
T., Dominici, F., Peng, R. D., Schwartz, J., and Zanobetti, A.: Air
pollution and health: a European and North American approach (APHENA),
Research report (Health Effects Institute), 5–90, 2009.
Keiser, D. and Muller, A.: Air and Water: Integrated Assessment Models for Multiple Media, Annu. Rev. Resour. Econ., 9, 165–184, https://doi.org/10.1146/annurev-resource-100516-053501, 2017.
Kermenidou, M., Hondrogiorgis, C., Karakitsios, S., and Sarigiannis, D.:
Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosols
and study of their effect in human health: a comparison between the warm and
the cold season of the year, in: Proceedings of 12th International
Conference on Air Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 19, https://doi.org/10.18745/pb.22217, 2020.
Ketzel, M., Frohn, L. M., Christensen, J. H., Brandt, J., Massling, A.,
Andersen, C., Im, U., Jensen, S. S., Khan, J., Nielsen, O.-K., Plejdrup,
M. S., Manders, A., van der Gon, H. D., Kumar, P., and Raaschou-Nielsen, O.: Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979 to 2018 – Part 2: Local and street scale modelling and evaluation, Atmos. Environ., 264, 118633,
https://doi.org/10.1016/j.atmosenv.2021.118633, 2021.
Khan, A., Plana-Ripoll, O., Antonsen, S., Brandt, J., Geels, C., Landecker, H., Sullivan, P. F., Pedersen, C. B., and Rzhetsky, A.: Environmental pollution is associated with increased risk of psychiatric disorders in the US and Denmark, PLOS Biol., 17, e3000353, https://doi.org/10.1371/journal.pbio.3000353, 2019a.
Khan, J., Kakosimos, K., Raaschou-Nielsen, O., Brandt, J., Jensen, S. S.,
Ellermann, T., and Ketzel, M.: Development and performance evaluation of new
AirGIS – A GIS based air pollution and human exposure modelling system,
Atmos. Environ., 198, 102–121, https://doi.org/10.1016/j.atmosenv.2018.10.036, 2019b.
Khan, B., Banzhaf, S., Chan, E. C., Forkel, R., Kanani-Sühring, F., Ketelsen, K., Kurppa, M., Maronga, B., Mauder, M., Raasch, S., Russo, E., Schaap, M., and Sühring, M.: Development of an atmospheric chemistry model coupled to the PALM model system 6.0: implementation and first applications, Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, 2021.
Kim, J., Jeong, U., Ahn, M.-H., Kim, J. H., Park, R. J., Lee, H., Song, C.
H., Choi, Y.-S., Lee, K.-H., Yoo, J.-M., Jeong, M.-J., Park, S. K., Lee,
K.-M., Song, C.-K., Kim, S.-W., Kim, Y. J., Kim, S.-W., Kim, M., Go, S.,
Liu, X., Chance, K., Chan Miller, C., Al-Saadi, J., Veihelmann, B., Bhartia,
P. K., Torres, O., Abad, G. G., Haffner, D. P., Ko, D. H., Lee, S. H., Woo,
J.-H., Chong, H., Park, S. S., Nicks, D., Choi, W. J., Moon, K.-J., Cho, A.,
Yoon, J., Kim, S.-k., Hong, H., Lee, K., Lee, H., Lee, S., Choi, M.,
Veefkind, P., Levelt, P. F., Edwards, D. P., Kang, M., Eo, M., Bak, J.,
Baek, K., Kwon, H.-A., Yang, J., Park, J., Han, K. M., Kim, B.-R., Shin,
H.-W., Choi, H., Lee, E., Chong, J., Cha, Y., Koo, J.-H., Irie, H.,
Hayashida, S., Kasai, Y., Kanaya, Y., Liu, C., Lin, J., Crawford, J. H.,
Carmichael, G. R., Newchurch, M. J., Lefer, B. L., Herman, J. R., Swap, R.
J., Lau, A. K. H., Kurosu, T. P., Jaross, G., Ahlers, B., Dobber, M.,
McElroy, C. T., and Choi, Y.: New Era of Air Quality Monitoring from Space:
Geostationary Environment Monitoring Spectrometer (GEMS), B. Am. Meteorol.
Soc., 101, E1–E22, https://doi.org/10.1175/bams-d-18-0013.1, 2020.
Kim, Y., Wu, Y., Seigneur, C., and Roustan, Y.: Multi-scale modeling of
urban air pollution: development and application of a Street-in-Grid model
(v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1), Geosci. Model Dev.,
11, 611–629, 2018.
Kioutsioukis, I., Im, U., Solazzo, E., Bianconi, R., Badia, A., Balzarini, A., Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., van der Gon, H. D., Flemming, J., Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Jorba, O., Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Tuccella, P., Werhahn, J., Wolke, R., Hogrefe, C., and Galmarini, S.: Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data, Atmos. Chem. Phys., 16, 15629–15652, https://doi.org/10.5194/acp-16-15629-2016, 2016.
Klein, T., Kukkonen, J., Dahl, A., Bossioli, E., Baklanov, A., Vik, A. F.,
Agnew, P., Karatzas, K. D., and Sofiev, M.: Interactions of physical,
chemical, and biological weather calling for an integrated approach to
assessment, forecasting, and communication of air quality, Ambio, 41,
851–864, https://doi.org/10.1007/s13280-012-0288-z, 2012.
Klimont, Z.: Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS), IIASA, https://iiasa.ac.at/models-and-data/greenhouse-gas-and-air-pollution-interactions-and-synergies (last access 25 February 2022), 2021.
Kong, X., Forkel, R., Sokhi, R. S., Suppan, P., Baklanov, A., Gauss, M.,
Brunner, D., Baro, R., Balzarini, A., Chemel, C., Curci, G.,
Jimenez-Guerrero, P., Hirtl, M., Honzak, L., Im, U., Perez, J. L., Pirovano,
G., San Jose, R., Schlünzen, K. H., Tsegas, G., Tuccella, P., Werhahn,
J., Zabkar, R., and Galmarini, S.: Analysis of meteorology-chemistry
interactions during air pollution episodes using online coupled models
within AQMEII phase-2, Atmos. Environ., 115, 527-540, 2015.
Korkmaz, P., Cunha Montenegro, R., Schmid, D., Blesl, M., and Fahl, U.: On the Way to a Sustainable European Energy System: Setting Up an Integrated Assessment Toolbox with TIMES PanEU as the Key Component, Energies, 13, 707, https://doi.org/10.3390/en13030707, 2020.
Kousa, A., Kukkonen, J., Karppinen, A., Aarnio, P., and Koskentalo, T.: A
model for evaluating the population exposure to ambient air pollution in an
urban area, Atmos. Environ., 36, 2109–2119, https://doi.org/10.1016/s1352-2310(02)00228-5,
2002.
Koutsourakis, N., Bartzis, J. G., and Venetsanos, A.: Determination of
optimum positioning of atmospheric pollutant measuring instruments using
computational fluid dynamics, in: Proceedings of 12th International
Conference on Air Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis I., Hatfield, UK, p. 72, https://doi.org/10.18745/pb.2221729 645–655, 2020.
Kramshøj, M., Vedel-Petersen, I., Schollert, M., Rinnan, Å., Nymand,
J., Ro-Poulsen, H., and Rinnan, R.: Large increases in Arctic biogenic
volatile emissions are a direct effect of warming, Nat. Geosci., 9,
349–352, https://doi.org/10.1038/ngeo2692, 2016.
Kristensen, K., Lunderberg, D. M., Liu, Y., Misztal, P. K., Tian, Y., Arata,
C., Nazaroff, W. W., and Goldstein, A. H.: Sources and dynamics of
semivolatile organic compounds in a single-family residence in northern
California, Indoor Air, 29, 645–655, https://doi.org/10.1111/ina.12561, 2019.
Kristovich, D. A. R., Takle, E., Young, G. S., and Sharma, A.: 100 Years of
Progress in Mesoscale Planetary Boundary Layer Meteorological Research,
Meteor. Mon., 59, 19.1–19.41, https://doi.org/10.1175/amsmonographs-d-18-0023.1, 2019.
Kuik, O. J., Brander, L., and Tol, R. S. J.: Marginal abatement costs of
greenhouse gas emissions: A meta-analysis, Energ. Policy, 37, 1395–1403,
2009.
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H.,
Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., and
Cawley, G.: Extensive evaluation of neural network models for the prediction
of NO2 and PM10 concentrations, compared with a deterministic modelling
system and measurements in central Helsinki, Atmos. Environ., 37, 4539–4550,
2003.
Kukkonen, J., Pohjola, M., Sokhi, R. S., Luhana, L., Kitwiroon, N.,
Rantamäki, M., Berge, E., Odegaard, V., Slørdal, L. H., Denby, B.,
and Finardi, S.: Analysis and evaluation of selected local-scale PM10 air
pollution episodes in four European cities: Helsinki, London, Milan and
Oslo, Atmos. Environ., 39, 2759–2773, 2005a.
Kukkonen, J., Sokhi, R., Slordal, L. H., Finardi, S., Fay, B., Millan, M.,
Salvador, R., Palau, J. L., Rasmussen, A., Schayes, G., and Berge, E.:
Analysis and evaluation of European air pollution episodes, in: Meteorology applied to urban air pollution problems, Final report COST Action 715, edited by: Fisher, B., Joffre, S., Kukkonen, J., Piringer, M., Rotach, M., and Schatzmann, M., Demetra Ltd Publishers, Bulgaria, 99–114, 2005b.
Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T., Miranda, A. I., Monteiro, A., Hirtl, M., Tarvainen, V., Boy, M., Peuch, V.-H., Poupkou, A., Kioutsioukis, I., Finardi, S., Sofiev, M., Sokhi, R., Lehtinen, K. E. J., Karatzas, K., San José, R., Astitha, M., Kallos, G., Schaap, M., Reimer, E., Jakobs, H., and Eben, K.: A review of operational, regional-scale, chemical weather forecasting models in Europe, Atmos. Chem. Phys., 12, 1–87, https://doi.org/10.5194/acp-12-1-2012, 2012.
Kukkonen, J., Karl, M., Keuken, M. P., Denier van der Gon, H. A. C., Denby, B. R., Singh, V., Douros, J., Manders, A., Samaras, Z., Moussiopoulos, N., Jonkers, S., Aarnio, M., Karppinen, A., Kangas, L., Lützenkirchen, S., Petäjä, T., Vouitsis, I., and Sokhi, R. S.: Modelling the dispersion of particle numbers in five European cities, Geosci. Model Dev., 9, 451–478, https://doi.org/10.5194/gmd-9-451-2016, 2016a.
Kukkonen, J., Singh, V., Sokhi, R. S., Soares, J., Kousa, A., Matilainen, L., Kangas, L., Kauhaniemi, M., Riikonen, K., Jalkanen, J.-P., Rasila, T., Hänninen, O., Koskentalo, T., Aarnio, M., Hendriks, C., and Karppinen, A.: Assessment of Population Exposure to Particulate Matter for London and Helsinki, in: Air Pollution Modeling and its Application XXIV, edited by: Steyn, D. G. and Chaumerliac, N., Springer Proceedings in Complexity, Springer International Publishing, Cham, 99–105,
https://doi.org/10.1007/978-3-319-24478-5_16, 2016b.
Kukkonen, J., Kangas, L., Kauhaniemi, M., Sofiev, M., Aarnio, M., Jaakkola, J. J. K., Kousa, A., and Karppinen, A.: Modelling of the urban concentrations of PM2.5 on a high resolution for a period of 35 years, for the assessment of lifetime exposure and health effects, Atmos. Chem. Phys., 18, 8041–8064, https://doi.org/10.5194/acp-18-8041-2018, 2018.
Kukkonen, J., Fridell, E., Moldanova, J., Jalkanen, J.-P., Maragkidou, A.,
Sofiev, M., Ntziachristos, L., Borken-Kleefeld, J., Sokhi, R. S., Zervakis,
V., Hassellöv, I.-M., Ytreberg, E., Williams, I., Hole, L. R., Petrovic,
M., Maragkidou, S., Ktoris, A., and Monteiro, A.: Environmental impacts of
shipping: from global to local scales, in: Proceedings of 12th International
Conference on Air Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 161, https://doi.org/10.18745/PB.22217, 2020a.
Kukkonen, J., López-Aparicio, S., Segersson, D., Geels, C., Kangas, L., Kauhaniemi, M., Maragkidou, A., Jensen, A., Assmuth, T., Karppinen, A., Sofiev, M., Hellén, H., Riikonen, K., Nikmo, J., Kousa, A., Niemi, J. V., Karvosenoja, N., Santos, G. S., Sundvor, I., Im, U., Christensen, J. H., Nielsen, O.-K., Plejdrup, M. S., Nøjgaard, J. K., Omstedt, G., Andersson, C., Forsberg, B., and Brandt, J.: The influence of residential wood combustion on the concentrations of PM2.5 in four Nordic cities, Atmos. Chem. Phys., 20, 4333–4365, https://doi.org/10.5194/acp-20-4333-2020, 2020b.
Kukkonen, J., Savolahti, M., Palamarchuk, Y., Lanki, T., Nurmi, V., Paunu, V.-V., Kangas, L., Sofiev, M., Karppinen, A., Maragkidou, A., Tiittanen, P., and Karvosenoja, N.: Modelling of the public health costs of fine particulate matter and results for Finland in 2015, Atmos. Chem. Phys., 20, 9371–9391, https://doi.org/10.5194/acp-20-9371-2020, 2020c.
Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M.,
Harrison, R. M., Norford, L., and Britter, R.: Ultrafine particles in
cities, Environ. Int., 66, 1–10, https://doi.org/10.1016/j.envint.2014.01.013, 2014.
Kurppa, M., Hellsten, A., Auvinen, M., Raasch, S., Vesala, T., and Järvi,
L.: Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation–Urban Planning Perspective, Atmosphere 9, 65,
https://doi.org/10.3390/atmos9020065, 2018.
Kurppa, M., Hellsten, A., Roldin, P., Kokkola, H., Tonttila, J., Auvinen, M., Kent, C., Kumar, P., Maronga, B., and Järvi, L.: Implementation of the sectional aerosol module SALSA2.0 into the PALM model system 6.0: model development and first evaluation, Geosci. Model Dev., 12, 1403–1422, https://doi.org/10.5194/gmd-12-1403-2019, 2019.
Kurppa, M., Roldin, P., Strömberg, J., Balling, A., Karttunen, S., Kuuluvainen, H., Niemi, J. V., Pirjola, L., Rönkkö, T., Timonen, H., Hellsten, A., and Järvi, L.: Sensitivity of spatial aerosol particle distributions to the boundary conditions in the PALM model system 6.0, Geosci. Model Dev., 13, 5663–5685, https://doi.org/10.5194/gmd-13-5663-2020, 2020.
Lehtomäki, H., Geels, C., Brandt, J., Rao, S., Yaramenka, K.,
Åström, S., Andersen, M. S., Frohn, L. M., Im, U., and Hänninen,
O.: Deaths Attributable to Air Pollution in Nordic Countries: Disparities in
the Estimates, Atmosphere, 11, 467, https://doi.org/10.3390/atmos11050467, 2020.
Lejri, D., Can, A., Schiper, N., and Leclercq, L.: Accounting for traffic
speed dynamics when calculating COPERT and PHEM pollutant emissions at the
urban scale, Transport. Res. D-Tr. E., 63, 588–603,
https://doi.org/10.1016/j.trd.2018.06.023, 2018.
Lelieveld, J., Klingmüller, K., Pozzer, A., Pöschl, U., Fnais, M.,
Daiber, A., and Münzel, T.: Cardiovascular disease burden from ambient
air pollution in Europe reassessed using novel hazard ratio functions, Eur.
Heart J., 40, 1590–1596, https://doi.org/10.1093/eurheartj/ehz135, 2019.
Lepeule, J., Litonjua, A. A., Gasparrini, A., Koutrakis, P., Sparrow, D.,
Vokonas, P. S., and Schwartz, J.: Lung function association with outdoor
temperature and relative humidity and its interaction with air pollution in
the elderly, Environ. Res., 165, 110–117, https://doi.org/10.1016/j.envres.2018.03.039,
2018.
Letheren, B.: Air Quality Monitoring using Aircraft, Satellite or UAVs,
Queensland University of Technology, Australia, https://doi.org/10.13140/rg.2.1.2455.2720, 2016.
Lewis, A., Zellweger, C., Schultz, M. G., and Tarasova, O. A.: Technical
advice note on lower cost air pollution sensors,, World Meteorological
Organization, Global Atmospheric Watch, WMOGeneva, Switzerland, 4 pp., 2017.
Lewis, A., von Schneidemesser, E., and Peltier, R. E.: Low-cost sensors for
the measurement of atmospheric composition: overview of topic and future
applications, WMO-No. 1215, World Meteorological Organization, Geneva,
Switzerland, 46 pp., 2018.
Li, J., Sun, S., Tang, R., Qiu, H., Huang, Q., Mason, T., and Tian, L.:
Major air pollutants and risk of COPD exacerbations: a systematic review and meta-analysis, Int. J. Chronic Obstr., 11, 3079–3091,
https://doi.org/10.2147/copd.S122282, 2016.
Li, J., Woodward, A., Hou, X.-Y., Zhu, T., Zhang, J., Brown, H., Yang, J.,
Qin, R., Gao, J., Gu, S., Xu, L., Liu, X., and Liu, Q.: Modification of the
effects of air pollutants on mortality by temperature: A systematic review
and meta-analysis, Sci. Total Environ., 575, 1556–1570,
https://doi.org/10.1016/j.scitotenv.2016.10.070, 2017.
Li, N.: Long-term exposure of European population subgroups to PM2.5 and
NO2, dissertation, Universität Stuttgart, Stuttgart, https://doi.org/10.18419/opus-11104, 2020.
Li, N. and Friedrich, R.: Methodology for Estimating the Lifelong Exposure
to PM2.5 and NO2 – The Application to European Population Subgroups,
Atmosphere, 10, 507, https://doi.org/10.3390/atmos10090507, 2019.
Li, N., Friedrich, R., Maesano, C. N., Medda, E., Brescianini, S., Stazi, M.
A., Sabel, C. E., Sarigiannis, D., and Annesi-Maesano, I.: Lifelong exposure
to multiple stressors through different environmental pathways for European
populations, Environ. Res., 179, 108744, https://doi.org/10.1016/j.envres.2019.108744,
2019a.
Li, N., Huang, G., Friedrich, R., Vogt, U., Schürmann, S., and Straub,
D.: Messung und Bewertung der Schadstoffemissionen von Holzfeuerungen in
Innenräumen, Universität Stuttgart, Stuttgart, Forschungsbericht
Band 144, https://doi.org/10.18419/opus-11139, 2019b.
Li, N., Maesano, C. N., Friedrich, R., Medda, E., Brandstetter, S., Kabesch,
M., Apfelbacher, C., Melter, M., Seelbach-Göbel, B., Annesi-Maesano, I.,
and Sarigiannis, D.: A model for estimating the lifelong exposure to PM2.5 and NO2 and the application to population studies, Environ. Res., 178, 108629, https://doi.org/10.1016/j.envres.2019.108629, 2019c.
Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., and Chi, T.: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation, Environ. Pollut., 231, 997–1004, https://doi.org/10.1016/j.envpol.2017.08.114, 2017.
Liakakou, E., Stavroulas, I., Kaskaoutis, D. G., Grivas, G.,
Paraskevopoulou, D., Dumka, U. C., Tsagkaraki, M., Bougiatioti, A.,
Oikonomou, K., Sciare, J., Gerasopoulos, E., and Mihalopoulos, N.: Levels
and sources of black carbon long-term measurements in Athens, Greece, in:
Proceedings of 12th International Conference on Air Quality, Science and
Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, 18, https://doi.org/10.18745/pb.22217, 2020.
Liang, C.-K., West, J. J., Silva, R. A., Bian, H., Chin, M., Davila, Y., Dentener, F. J., Emmons, L., Flemming, J., Folberth, G., Henze, D., Im, U., Jonson, J. E., Keating, T. J., Kucsera, T., Lenzen, A., Lin, M., Lund, M. T., Pan, X., Park, R. J., Pierce, R. B., Sekiya, T., Sudo, K., and Takemura, T.: HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys., 18, 10497–10520, https://doi.org/10.5194/acp-18-10497-2018,
2018.
Lippmann, M., Chen, L.-C., Gordon, T., Ito, K., and Thurston, G. D.:
National Particle Component Toxicity (NPACT) Initiative: integrated
epidemiologic and toxicologic studies of the health effects of particulate
matter components, Research report (Health Effects Institute), 5–13, 2013.
Liu, S., Xing, J., Zhang, H., Ding, D., Zhang, F., Zhao, B., Sahu, S. K.,
and Wang, S.: Climate-driven trends of biogenic volatile organic compound
emissions and their impacts on summertime ozone and secondary organic
aerosol in China in the 2050s, Atmos. Environ., 218, 117020, https://doi.org/10.1016/j.atmosenv.2019.117020, 2019.
Liu, Z., Ye, W., and Little, J. C.: Predicting emissions of volatile and
semivolatile organic compounds from building materials: A review, Build.
Environ., 64, 7–25, https://doi.org/10.1016/j.buildenv.2013.02.012, 2013.
Loxham, M. and Nieuwenhuijsen, M. J.: Health effects of particulate matter
air pollution in underground railway systems – a critical review of the
evidence, Part. Fibre Toxicol., 16, 12, https://doi.org/10.1186/s12989-019-0296-2, 2019.
Lozhkina, O. V., Timofeev, V. D., and Lozhkin, V. N.: Modelling of air
pollution by peat fire smoke and forecast of its impact on road visibility
and drivers' health, in: Proceedings of 12th International Conference on Air
Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S.,
Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 161, https://doi.org/10.18745/pb.22217, 2020.
Luben, T. J., Nichols, J. L., Dutton, S. J., Kirrane, E., Owens, E. O.,
Datko-Williams, L., Madden, M., and Sacks, J. D.: A systematic review of
cardiovascular emergency department visits, hospital admissions and
mortality associated with ambient black carbon, Environ. Int., 107,
154–162, https://doi.org/10.1016/j.envint.2017.07.005, 2017.
MacIntyre, E. A., Gehring, U., Mölter, A., Fuertes, E., Klümper, C.,
Krämer, U., Quass, U., Hoffmann, B., Gascon, M., Brunekreef, B.,
Koppelman, G. H., Beelen, R., Hoek, G., Birk, M., Jongste, J. C. d., Smit,
H. A., Cyrys, J., Gruzieva, O., Korek, M., Bergström, A., Agius, R. M.,
Vocht, F. d., Simpson, A., Porta, D., Forastiere, F., Badaloni, C.,
Cesaroni, G., Esplugues, A., Fernández-Somoano, A., Lerxundi, A.,
Sunyer, J., Cirach, M., Nieuwenhuijsen, M. J., Pershagen, G., and Heinrich,
J.: Air Pollution and Respiratory Infections during Early Childhood: An
Analysis of 10 European Birth Cohorts within the ESCAPE Project, Environ.
Health Persp., 122, 107–113, https://doi.org/10.1289/ehp.1306755, 2014.
Maki, T., Hara, K., Kobayashi, F., Kurosaki, Y., Kakikawa, M., Matsuki, A.,
Chen, B., Shi, G., Hasegawa, H., and Iwasaka, Y.: Vertical distribution of
airborne bacterial communities in an Asian-dust downwind area, Noto
Peninsula, Atmos. Environ., 119, 282–293, https://doi.org/10.1016/j.atmosenv.2015.08.052, 2015.
Mallet, V.: Ensemble forecast of analyses: Coupling data assimilation and
sequential aggregation, J. Geophys. Res., 115, D24303, https://doi.org/10.1029/2010JD014259, 2010.
Mallet, V., Stoltz, G., and Mauricette, B.: Ozone ensemble forecast with
machine learning algorithms, J. Geophys. Res., 114, D05307, https://doi.org/10.1029/2008jd009978, 2009.
Manders, A. M. M., Builtjes, P. J. H., Curier, L., Denier van der Gon, H. A. C., Hendriks, C., Jonkers, S., Kranenburg, R., Kuenen, J. J. P., Segers, A. J., Timmermans, R. M. A., Visschedijk, A. J. H., Wichink Kruit, R. J., van Pul, W. A. J., Sauter, F. J., van der Swaluw, E., Swart, D. P. J., Douros, J., Eskes, H., van Meijgaard, E., van Ulft, B., van Velthoven, P., Banzhaf, S., Mues, A. C., Stern, R., Fu, G., Lu, S., Heemink, A., van Velzen, N., and Schaap, M.: Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model, Geosci. Model Dev., 10, 4145–4173, https://doi.org/10.5194/gmd-10-4145-2017, 2017.
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., and Bezirtzoglou, E.:
Environmental and Health Impacts of Air Pollution: A Review, Frontiers in Public Health, 8, 14, https://doi.org/10.3389/fpubh.2020.00014, 2020.
Manning, A. J., O'Doherty, S., Jones, A. R., Simmonds, P. G., and Derwent,
R. G.: Estimating UK methane and nitrous oxide emissions from 1990 to 2007
using an inversion modeling approach, J. Geophys. Res., 116, D02305, https://doi.org/10.1029/2010JD014763, 2011.
Mao, P., Li, J., Xiong, L., Wang, L., Wang,X., Tan, Y., and Li, H.:
Characterization of Urban Subway Microenvironment
Exposure – A Case of Nanjing in China, Int. J. Environ. Res. Public Health,
16, 625, https://doi.org/10.3390/ijerph16040625, 2019.
Maragkidou, A.: Exposure to coarse particles and floor dust
biological and chemical contamination inside Jordanian indoor environments,
University of Helsinki, Helsinki, PhD thesis, http://hdl.handle.net/10138/241380 (last access: 21 February 2022), 2018.
Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., Denier van der Gon, H. A. C., Drouin, A., Elbern, H., Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M., Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production, Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, 2015.
Maricq, M. M.: Chemical characterization of particulate emissions from
diesel engines: A review, J. Aerosol Sci., 38, 1079–1118,
https://doi.org/10.1016/j.jaerosci.2007.08.001, 2007.
Markandya, A., Sampedro, J., Smith, S., van Dingenen, R., Pizarro-Irizar,
C., Arto, I., and González-Eguino, M.: Health Co-benefits from Air
Pollution and Mitigation Costs of the Paris Agreement: Modelling Study,
Lancet, 2, E126–E113, 2018.
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives, Geosci. Model Dev., 8, 2515–2551, https://doi.org/10.5194/gmd-8-2515-2015, 2015.
Martilli, A., Santiago, J., and Salamanca, F.: On the representation of
urban heterogeneities in mesoscale models, Environ. Fluid Mech., 15,
305–328, 2015.
Mathur, R., Xing, J., Gilliam, R., Sarwar, G., Hogrefe, C., Pleim, J., Pouliot, G., Roselle, S., Spero, T. L., Wong, D. C., and Young, J.: Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: overview of process considerations and initial applications, Atmos. Chem. Phys., 17, 12449–12474, https://doi.org/10.5194/acp-17-12449-2017, 2017.
Matthey, A. and Bünger, B. C.: Methodenkonvention 3.0 zur Ermittlung von
Umweltkosten: Kostensätze: Stand 02/2019, Stand 02/2019, Broschüren/Umweltbundesamt, Umweltbundesamt, Dessau-Roßlau, 48 pp., https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-02-11_methodenkonvention-3-0_kostensaetze_korr.pdf (last access: 25 February 2022), 2019.
Matthias, V., Bewersdorff, I., Aulinger, A., and Quante, M.: The
contribution of ship emissions to air pollution in the North Sea regions,
Environ. Pollut., 158, 2241–2250, https://doi.org/10.1016/j.envpol.2010.02.013, 2010.
Matthias, V., Aulinger, A., Backes, A., Bieser, J., Geyer, B., Quante, M., and Zeretzke, M.: The impact of shipping emissions on air pollution in the greater North Sea region – Part 2: Scenarios for 2030, Atmos. Chem. Phys., 16, 759–776, https://doi.org/10.5194/acp-16-759-2016, 2016
Matthias, V., Arndt, J. A., Aulinger, A., Bieser, J., van der Denier Gon,
H., Kranenburg, R., Kuenen, J., Neumann, D., Pouliot, G., and Quante, M.:
Modeling emissions for three-dimensional atmospheric chemistry transport
models, J. Air Waste Manage., 68, 763–800, https://doi.org/10.1080/10962247.2018.1424057, 2018.
Matthias, V., Bieser, J., Mocanu, T., Pregger, T., Quante, M., Ramacher, M.
O. P., Seum, S., and Winkler, C.: Modelling road transport emissions in
Germany – Current day situation and scenarios for 2040, Transport. Res.
D-Tr. E., 87, 102536, https://doi.org/10.1016/j.trd.2020.102536, 2020a.
Matthias, V., Bieser, J., Quante, M., Seum, S., and Winkler, C.: Impact of
traffic emissions in 2040 on air quality in Germany, in: Proceedings of 12th
International Conference on Air Quality, Science and Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 31, https://doi.org/10.18745/pb.22217, 2020b.
McCarthy, M. P., Best, M. J., and Betts, R. A.: Climate change in cities due
to global warming and urban effects, Geophys. Res. Lett., 37, L09705, https://doi.org/10.1029/2010GL042845, 2010.
McDonald, B. C., Gouw, J. A. d., Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,
Cui, Y. Y., Kim, S.-W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.
H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and
Trainer, M.: Volatile chemical products emerging as largest petrochemical
source of urban organic emissions, Science, 359, 760–764, https://doi.org/10.1126/science.aaq0524, 2018.
McNider, R. T. and Pour-Biazar, A.: Meteorological modeling relevant to
mesoscale and regional air quality applications: a review, J. Air Waste
Manage., 70, 2–43, https://doi.org/10.1080/10962247.2019.1694602, 2020.
Michaelis, A. C., Lackmann, G. M., and Robinson, W. A.: Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 5.1, Geosci. Model Dev., 12, 3725–3743, https://doi.org/10.5194/gmd-12-3725-2019, 2019.
Mihăiţă, A. S., Dupont, L., Chery, O., Camargo, M., and Cai, C.:
Evaluating air quality by combining stationary, smart mobile pollution
monitoring and data-driven modelling, J. Clean. Prod., 221, 398–418, https://doi.org/10.1016/j.jclepro.2019.02.179, 2019.
Mircea, M., Calori, G., Pirovano, G., and Belis, C. A.: European guide on
air pollution source apportionment for particulate matter with
source-oriented models and their combined use with receptor models, JRC, 66 pp., https://doi.org/10.2760/470628, 2020.
Molina, L. T.: Introductory lecture: air quality in megacities, Faraday
Discuss., 226, 9–52, https://doi.org/10.1039/d0fd00123f, 2021.
Monteiro, A., Durka, P., Flandorfer, C., Georgieva, E., Guerreiro, C.,
Kushta, J., Malherbe, L., Maiheu, B., Miranda, A. I., Santos, G., Stocker,
J., Trimpeneers, E., Tognet, F., Stortini, M., Wesseling, J., Janssen, S.,
and Thunis, P.: Strengths and weaknesses of the FAIRMODE benchmarking
methodology for the evaluation of air quality models, Air Qual. Atmos.
Hlth., 11, 373–383, https://doi.org/10.1007/s11869-018-0554-8, 2018.
Morakinyo, O., Mokgobu, M., Mukhola, M., and Hunter, R.: Health Outcomes of
Exposure to Biological and Chemical Components of Inhalable and Respirable
Particulate Matter, Int. J. Env. Res. Pub. He., 13, 592, https://doi.org/10.3390/ijerph13060592, 2016.
Morawska, L., He, C., Johnson, G., Jayaratne, R., Salthammer, T., Wang, H.,
Uhde, E., Bostrom, T., Modini, R., Ayoko, G., McGarry, P., and Wensing, M.:
An investigation into the characteristics and formation mechanisms of
particles originating from the operation of laser printers, Environ. Sci.
Technol., 43, 1015–1022, https://doi.org/10.1021/es802193n, 2009.
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova,
A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G.
S. W., Jayaratne, R., Kumar, P., Lau, A. K. H., Louie, P. K. K., Mazaheri,
M., Ning, Z., Motta, N., Mullins, B., Rahman, M. M., Ristovski, Z., Shafiei,
M., Tjondronegoro, D., Westerdahl, D., and Williams, R.: Applications of
low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone?, Environ. Int., 116, 286–299,
https://doi.org/10.1016/j.envint.2018.04.018, 2018.
Moussiopoulos, N., Tsegas, G., and Chourdakis, E.: The impact of port
operations on air quality in Piraeus and the surrounding urban areas, in:
Air Pollution Modelling and its Application, edited by: Mensink, C., Gong, W., and Hakami, A., 159–164, https://doi.org/10.1007/978-3-030-22055-6_25, 2019.
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E.,
and Pipilis, I. (Eds.): Proceedings of 12th International Conference on Air
Quality, Science and Application, Hatfield, UK, 162 pp., https://doi.org/10.18745/pb.22217, 2020.
Mues, A., Kuenen, J., Hendriks, C., Manders, A., Segers, A., Scholz, Y., Hueglin, C., Builtjes, P., and Schaap, M.: Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions, Atmos. Chem. Phys., 14, 939–955, https://doi.org/10.5194/acp-14-939-2014, 2014.
Munir, S., Mayfield, M., Coca, D., and Jubb, S. A.: Structuring an
integrated air quality monitoring network in large urban areas – Discussing
the purpose, criteria and deployment strategy, Atmos. Environ. X, 2, 100027, https://doi.org/10.1016/j.aeaoa.2019.100027, 2019.
Murena, F. and Prati, M. V.: The contribution of high emitters vehicles to
FPS number concentration in the historical centre of Naples, in: Proceedings
of 12th International Conference on Air Quality, Science and Application,
edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 161, https://doi.org/10.18745/pb.22217, 2020.
Mussetti, G., Brunner, D., Henne, S., Allegrini, J., Krayenhoff, E. S., Schubert, S., Feigenwinter, C., Vogt, R., Wicki, A., and Carmeliet, J.: COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees, Geosci. Model Dev., 13, 1685–1710, https://doi.org/10.5194/gmd-13-1685-2020, 2020.
Navrud, S. and Ready, R. C.: Environmental value transfer: issues and
methods, The economics of non-market goods and resources, Springer,
Dordrecht, 9, 290 pp., 2007.
Nemery, B., Hoet, P. H. M., and Nemmar, A.: The Meuse Valley fog of 1930: an air pollution disaster, Lancet, 357, 704–708, https://doi.org/10.1016/s0140-6736(00)04135-0, 2001.
Ngan, F., Loughner, C. P., and Stein, A.: The evaluation of mixing methods
in HYSPLIT using measurements from controlled tracer experiments, Atmos.
Environ., 219, 117043, https://doi.org/10.1016/j.atmosenv.2019.117043, 2019.
Nguyen, C. V. and Soulhac, L.: Data assimilation methods for urban air
quality at the local scale, Atmos. Environ., 253, 118366, https://doi.org/10.1016/j.atmosenv.2021.118366, 2021.
Nieuwenhuijsen, M. J., Gomez-Perales, J. E., and Colvile, R. N.: Levels of
particulate air pollution, its elemental composition, determinants and
health effects in metro systems, Atmos. Environ., 41, 7995–8006, 2007.
Niemeyer, L. E.: Forecasting air pollution potential, Mon. Weather Rev., 88, 88–96, 1960.
Nuterman, R., Starchenko, A., and Baklanov, A.: Numerical Model of Urban
Aerodynamics and Pollution Dispersion, Int. J. Environ. Pollut., 44, 385–393, 2011.
Nuterman, R., Mahura, A., Baklanov, A., Amstrup, B., and Zakey, A.: Downscaling system for modeling of atmospheric composition on regional, urban and street scales, Atmos. Chem. Phys., 21, 11099–11112, https://doi.org/10.5194/acp-21-11099-2021, 2021.
OECD: OECD Environmental Outlook to 2050: The Consequences of Inaction, OECD
Publishing, Paris, https://doi.org/10.1787/9789264122246-en, 2012.
OECD: Cost-Benefit Analysis and the Environment – Further Developments and
Policy Use, OECD Publishing, Paris, https://doi.org/10.1787/9789264085169-en, 2018.
Ogen, Y.: Assessing nitrogen dioxide (NO2) levels as a contributing factor
to coronavirus (COVID-19) fatality, Sci. Total Environ., 726, 138605, https://doi.org/10.1016/j.scitotenv.2020.138605, 2020.
Ostro, B., Lipsett, M., Reynolds, P., Goldberg, D., Hertz, A., Garcia, C.,
Henderson, K. D., and Bernstein, L.: Long-term exposure to constituents of
fine particulate air pollution and mortality: results from the California
Teachers Study, Environ. Health Persp., 118, 363–369, https://doi.org/10.1289/ehp.0901181, 2010.
Ostro, B., Reynolds, P., Goldberg, D., Hertz, A., Burnett, R. T., Shin, H.,
Hughes, E., Garcia, C., Henderson, K. D., Bernstein, L., and Lipsett, M.:
Assessing Long-Term Exposure in the California Teachers Study, Environ.
Health Persp., 119, A242–A243, https://doi.org/10.1289/ehp.119-3114832, 2011.
Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., and
Kleeman, M. J.: Associations of Mortality with Long-Term Exposures to Fine
and Ultrafine Particles, Species and Sources: Results from the California
Teachers Study Cohort, Environ. Health Persp., 123, 549–556, https://doi.org/10.1289/ehp.1408565, 2015.
Otalora, M., Soulhac, L., Nguyen, C. V., and Derognat, C.: Challenges in the
assimilation of mobile sensors data for urban air quality – analysis of a
Paris study, in: Proceedings of 12th International Conference on Air
Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S.,
Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis I., Hatfield, UK, p. 117, https://doi.org/10.18745/pb.22217, 2020.
Ots, R., Heal, M. R., Young, D. E., Williams, L. R., Allan, J. D., Nemitz, E., Di Marco, C., Detournay, A., Xu, L., Ng, N. L., Coe, H., Herndon, S. C., Mackenzie, I. A., Green, D. C., Kuenen, J. J. P., Reis, S., and Vieno, M.: Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions, Atmos. Chem. Phys., 18, 4497–4518, https://doi.org/10.5194/acp-18-4497-2018,
2018.
Ott, W., Baur, M., Kaufmann, Y., Frischknecht, R., and Steiner, R.: Assessment of Biodiversity Losses – Monetary Valuation of Biodiversity Losses due to Land Use Changes and Airborne Emissions, Deliverable D.4.2.-RS 1b/WP4 of the EU FP6 project No. 02687 NEEDS, https://www.econcept.ch/en/focus/needs-new-energy-externalities-developments-sustainability/ (last access: 25 February 2022), 2006.
Papadogeorgou, G., Kioumourtzoglou, M.-A., Braun, D., and Zanobetti, A.: Low
Levels of Air Pollution and Health: Effect Estimates, Methodological
Challenges, and Future Directions, Current Environmental Health Reports, 6,
105–115, https://doi.org/10.1007/s40572-019-00235-7, 2019.
Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., Borlaza, L. J.
S., Lim, H., Shin, H., Chung, K. H., Choi, Y.-H., Park, S. G., Bae, M.-S.,
Lee, J., Song, H., and Park, K.: Differential toxicities of fine particulate
matters from various sources, Sci. Rep., 8, 17007, https://doi.org/10.1038/s41598-018-35398-0, 2018.
Parra, R.: Effects of global meteorological datasets in modeling meteorology
and air quality in the andean region of southern Ecuador, in: Proceedings of
12th International Conference on Air Quality, Science and Application,
edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 54, https://doi.org/10.18745/pb.22217, 2020.
Paunu, V.-V., Karvosenoja, N., D., S., Lopez-Aparicio, S., Nielsen, O.-K.,
Plejdrup, M. S., Vo, D. T., Thorsteinsson, T., Denier van der Gon, H.,
Brandt, J., and Geels, C.: New Nordic emission inventory – spatial
distribution of machinery and residential combustion emissions, in:
Proceedings of 12th International Conference on Air Quality, Science and
Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 17, https://doi.org/10.18745/pb.22217, 2020.
Pavlovic, R., Belair, S., Leroyer, S., Nikiema, O., Popadic, I., Munoz-Alpizar, R., and Stroud, C.: Urban meteorology and air quality as a function of different urban features, in: Proceedings of 12th International Conference on Air Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 151, https://doi.org/10.18745/pb.22217, 2020.
Pedersen, M., Giorgis-Allemand, L., Bernard, C., Aguilera, I., Andersen,
A.-M. N., Ballester, F., Beelen, R. M. J., Chatzi, L., Cirach, M.,
Danileviciute, A., Dedele, A., van Eijsden, M., Estarlich, M.,
Fernández-Somoano, A., Fernández, M. F., Forastiere, F., Gehring,
U., Grazuleviciene, R., Gruzieva, O., Heude, B., Hoek, G., Hoogh, K. d., van
den Hooven, E. H., Håberg, S. E., Jaddoe, V. W. V., Klümper, C.,
Korek, M., Krämer, U., Lerchundi, A., Lepeule, J., Nafstad, P., Nystad,
W., Patelarou, E., Porta, D., Postma, D., Raaschou-Nielsen, O., Rudnai, P.,
Sunyer, J., Stephanou, E., Sørensen, M., Thiering, E., Tuffnell, D.,
Varró, M. J., Vrijkotte, T. G. M., Wijga, A., Wilhelm, M., Wright, J.,
Nieuwenhuijsen, M. J., Pershagen, G., Brunekreef, B., Kogevinas, M., and
Slama, R.: Ambient air pollution and low birthweight: a European cohort
study (ESCAPE), Lancet Resp. Med., 1, 695–704,
https://doi.org/10.1016/s2213-2600(13)70192-9, 2013.
Pelliccioni, A. and Tirabassi, T.: Air dispersion model and neural network:
a new perspective for integrated models in the simulation of complex
situations, Environ. Modell. Softw., 21, 539–546, 2006.
Peters, A., Dockery, D. W., Muller, J. E., and Mittleman, M. A.: Increased
Particulate Air Pollution and the Triggering of Myocardial Infarction,
Circulation, 103, 2810–2815, https://doi.org/10.1161/01.Cir.103.23.2810, 2001.
Petroff, A. and Zhang, L.: Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geosci. Model Dev., 3, 753–769, https://doi.org/10.5194/gmd-3-753-2010, 2010.
Petroff, A., Mailliat, A., Amielh, M., and Anselmet, F.: Aerosol dry
deposition on vegetative canopies. Part II: A new modeling approach and
applications, Atmos. Environ., 42, 3654–3683, 2008.
Pfister, G., Eastham, S., Arellano, A. F., Aumont, B., Barsanti, K., Barth,
M., Conley, A., Davis, N., Emmons, L., Fast, J., Fiore, A., Gaubert, B.,
Goldhaber, S., Granier, C., Grell, G., Guevara, M., Henze, D., Hodzic, A.,
Liu, X., Marsh, D., Orlando, J., Plane, J., Polvani, L., Rosenlof, K.,
Steiner, A., Jacob, D., and Brasseur, G.: The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), B. Am. Meteorol. Soc., 101, E1743–E1760,
https://doi.org/10.1175/bams-d-19-0331.1, 2020.
Phosri, A., Ueda, K., Phung, V. L. H., Tawatsupa, B., Honda, A., and Takano,
H.: Effects of ambient air pollution on daily hospital admissions for
respiratory and cardiovascular diseases in Bangkok, Thailand, Sci. Total
Environ., 651, 1144–1153, https://doi.org/10.1016/j.scitotenv.2018.09.183, 2019.
Pisoni, E. and Van Dingenen, R.: Comment to the paper “Assessing nitrogen
dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19)
fatality”, by Ogen, 2020, Sci. Total Environ., 738, 139853,
https://doi.org/10.1016/j.scitotenv.2020.139853, 2020.
Pleim, J., Mathur, R., Rao, S. T., Fast, J., and Baklanov, A.: Integrated
Meteorology and Chemistry Modeling: Evaluation and Research Needs, B. Am. Meteorol. Soc., 95, ES81– ES84, https://doi.org/10.1175/BAMS-D-13-00107.1, 2014.
Plejdrup, M. S., Nielsen, O.-K., and Brandt, J.: Spatial emission modelling
for residential wood combustion in Denmark, Atmos. Environ., 144, 389–396,
https://doi.org/10.1016/j.atmosenv.2016.09.013, 2016.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D.,
Ito, K., and Thurston, G. D.: Lung Cancer, Cardiopulmonary Mortality, and
Long-term Exposure to Fine Particulate Air Pollution, JAMA-J. Am. Med. Assoc., 287, 1132–1141, https://doi.org/10.1001/jama.287.9.1132, 2002.
Pope III, C. A., Lefler, J. S., Ezzati, M., Higbee, J. D., Marshall, J. D., Kim, S.-Y., Bechle, M., Gilliat, K. S., Vernon, S. E., Robinson, A. L., and
Burnett, R. T.: Mortality Risk and Fine Particulate Air Pollution in a
Large, Representative Cohort of U.S. Adults, Environ. Health Persp., 127,
077007, https://doi.org/10.1289/ehp4438, 2019.
Pope III, C. A., Coleman, N., Pond, Z. A., and Burnett, R. T.: Fine particulate
air pollution and human mortality: 25+ years of cohort studies, Environ.
Res., 183, 108924, https://doi.org/10.1016/j.envres.2019.108924, 2020.
Poulsen, A. H., Hvidtfeldt U. A., Sørensen, M., Puett, R., Ketzel, M., Brandt, J., Christensen, J. H., Geels, C., and Raaschou-Nielsen, O.: Components of particulate matter air-pollution and brain tumors, Environ. Int., 144, 106046, https://doi.org/10.1016/j.envint.2020.106046, 2020.
Prank, M., Sofiev, M., Tsyro, S., Hendriks, C., Semeena, V., Vazhappilly Francis, X., Butler, T., Denier van der Gon, H., Friedrich, R., Hendricks, J., Kong, X., Lawrence, M., Righi, M., Samaras, Z., Sausen, R., Kukkonen, J., and Sokhi, R.: Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005, Atmos. Chem. Phys., 16, 6041–6070, https://doi.org/10.5194/acp-16-6041-2016, 2016.
Pražnikar, Z. and Pražnikar, J.: The effects of particulate matter
air pollution on respiratory health and on the cardiovascular system,
Slovenian Journal of Public Health, 51, 190–199, https://doi.org/10.2478/v10152-012-0022-z, 2012.
Pregger, T. and Friedrich, R.: Effective pollutant emission heights for
atmospheric transport modelling based on real-world information, Environ.
Pollut., 157, 552–560, https://doi.org/10.1016/j.envpol.2008.09.027, 2009.
Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia,
M., Weinmayr, G., Hoffmann, B., Fischer, P., Nieuwenhuijsen, M. J.,
Brunekreef, B., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Sommar, J.,
Forsberg, B., Modig, L., Oudin, A., Oftedal, B., Schwarze, P. E., Nafstad,
P., Faire, U. d., Pedersen, N. L., Östenson, C.-G., Fratiglioni, L.,
Penell, J., Korek, M., Pershagen, G., Eriksen, K. T., Sørensen, M.,
Tjønneland, A., Ellermann, T., Eeftens, M., Peeters, P. H., Meliefste,
K., Wang, M., Bueno-de-Mesquita, B., Key, T. J., Hoogh, K. d., Concin, H.,
Nagel, G., Vilier, A., Grioni, S., Krogh, V., Tsai, M.-Y., Ricceri, F.,
Sacerdote, C., Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni,
C., Forastiere, F., Tamayo, I., Amiano, P., Dorronsoro, M., Trichopoulou,
A., Bamia, C., Vineis, P., and Hoek, G.: Air pollution and lung cancer
incidence in 17 European cohorts: prospective analyses from the European
Study of Cohorts for Air Pollution Effects (ESCAPE), Lancet Oncol., 14,
813–822, https://doi.org/10.1016/s1470-2045(13)70279-1, 2013.
Raaschou-Nielsen, O., Beelen, R., Wang, M., Hoek, G., Andersen, Z. J.,
Hoffmann, B., Stafoggia, M., Samoli, E., Weinmayr, G., Dimakopoulou, K.,
Nieuwenhuijsen, M., Xun, W. W., Fischer, P., Eriksen, K. T., Sørensen,
M., Tjønneland, A., Ricceri, F., Hoogh, K. d., Key, T., Eeftens, M.,
Peeters, P. H., Bueno-de-Mesquita, H. B., Meliefste, K., Oftedal, B.,
Schwarze, P. E., Nafstad, P., Galassi, C., Migliore, E., Ranzi, A.,
Cesaroni, G., Badaloni, C., Forastiere, F., Penell, J., Faire, U. d., Korek,
M., Pedersen, N., Östenson, C.-G., Pershagen, G., Fratiglioni, L.,
Concin, H., Nagel, G., Jaensch, A., Ineichen, A., Naccarati, A., Katsoulis,
M., Trichpoulou, A., Keuken, M., Jedynska, A., Kooter, I. M., Kukkonen, J.,
Brunekreef, B., Sokhi, R. S., Katsouyanni, K., and Vineis, P.: Particulate
matter air pollution components and risk for lung cancer, Environ. Int., 87,
66–73, https://doi.org/10.1016/j.envint.2015.11.007, 2016.
Raaschou-Nielsen, O., Thorsteinson, E., Antonsen, S., Holst, G. J.,
Sigsgaard, T., Geels, C., Frohn, L. M., Christensen, J. H., Brandt, J.,
Pedersen, C. B., and Hvidtfeldt, U. A.: Long-term exposure to air pollution
and mortality in the Danish population a nationwide study,
eClinicalMedicine, 28, 100605, https://doi.org/10.1016/j.eclinm.2020.100605, 2020.
Ramacher, M. O. P., Karl, M., Bieser, J., Jalkanen, J.-P., and Johansson, L.: Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities – a generic approach, Atmos. Chem. Phys., 19, 9153–9179, https://doi.org/10.5194/acp-19-9153-2019, 2019.
Ramacher, M. O. P., Tang, L., Moldanová, J., Matthias, V., Karl, M., Fridell, E., and Johansson, L.: The impact of ship emissions on air quality and human health in the Gothenburg area – Part II: Scenarios for 2040, Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020, 2020.
Rao, S. T., Luo, H., Astitha, M., Hogrefe, C., Garcia, V., and Mathur, R.: On the limit to the accuracy of regional-scale air quality models, Atmos. Chem. Phys., 20, 1627–1639, https://doi.org/10.5194/acp-20-1627-2020, 2020.
Rees, N., Wickham, A., and Choi, Y.: Silent Suffocation in Africa – Air
Pollution is a Growing Menace, Affecting the Poorest Children the Most,
United Nations Children's Fund (UNICEF), New York, https://www.unicef.org/media/55081/file/Silentsuffocationinafricaairpollution201920.pdf
(last access: 21 February 2022), 2019.
Resler, J., Geletič, J., Krč, P., Eben, K., Belda, M., Fuka, L.,
Huszár, P., Karlický, J., Vlček, O., Benešová, N.,
Keder, J., Bauerová, P., Škáchová, H., Ďoubalová,
J., Žák, M., Sühring, M., and Schwenkel, J.: Validation of the
air quality and meteorological values modelled by PALM-4U model against
observation campaign in Prague-Dejvice, in: Proceedings of 12th
International Conference on Air Quality, Science and Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., Pipilis, I., Hatfield, UK, p. 160, https://doi.org/10.18745/pb.22217, 2020.
Ribeiro, I., Martilli, A., Falls, M., Zonato, A., and Villalba, G.: Highly
resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ, Atmos.
Res., 248, 105220, https://doi.org/10.1016/j.atmosres.2020.105220, 2021.
Robock, A., Oman, L., and Stenchikov, G. L.: Nuclear winter revisited with a
modern climate model and current nuclear arsenals: Still catastrophic
consequences, J. Geophys. Res., 112, D13107, https://doi.org/10.1029/2006JD008235, 2007.
Rodins, V., Lucht, S., Ohlwein, S., Hennig, F., Soppa, V., Erbel, R.,
Jöckel, K.-H., Weimar, C., Hermann, D. M., Schramm, S., Moebus, S.,
Slomiany, U., and Hoffmann, B.: Long-term exposure to ambient
source-specific particulate matter and its components and incidence of
cardiovascular events – The Heinz Nixdorf Recall study, Environ. Int., 142,
105854, https://doi.org/10.1016/j.envint.2020.105854, 2020.
Rodriguez, D., Parent, E., Eymard, L., Valari, M., and Payan, S.: NOX and PM10 Bayesian concentration estimates using high-resolution numerical simulations and ground measurements over Paris, France, Atmos. Environ. X, 3, 100038, https://doi.org/10.1016/j.aeaoa.2019.100038, 2019.
Roos, J.: Ermittlung und Bewertung von vermiedenen Gesundheitsschäden im Rahmen der Technikbewertung, Universität Stuttgart, https://doi.org/10.18419/opus-9177, 2017.
Russell, W. T.: The relative influence of fog and low temperature on the
mortality from respiratory disease, Lancet, 2, 1128, https://doi.org/10.1016/S0140-6736(01)02367-4, 1926.
Sakai, R., Sasaki, D., Obayashi, S., and Nakahashi, K.: Wavelet-based data
compression for flow simulation on block-structured Cartesian mesh, Int. J.
Numer. Meth. Fl., 73, 462–476, https://doi.org/10.1002/fld.3808, 2013.
Sakellaris, I., Bartzis, J., Neuhäuser, J., Friedrich, R., Gotti, A.,
and Sarigiannis, D.: A novel approach for air quality trend studies and its
application to European urban environments: The ICARUS project, Atmos. Environ., 273, 118973, https://doi.org/10.1016/j.atmosenv.2022.118973, 2022.
Salamanca, F., Martilli, A., Tewari, M., and Chen, F.: A Study of the Urban
Boundary Layer Using Different Urban Parameterizations and High-Resolution
Urban Canopy Parameters with WRF, J. Appl. Meteorol. Clim., 50, 1107–1128, https://doi.org/10.1175/2010jamc2538.1, 2011.
Salamanca, F., Zhang, Y., Barlage, M., Chen, F., Mahalov, A., and Miao, S.:
Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land
Surface Models Over a Semiarid Urban Environment, J. Geophys. Res.-Atmos.,
123, 2387–2408, https://doi.org/10.1002/2018jd028377, 2018.
Salthammer, T., Schripp, T., Wientzek, S., and Wensing, M.: Impact of
operating wood-burning fireplace ovens on indoor air quality, Chemosphere,
103, 205–211, https://doi.org/10.1016/j.chemosphere.2013.11.067, 2014.
Samoli, E., Stafoggia, M., Rodopoulou, S., Ostro, B., Declercq, C.,
Alessandrini, E., Díaz, J., Karanasiou, A., Kelessis, A. G., Le Tertre,
A., Pandolfi, P., Randi, G., Scarinzi, C., Zauli-Sajani, S., Katsouyanni,
K., and Forastiere, F.: Associations between Fine and Coarse Particles and
Mortality in Mediterranean Cities: Results from the MED-PARTICLES Project,
Environ. Health Persp., 121, 932–938, https://doi.org/10.1289/ehp.1206124, 2013.
San José, R., Pérez, J. L., Pérez, L., and Gonzalez, R. M.: A
multiscale simulation tool to assess the effects of nature-based solutions
(NBS) in urban air quality, in: Proceedings of 12th International Conference
on Air Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis I., Hatfield, UK, p. 10, https://doi.org/10.18745/pb.22217, 2020.
Santiago, J. L., Borge, R., Martin, F., La Paz, D. d., Martilli, A.,
Lumbreras, J., and Sanchez, B.: Evaluation of a CFD-based approach to
estimate pollutant distribution within a real urban canopy by means of
passive samplers, Sci. Total Environ., 576, 46–58, https://doi.org/10.1016/j.scitotenv.2016.09.234, 2017.
Saraga, D., Maggos, T., Degrendele, C., Klanova, J., Horvat, M., Kocman, D.,
Kanduc, T., Dos Santos, S. G., Franco, R., Gomez, P. M., Manousakas, M.,
Bairachtari, K., Eleftheriadis, K., Kermenidou, M., Karakitsios, S., Gotti,
A., and Sarigiannis, D.: Multi-city comparative PM2.5 source apportionment for fifteen sites in Europe: The ICARUS project, Sci. Total
Environ., 751, 141855, https://doi.org/10.1016/j.scitotenv.2020.141855, 2021.
Sarigiannis, D. and Karakitsios, S.: Report on the methodology for estimating health effects of individuals or population groups and health impact results in the ICARUS participating cities, Deliverable D4.3 of the EU Horizon 2020 project ICARUS, 45 pp., https://icarus2020.eu/wp-content/uploads/2018/06/ICARUS_D4.3.pdf (last access: 25 February 2022), 2018.
Savolahti, M., Karvosenoja, N., Soimakallio, S., Kupiainen, K., Tissari, J.,
and Paunu, V.-V.: Near-term climate impacts of Finnish residential wood
combustion, Energ. Policy, 133, 110837, https://doi.org/10.1016/j.enpol.2019.06.045, 2019.
Schade, S., Herding, W., Fellermann, A., and Kotsev, A.: Joint Statement on
new opportunities for air quality sensing – lower-cost sensors for public
authorities and citizen science initiatives, Research Ideas and Outcomes, 5, e34059, https://doi.org/10.3897/rio.5.e34059, 2019.
Schäfer, K., Lande, K., Grimm, H., Jenniskens, G., Gijsbers, R.,
Ziegler, V., Hank, M., and Budde, M.: High-resolution Assessment of Air
Quality in Urban Areas – A Business Model Perspective, Atmosphere, 12, 595,
https://doi.org/10.3390/atmos12050595, 2021.
Scherer, D., Ament, F., Emeis, S., Fehrenbach, U., Leitl, B., Scherber, K.,
Schneider, C., and Vogt, U.: Three-Dimensional Observation of Atmospheric
Processes in Cities, Meteorol. Z., 28, 121–138, 2019.
Schieberle, C.: Development of a stochastic optimization approach to
determine cost-efficient environmental protection strategies: case study of
policies for the future European passenger transport sector with a focus on
rail-bound and on-road activities, Institut fuer Energiewirtschaft und
Rationelle Energieanwendung, Universitaet Stuttgart, Stuttgart, https://doi.org/10.18419/opus-10473, 2019.
Schmid, D.: D2.1 Report and data on emission inventory at EU-wide level for the considered pollutants and GHGs for the
years 2015, 2020 and 2030, EU Horizon 2020 Project: 690105 – ICARUS, https://icarus2020.eu/wp-content/uploads/2018/03/ICARUS-Deliverable-D2.1_FINAL_REVISED.pdf (last access: 22 February 2022), 2018.
Schmid, D., Korkmaz, P., Blesl, M., Fahl, U., and Friedrich, R.: Analyzing
transformation pathways to a sustainable European energy system – Internalization of health damage costs caused by air pollution,
Energy Strateg. Rev., 26, 100417, https://doi.org/10.1016/j.esr.2019.100417, 2019.
Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., and
Bartonova, A.: Mapping urban air quality in near real-time using
observations from low-cost sensors and model information, Environ. Int.,
106, 234–247, https://doi.org/10.1016/j.envint.2017.05.005, 2017.
Schraufnagel, D. E., Balmes, J. R., Cowl, C. T., Matteis, S. d., Jung,
S.-H., Mortimer, K., Perez-Padilla, R., Rice, M. B., Riojas-Rodriguez, H.,
Sood, A., Thurston, G. D., To, T., Vanker, A., and Wuebbles, D. J.: Air
Pollution and Noncommunicable Diseases, Chest, 155, 409–416, https://doi.org/10.1016/j.chest.2018.10.042, 2019.
Schrenk, H. H.: Air pollution in Donora, Pa, Federal Security Agency Public
Health Service Bureau of State Services Division of Industrial Hygiene,
Washington, Public health bulletin no. 306, 173 pp., 1949.
Schripp, T., Kirsch, I., and Salthammer, T.: Characterization of particle
emission from household electrical appliances, Sci. Total Environ., 409,
2534–2540, https://doi.org/10.1016/j.scitotenv.2011.03.033, 2011.
Schripp, T., Markewitz, D., Uhde, E., and Salthammer, T.: Does e-cigarette
consumption cause passive vaping?, Indoor Air, 23, 25–31, https://doi.org/10.1111/j.1600-0668.2012.00792.x, 2013.
Schripp, T., Salthammer, T., Wientzek, S., and Wensing, M.: Chamber studies
on nonvented decorative fireplaces using liquid or gelled ethanol fuel,
Environ. Sci. Technol., 48, 3583–3590, 2014.
Schrödner, R., Genz, C., Heinold, B., Baars, H., Henning, S., Madenach,
N., Carbajal Henken, C., Costa Surós, M., Sourdeval, O., Hesemann, J.,
Brueck, M., Cioni, G., Hoose, C., Tegen, I., and Quaas, J.: Aerosol-cloud
interaction in 1985 and today, in: Proceedings of 12th International
Conference on Air Quality, Science and Application, edited by: Moussiopoulos,
N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 61, https://doi.org/10.18745/pb.22217, 2020.
Schubert, S. and Grossman-Clarke, S.: Evaluation of the coupled
COSMO-CLM/DCEP model with observations from BUBBLE, Q. J. Roy. Meteor. Soc.,
140, 2465–2483, https://doi.org/10.1002/qj.2311, 2014.
Schwartz, J., Dockery, D. W., and Neas, L. M.: Is Daily Mortality Associated
Specifically with Fine Particles?, J. Air Waste Manage., 46, 927–939,
https://doi.org/10.1080/10473289.1996.10467528, 1996.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 3rd edn., John Wiley & Sons, 1152 pp., ISBN: 978-1-118-94740-1, 2016.
Sevilla, I., Chrobocinski, P., Barmpas, F., Schmidt, F., Kerle, N., Kostaridis, A., Doulamis, A., Russotto, R., and Huang, R.: Improving Resilience of Transport Instrastructure to Climate Change and other natural and Manmande events based on the combined use of Terrestrial and Airbone Sensors and Advanced Modelling Tools, 14∘ Congreso Nacional del Medio Ambiente (CONAMA 2018), November 2018, MADRID, Spain, 11 pp., hal-02280917v2, 2018.
Shaddick, G., Thomas, M. L., Mudu, P., Ruggeri, G., and Gumy, S.: Half the
world's population are exposed to increasing air pollution, npj Climate and
Atmospheric Science, 3, 23, https://doi.org/10.1038/s41612-020-0124-2, 2020.
Shaddick, G., Salter, J. M., Peuch, V.-H., Ruggeri, G., Thomas, M. L., Mudu,
P., Tarasova, O., Baklanov, A., and Gumy, S.: Global Air Quality: An
Inter-Disciplinary Approach to Exposure Assessment for Burden of Disease
Analyses, Atmosphere, 12, 48, https://doi.org/10.3390/atmos12010048, 2021.
Sharma, A., Fernando, H. J. S., Hamlet, A. F., Hellmann, J. J., Barlage, M.,
and Chen, F.: Urban meteorological modeling using WRF: A sensitivity study,
Int. J. Climatol., 37, 1885–1900, https://doi.org/10.1002/joc.4819, 2017.
Siddika, N., Rantala, A. K., Antikainen, H., Balogun, H., Amegah, A. K.,
Ryti, N. R. I., Kukkonen, J., Sofiev, M., Jaakkola, M. S., and Jaakkola, J.
J. K.: Synergistic effects of prenatal exposure to fine particulate matter
(PM2.5) and ozone (O3) on the risk of preterm birth: A population-based cohort study, Environ. Res., 176, 108549, https://doi.org/10.1016/j.envres.2019.108549, 2019.
Siddika, N., Rantala, A. K., Antikainen, H., Balogun, H., Amegah, A. K.,
Ryti, N. R. I., Kukkonen, J., Sofiev, M., Jaakkola, M. S., and Jaakkola, J.
J. K.: Short-term prenatal exposure to ambient air pollution and risk of
preterm birth – A population-based cohort study in Finland, Environ. Res.,
184, 109290, https://doi.org/10.1016/j.envres.2020.109290, 2020.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Singh, V., Sokhi, R. S., and Kukkonen, J.: PM2.5 concentrations in London for 2008 – A modeling analysis of contributions from road traffic, J. Air Waste Manage., 64, 509–518, https://doi.org/10.1080/10962247.2013.848244, 2014.
Singh, V., Sokhi, R. S., Beig, G., Biswal, A., Sahu, S. K., Sandeepan, S.,
Stanley, W., Momoh, K., and Fritz, S. C.: Analysis of air quality in the
megacity of Delhi with observations and a multiscale coupled modelling
system, in: Proceedings of 12th International Conference on Air Quality,
Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 150,
https://doi.org/10.18745/pb.22217, 2020a.
Singh, V., Sokhi, R. S., and Kukkonen, J.: An approach to predict population
exposure to ambient air PM2.5 concentrations and its dependence on
population activity for the megacity London, Environ. Pollut., 257, 113623,
https://doi.org/10.1016/j.envpol.2019.113623, 2020b.
Skamarock, W. C., Duda, M. G., Ha, S., and Park, S.-H.: Limited-Area
Atmospheric Modeling Using an Unstructured Mesh, Mon. Weather Rev., 146,
3445–3460, https://doi.org/10.1175/mwr-d-18-0155.1, 2018.
Skjøth, C. A., Geels, C., Berge, H., Gyldenkærne, S., Fagerli, H., Ellermann, T., Frohn, L. M., Christensen, J., Hansen, K. M., Hansen, K., and Hertel, O.: Spatial and temporal variations in ammonia emissions – a freely accessible model code for Europe, Atmos. Chem. Phys., 11, 5221–5236, https://doi.org/10.5194/acp-11-5221-2011, 2011.
Smith, T. W. P., Jalkanen, J. P., Anderson, B. A., Corbett, J. J., Faber,
J., Hanayama, S., O'Keeffe, E., Parker, S., Johansson, L., Aldous, L.,
Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D. S., Ng, S.,
Agrawal, A., Winebrake, J. J., Hoen, M., Chesworth, S., and Pandey, A.: Third
IMO GHG Study 2014, International Maritime Organization (IMO) London, UK,
April 2015.
Smith, J. D., Mitsakou, C., Kitwiroon, N., Barratt, B. M., Walton, H. A.,
Taylor, J. G., Anderson, H. R., Kelly, F. J., and Beevers, S. D.: London
Hybrid Exposure Model: Improving Human Exposure Estimates to NO2 and PM2.5 in an Urban Setting, Environ. Sci. Technol., 50, 11760–11768,
https://doi.org/10.1021/acs.est.6b01817, 2016.
Smith, J. D., Barratt, B. M., Fuller, G. W., Kelly, F. J., Loxham, M.,
Nicolosi, E., Priestman, M., Tremper, A. H., and Green, D. C.: PM2.5 on the London Underground, Environ. Int., 134, 105188, https://doi.org/10.1016/j.envint.2019.105188, 2020.
Soares, J., Kousa, A., Kukkonen, J., Matilainen, L., Kangas, L., Kauhaniemi, M., Riikonen, K., Jalkanen, J.-P., Rasila, T., Hänninen, O., Koskentalo, T., Aarnio, M., Hendriks, C., and Karppinen, A.: Refinement of a model for evaluating the population exposure in an urban area, Geosci. Model Dev., 7, 1855–1872, https://doi.org/10.5194/gmd-7-1855-2014, 2014.
Sofiev, M., Winebrake, J. J., Johansson, L., Carr, E. W., Prank, M., Soares,
J., Vira, J., Kouznetsov, R., Jalkanen, J.-P., and Corbett, J. J.: Cleaner
fuels for ships provide public health benefits with climate tradeoffs, Nat.
Commun., 9, 406, https://doi.org/10.1038/s41467-017-02774-9, 2018.
Sokhi, R. (Ed.): World Atlas of Atmospheric Pollution, Anthem Press, London,
https://doi.org/10.7135/upo9780857288448, 2012.
Sokhi, R. S., Baklanov, A., and Schlünzen, K. H. (Eds.): Mesoscale
modelling for meteorological and air pollution applications, Anthem Press,
an imprint of Wimbledon Publishing Company, London, 342 pp., 2018.
Sokhi, R. S., Singh, V., Querol, X., Finardi. S., Targino, A. C., Andrade, M. F., Pavlovic, R., Garland, R. M., Massagué, J., Kong, S., Baklanov, A., Ren, L., Tarasova, O., Carmichael, G., Peuch, V. H., Anand, V., Arbilla, G., Badali, K., Beig, G., Belalcazar,
L. C., Bolignano, A., Brimblecombe, P., Camacho, P., Casallas, A., Charland, J. P., Choi, J., Chourdakis, E., Coll, I., Collins, M., Cyrys, J., da Silva, C. M., Di Giosa, A. D., Di Leo,
A., Ferro, C., Gavidia-Calderon, M., Gayen, A., Ginzburg, A., Godefroy, F., Gonzalez, Y. A., Guevara-Luna, M., Haque, S. M., Havenga, H., Herod, D., Hõrrak, U., Hussein, T., Ibarra, S., Jaimes, M., Kaasik, M., Khaiwal, R., Kim, J., Kousa, A., Kukkonen, J., Kulmala, M., Kuula, J., La Violette, N., Lanzani, G., Liu, X., MacDougall, S., Manseau, P. M., Marchegiani, G., McDonald, B., Mishra, S. V., Molina, L. T., Mooibroek, D., Mor, S.,
Moussiopoulos, N., Murena, F., Niemi, J. V., Noe, S., Nogueira, T., Norman, M., Pérez-Camaño, J. L., Petäjä, T., Piketh, S., Rathod, A., Reid, K., Retama, A., Rivera, O., Rojas, N. Y., Rojas-Quincho, J. P., San José, R., Sánchez, O., Seguel, R. J., Sillanpää, S., Su, Y., Tapper, N., Terrazas, A., Timonen, H., Toscano, D., Tsegas, G., Velders, G. J. M., Vlachokostas, C., von Schneidemesser, E., VPM, R., Yadav, R., Zalakeviciute, R., and Zavala, M.: A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions, Environ Int., 157, 106818,
https://doi.org/10.1016/j.envint.2021.106818, 2021.
Solazzo, E., Bianconi, R., Vautard, R., Appel, K. W., Moran, M. D., Hogrefe, C., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel, C., Coll, I., Denier van der Gon, H., Ferreira, J., Forkel, R., Francis, X. V., Grell, G., Grossi, P., Hansen, A. B., Jeričević, A., Kraljević, L., Miranda, A. I., Nopmongcol, U., Pirovano, G., Prank, M., Riccio, A., Sartelet, K. N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R., Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.: Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII, Atmos. Environ., 53, 60–74, https://doi.org/10.1016/j.atmosenv.2012.01.003, 2012.
Son, J.-Y., Liu, J. C., and Bell, M. L.: Temperature-related mortality: a
systematic review and investigation of effect modifiers, Environ. Res.
Lett., 14, 073004, https://doi.org/10.1088/1748-9326/ab1cdb, 2019.
Sonawane, N. V., Patil, R. S., and Sethi, V.: Health benefit modelling and
optimization of vehicular pollution control strategies, Atmos. Environ., 60,
193–201, 2012.
Soret, A., Guevara, M., and Baldasano, J. M.: The potential impacts of
electric vehicles on air quality in the urban areas of Barcelona and Madrid
(Spain), Atmos. Environ., 99, 51–63, 2014.
Soulhac, L., Salizzoni, P., Mejean, P., Didier, D., and Rios, I.: The model
SIRANE for atmospheric urban pollutant dispersion; PART II, validation of
the model on a real case study, Atmos. Environ., 49, 320–337,
https://doi.org/10.1016/j.atmosenv.2011.11.031, 2012.
Souza, D. M., Teixeira, R. F. M., and Ostermann, O. P.: Assessing
biodiversity loss due to land use with Life Cycle Assessment: are we there
yet?, Glob. Change Biol., 21, 32–47, https://doi.org/10.1111/gcb.12709, 2015.
Stafoggia, M., Samoli, E., Alessandrini, E., Cadum, E., Ostro, B., Berti,
G., Faustini, A., Jacquemin, B., Linares, C., Pascal, M., Randi, G., Ranzi,
A., Stivanello, E., and Forastiere, F.: Short-term Associations between Fine
and Coarse Particulate Matter and Hospitalizations in Southern Europe:
Results from the MED-PARTICLES Project, Environ. Health Persp., 121,
1026–1033, https://doi.org/10.1289/ehp.1206151, 2013.
Stafoggia, M., Cesaroni, G., Peters, A., Andersen, Z. J., Badaloni, C.,
Beelen, R., Caracciolo, B., Cyrys, J., Faire, U. d., Hoogh, K. d., Eriksen,
K. T., Fratiglioni, L., Galassi, C., Gigante, B., Havulinna, A. S., Hennig,
F., Hilding, A., Hoek, G., Hoffmann, B., Houthuijs, D., Korek, M., Lanki,
T., Leander, K., Magnusson, P. K., Meisinger, C., Migliore, E., Overvad, K.,
Östenson, C.-G., Pedersen, N. L., Pekkanen, J., Penell, J., Pershagen,
G., Pundt, N., Pyko, A., Raaschou-Nielsen, O., Ranzi, A., Ricceri, F.,
Sacerdote, C., Swart, W. J. R., Turunen, A. W., Vineis, P., Weimar, C.,
Weinmayr, G., Wolf, K., Brunekreef, B., and Forastiere, F.: Long-Term
Exposure to Ambient Air Pollution and Incidence of Cerebrovascular Events:
Results from 11 European Cohorts within the ESCAPE Project, Environ. Health
Persp., 122, 919–925, https://doi.org/10.1289/ehp.1307301, 2014.
Stohl, A., Kim, J., Li, S., O'Doherty, S., Mühle, J., Salameh, P. K., Saito, T., Vollmer, M. K., Wan, D., Weiss, R. F., Yao, B., Yokouchi, Y., and Zhou, L. X.: Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling, Atmos. Chem. Phys., 10, 3545–3560, https://doi.org/10.5194/acp-10-3545-2010, 2010.
Stojiljkovic, A., Kauhaniemi, M., Kukkonen, J., Kupiainen, K., Karppinen, A., Denby, B. R., Kousa, A., Niemi, J. V., and Ketzel, M.: The impact of measures to reduce ambient air PM10 concentrations originating from road dust, evaluated for a street canyon in Helsinki, Atmos. Chem. Phys., 19, 11199–11212, https://doi.org/10.5194/acp-19-11199-2019, 2019.
Stone, R.: Counting the Cost of London's Killer Smog, Science, 298,
2106–2107, https://doi.org/10.1126/science.298.5601.2106b, 2002.
Stone, V., Miller, M. R., Clift, M. J. D., Elder, A., Mills, N. L.,
Møller, P., Schins, R. P. F., Vogel, U., Kreyling, W. G., Alstrup Jensen,
K., Kuhlbusch, T. A. J., Schwarze, P. E., Hoet, P., Pietroiusti, A.,
Vizcaya-Ruiz, A. d., Baeza-Squiban, A., Teixeira, J. P., Tran, C. L., and
Cassee, F. R.: Nanomaterials Versus Ambient Ultrafine Particles: An
Opportunity to Exchange Toxicology Knowledge, Environ. Health Persp., 125,
106002, https://doi.org/10.1289/ehp424, 2017.
Sun, D., Zhang, Y., Xue, R., and Zhang, Y.: Modeling carbon emissions from
urban traffic system using mobile monitoring, Sci. Total Environ., 599–600,
944–951, https://doi.org/10.1016/j.scitotenv.2017.04.186, 2017.
Suter, I. and Brunner, D.: Influence of boundary conditions and cloud
chemistry on sulfate concentrations in a nested model setup, in: Proceedings
of 12th International Conference on Air Quality, Science and Application,
edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 55, https://doi.org/10.18745/pb.22217, 2020.
Tan, J., Mu, L., Huang, J., Yu, S., Chen, B., and Yin, J.: An initial
investigation of the association between the SARS outbreak and weather: with
the view of the environmental temperature and its variation, J. Epidemiol.
Commun. H., 59, 186–192, https://doi.org/10.1136/jech.2004.020180, 2005.
Tan, J., Fu, J. S., Carmichael, G. R., Itahashi, S., Tao, Z., Huang, K., Dong, X., Yamaji, K., Nagashima, T., Wang, X., Liu, Y., Lee, H.-J., Lin, C.-Y., Ge, B., Kajino, M., Zhu, J., Zhang, M., Liao, H., and Wang, Z.: Why do models perform differently on particulate matter over East Asia? A multi-model intercomparison study for MICS-Asia III, Atmos. Chem. Phys., 20, 7393–7410, https://doi.org/10.5194/acp-20-7393-2020, 2020.
Tarín-Carrasco, P., Im, U., Geels, C., Palacios-Peña, L., and Jiménez-Guerrero, P.: Reducing future air pollution-related premature mortality over Europe by mitigating emissions: assessing an 80 % renewable energies scenario, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-86, in review, 2021.
Teuchies, J., Cox, T. J. S., Van Itterbeeck, K., Meysman, F. J. R., and
Blust, R.: The impact of scrubber discharge on the water quality in estuaries and ports, Environmental Sciences Europe, 32, 103, https://doi.org/10.1186/s12302-020-00380-z, 2020.
Theloke, J. and Friedrich, R.: Compilation of a database on the composition
of anthropogenic VOC emissions for atmospheric modeling in Europe, Atmos.
Environ., 41, 4148–4160, https://doi.org/10.1016/j.atmosenv.2006.12.026, 2007.
Thiruchittampalam, B.: Entwicklung und Anwendung von Methoden und Modellen
zur Berechnung von räumlich und zeitlich hochaufgelösten Emissionen
in Europa, Institut für Energiewirtschaft und Rationelle
Energieanwendung, https://doi.org/10.18419/opus-2325, 2014.
Thompson, J. E.: Crowd-sourced air quality studies: A review of the
literature & portable sensors, Trends in Environmental Analytical
Chemistry, 11, 23–34, https://doi.org/10.1016/j.teac.2016.06.001, 2016.
Thunis, P.: On the validity of the incremental approach to estimate the
impact of cities on air quality, Atmos. Environ., 173, 210–222,
https://doi.org/10.1016/j.atmosenv.2017.11.012, 2018.
Thunis, P., Miranda, A., Baldasano, J. M., Blond, N., Douros, J., Graff, A.,
Janssen, S., Juda-Rezler, K., Karvosenoja, N., Maffeis, G., Martilli, A.,
Rasoloharimahefa, M., Real, E., Viaene, P., Volta, M., and White, L.:
Overview of current regional and local scale air quality modelling
practices: Assessment and planning tools in the EU, Environ. Sci. Policy,
65, 13–21, https://doi.org/10.1016/j.envsci.2016.03.013, 2016.
Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni,
E., Wesseling, J., Belis, C. A., Pirovano, G., Janssen, S., Guerreiro, C.,
and Peduzzi, E.: Source apportionment to support air quality planning:
Strengths and weaknesses of existing approaches, Environ. Int., 130, 104825,
https://doi.org/10.1016/j.envint.2019.05.019, 2019.
Thurston, G. D., Kipen, H., Annesi-Maesano, I., Balmes, J., Brook, R. D.,
Cromar, K., De Matteis, S., Forastiere, F., Forsberg, B., Frampton, M. W.,
Grigg, J., Heederik, D., Kelly, F. J., N., K., Laumbach, R., Peters, A.,
Rajagopalan, S. T., Rich, D., Ritz, B., Samet, J. M., Sandstrom, T.,
Sigsgaard, T., Sunyer, J., and Brunekreef, B.: A joint ERA/ATS policy
statement: What constitutes an adverse health effect of air pollution? An
analytical framework, Eur. Respir. J., 49, 1600419,
https://doi.org/10.1183/13993003.00419-2016, 2017.
Thygesen, M., Holst, G. J., Hansen, B., Geels, C., Kalkbrenner, A.,
Schendel, D., Brandt, J., Pedersen, C. B., and Dalsgaard, S.: Exposure to
air pollution in early childhood and the association with Attention-Deficit
Hyperactivity Disorder, Environ. Res., 183, 108930,
https://doi.org/10.1016/j.envres.2019.108930, 2020.
Tinarelli, G. L. and Trini Castelli, S.: Assessment of the Sensitivity to
the Input Conditions with a Lagrangian Particle Dispersion Model in the
UDINEE Project, Bound.-Lay. Meteorol., 171, 491–512,
https://doi.org/10.1007/s10546-018-0413-z, 2019.
Toon, O. B., Bardeen, C. G., Robock, A., Xia, L., and Kristensen, H.: Rapidly
expanding nuclear arsenals in Pakistan and India portend regional and global
catastrophe, Science Advances, 5, eaay5478, https://doi.org/10.1126/sciadv.aay5478, 2019.
Torras Ortiz, S.: A hybrid dispersion modelling approach for quantifying and
assessing air quality in Germany with focus on urban background and kerbside
concentrations, dissertation, Universtät Stuttgart, Stuttgart, https://doi.org/10.18419/opus-1990, 2012.
Torras Ortiz, S. and Friedrich, R.: A modelling approach for estimating
background pollutant concentrations in urban areas, Atmos. Pollut. Res., 4,
147–156, https://doi.org/10.5094/apr.2013.015, 2013.
Trusilova, K., Schubert, S., Wouters, H., Früh, B., Grossman-Clarke, S.,
Demuzere, M., and Becker, P.: The urban land use in the COSMO-CLM model: a
comparison of three parameterizations for Berlin, Meteorol. Z., 25,
231–244, https://doi.org/10.1127/metz/2015/0587, 2016.
Tsegas, G., Moussiopoulos, N., Barmpas, F., Akylas, V., and Douros, I.: An
integrated numerical methodology for describing multiscale interactions on
atmospheric flow and pollutant dispersion in the urban atmospheric boundary
layer, J. Wind Eng. Ind. Aerod., 144, 191–201, 2015.
Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B., and Sagan, C.:
Nuclear Winter: Global Consequences of Multiple Nuclear Explosions, Science,
222, 1283–1992, https://doi.org/10.1126/science.222.4630.1283, 1983.
UNECE: Protocols, United Nations Economic Commission for Europe, https://unece.org/protocols (last access: 21 February 2022), 2020.
Van Dingenen, R., Dentener, F., Crippa, M., Leitao, J., Marmer, E., Rao, S., Solazzo, E., and Valentini, L.: TM5-FASST: a global atmospheric source–receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants, Atmos. Chem. Phys., 18, 16173–16211, https://doi.org/10.5194/acp-18-16173-2018, 2018.
van Doremalen, N., Bushmaker, T., and Munster, V. J.: Stability of Middle
East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions, Euro Surveill., 18, 20590,
https://doi.org/10.2807/1560-7917.es2013.18.38.20590, 2013.
van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble,
A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber,
S. I., Lloyd-Smith, J. O., de Wit, E., and Munster, V. J.: Aerosol and
surface stability of SARS-CoV-2 as compared with SARS-CoV-1, New Engl. J.
Med., 382, 1564–1567, 2020.
Vardoulakis, S., Giagloglou, E., Steinle, S., Davis, A., Sleeuwenhoek, A.,
Galea, K. S., Dixon, K., and Crawford, J. O.: Indoor Exposure to Selected
Air Pollutants in the Home Environment: A Systematic Review, Int. J. Env.
Res. Pub. He., 17, 8972, https://doi.org/10.3390/ijerph17238972, 2020.
Vautard, R., Buitjes, P., Thunis, P., Cuvelier, C., Bedonj, M., Bessagnet,
B., Honore, C., Moussiopoulos, N., Pirovano, M., Schaap, M., Stern, R.,
Tarrason, L., and Wind, P.: Evaluation and intercomparison of Ozone and PM10
simulations by several chemistry transport models over four European cities
within the CityDelta project, Atmos. Environ., 41, 173–188, https://doi.org/10.1016/j.atmosenv.2006.07.039, 2007.
Veratti, G., Fabbi, S., Bigi, A., Lupascu, A., Tinarelli, G., Teggi, S.,
Brusasca, G., Butler, T. M., and Ghermandi, G.: Towards the coupling of a
chemical transport model with a micro-scale Lagrangian modelling system for
evaluation of urban NOx levels in a European hotspot, Atmos. Environ., 223, 117285, https://doi.org/10.1016/j.atmosenv.2020.117285, 2020.
Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M.,
Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A. S.
H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi, R., Miranda, A. I.,
Kasper-Giebl, A., Maenhaut, W., and Hitzenberger, R.: Source apportionment
of particulate matter in Europe: A review of methods and results, J. Aerosol
Sci., 39, 827–849, 2008.
Villeneuve, P. J., Jerrett, M., Su, J., Burnett, R. T., Chen, H., Brook, J.,
Wheeler, A. J., Cakmak, S., and Goldberg, M. S.: A cohort study of
intra-urban variations in volatile organic compounds and mortality, Toronto,
Canada, Environ. Pollut., 183, 30–39, https://doi.org/10.1016/j.envpol.2012.12.022, 2013.
Vodonos, A., Awad, Y. A., and Schwartz, J.: The concentration-response
between long-term PM2.5 exposure and mortality; A meta-regression approach, Environ. Res., 166, 677–689, https://doi.org/10.1016/j.envres.2018.06.021, 2018.
Voss, V., Schlünzen, K.H., and Grawe, D.: Atmospheric model data
(ATMODAT) - creation of a model data standard for obstacle resolving models,
in: Proceedings of 12th International Conference on Air Quality, Science and
Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis I., Hatfield, UK, p. 128, https://doi.org/10.18745/PB.22217, 2020.
Vouitsis, I., Ntziachristos, L., Samaras, C., and Samaras, Z.: Particulate
mass and number emission factors for road vehicles based on literature data
and relevant gap filling methods, Atmos. Environ., 168, 75–89,
https://doi.org/10.1016/j.atmosenv.2017.09.010, 2017.
Wang, M., Beelen, R., Stafoggia, M., Raaschou-Nielsen, O., Andersen, Z. J.,
Hoffmann, B., Fischer, P., Houthuijs, D., Nieuwenhuijsen, M., Weinmayr, G.,
Vineis, P., Xun, W. W., Dimakopoulou, K., Samoli, E., Laatikainen, T.,
Lanki, T., Turunen, A. W., Oftedal, B., Schwarze, P., Aamodt, G., Penell,
J., Faire, U. d., Korek, M., Leander, K., Pershagen, G., Pedersen, N. L.,
Östenson, C.-G., Fratiglioni, L., Eriksen, K. T., Sørensen, M.,
Tjønneland, A., Bueno-de-Mesquita, B., Eeftens, M., Bots, M. L.,
Meliefste, K., Krämer, U., Heinrich, J., Sugiri, D., Key, T., Hoogh, K.
d., Wolf, K., Peters, A., Cyrys, J., Jaensch, A., Concin, H., Nagel, G.,
Tsai, M.-Y., Phuleria, H., Ineichen, A., Künzli, N., Probst-Hensch, N.,
Schaffner, E., Vilier, A., Clavel-Chapelon, F., Declerq, C., Ricceri, F.,
Sacerdote, C., Marcon, A., Galassi, C., Migliore, E., Ranzi, A., Cesaroni,
G., Badaloni, C., Forastiere, F., Katsoulis, M., Trichopoulou, A., Keuken,
M., Jedynska, A., Kooter, I. M., Kukkonen, J., Sokhi, R. S., Brunekreef, B.,
Katsouyanni, K., and Hoek, G.: Long-term exposure to elemental constituents
of particulate matter and cardiovascular mortality in 19 European cohorts:
Results from the ESCAPE and TRANSPHORM projects, Environ. Int., 66, 97–106,
https://doi.org/10.1016/j.envint.2014.01.026, 2014.
Wang, K., Yahya, K., Zhang, Y., Hogrefe, C., Pouliot, G., Knote, C., Hodzic,
A., San Jose, R., Perez, J. L., Jiménez-Guerrero, P., Baro, R., Makar,
P., and Bennartz, R.: A multi-model assessment for the 2006 and 2010
simulations under the Air Quality Model Evaluation International Initiative
(AQMEII) Phase 2 over North America: Part II. Evaluation of column variable
predictions using satellite data, Atmos. Environ., 115, 587–603,
https://doi.org/10.1016/j.atmosenv.2014.07.044, 2015.
Wang, P., Liu, Y., Qin, Z., and Zhang, G.: A novel hybrid forecasting model
for PM10 and SO2 daily concentrations, Sci. Total Environ., 505, 1202–1212, https://doi.org/10.1016/j.scitotenv.2014.10.078, 2015.
Wang, Q., Li, B., Benmarhnia, T., Hajat, S., Ren, M., Liu, T., Knibbs, L.
D., Zhang, H., Bao, J., Zhang, Y., Zhao, Q., and Huang, C.: Independent and
Combined Effects of Heatwaves and PM2.5 on Preterm Birth in Guangzhou,
China: A Survival Analysis, Environ. Health Persp., 128, 017006,
https://doi.org/10.1289/ehp5117, 2020.
Watkiss, P. and Downing, T.: The social cost of carbon: valuation estimates
and their use in UK policy, Integr. Assess., 8, 85–105, 2008.
Weichenthal, S., Olaniyan, T., Christidis, T., Lavigne, E., Hatzopoulou, M.,
van Ryswyk, K., Tjepkema, M., and Burnett, R.: Within-city Spatial
Variations in Ambient Ultrafine Particle Concentrations and Incident Brain
Tumors in Adults, Epidemiology (Cambridge, Mass.), 31, 177–183,
https://doi.org/10.1097/ede.0000000000001137, 2020.
Weinmayr, G., Romeo, E., De Sario, M., Weiland, S. K., and Forastiere, F.:
Short-Term Effects of PM10 and NO2 on Respiratory Health among Children with Asthma or Asthma-like Symptoms: A Systematic Review and Meta-Analysis, Environ. Health Persp., 118, 449–457, https://doi.org/10.1289/ehp.0900844, 2010.
Werhahn, J., Forkel, R., Emeis, S., Reifeltshammer, R., and Uhrner, U.: Air
quality simulations in an urban area within a smart air quality network by
the large eddy simulation model PALM-4U, in: Proceedings of 12th
International Conference on Air Quality, Science and Application, edited by: Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 126, https://doi.org/10.18745/pb.22217, 2020.
Weschler, C. J. and Carslaw, N.: Indoor Chemistry, Environ. Sci. Technol.,
52, 2419–2428, https://doi.org/10.1021/acs.est.7b06387, 2018.
WHO: Health risks of air pollution in Europe – HRAPIE
project; Recommendations for concentration–response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide, WHO Regional Office for Europe, https://www.euro.who.int/en/health-topics/environment-and- health/air-quality/publications/2013/health-risks-of-air-
pollution-in-europe-hrapie-project.-recommendations-for-concentrationresponse-pollution-in-europe-hrapie-project.-recommendations-for-concentrationresponse-
functions-for-costbenefit-analysis-of-particulate-matter,-ozone-and-nitrogen-dioxide (last access: 22 February 2022), 2013a.
WHO: Review of evidence on health aspects of air pollution – REVIHAAP
Project: Technical Report, Regional Office Europe, Copenhagen, https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf (last access: 25 February 2022), 2013b.
WHO: Ambient air pollution: A global assessment of exposure and burden of
disease, World Health Organization, Geneva, Switzerland, 131 pp., https://apps.who.int/iris/handle/10665/250141 (last access: 25 February 2022), 2016.
WHO: WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
monoxide, ISBN 978-92-4-003422-8 (electronic version), https://apps.who.int/iris/handle/10665/345329 (last access: 25 February 2022), 2021.
Williams, R., Duvall, R., Kilaru, V., Hagler, G., Hassinger, L., Benedict,
K., Rice, J., Kaufman, A., Judge, R., Pierce, G., Allen, G., Bergin, M.,
Cohen, R. C., Fransioli, P., Gerboles, M., Habre, R., Hannigan, M., Jack,
D., Louie, P., Martin, N. A., Penza, M., Polidori, A., Subramanian, R., Ray,
K., Schauer, J., Seto, E., Thurston, G., Turner, J., Wexler, A. S., and
Ning, Z.: Deliberating performance targets workshop: Potential paths for
emerging PM2.5 and O3 air sensor progress, Atmos. Environ. X, 2, 100031,
https://doi.org/10.1016/j.aeaoa.2019.100031, 2019.
Winnes, H., Fridell, E., and Moldanova, J.: Effects of Marine Exhaust Gas
Scrubbers on Gas and Particle Emissions, J. Mar. Sci. Eng., 8, 299, https://doi.org/10.3390/jmse8040299, 2020.
WMO: Coupled Chemistry-Meteorology/Climate Modelling (CCMM): Status and
Relevance for Numerical Weather Prediction, Atmospheric Pollution and
Climate Research, Geneva, Switzerland, 23–25 February 2015, World
Meteorological Organization, Geneva, ISBN 978-92-63-11172-2, 165 pp., 2016.
WMO: WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023,
Geneva, Switzerland, 84 pp., ISBN 978-92-63-11156-2, https://library.wmo.int/doc_num.php?explnum_id=10439
(last access: 11 March 2022), 2017.
WMO: Best Practices and Training Materials for Chemical Weather/Air Quality
Forecasting (CW-AQF), WMO Geneva, Chair, Publications Board, World Meteorological Organization 7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland, ISBN: 978-92-63-11262-0, 2020.
WMO: Review on Meteorological and Air Quality Factors Affecting the COVID-19 Pandemic, World Meteorological Organization, WMO-No. 1262, ISBN: 978-92-63-11262-0, 2021.
Wolf, K., Stafoggia, M., Cesaroni, G., Andersen, Z. J., Beelen, R., Galassi,
C., Hennig, F., Migliore, E., Penell, J., Ricceri, F., Sørensen, M.,
Turunen, A. W., Hampel, R., Hoffmann, B., Kälsch, H., Laatikainen, T.,
Pershagen, G., Raaschou-Nielsen, O., Sacerdote, C., Vineis, P., Badaloni,
C., Cyrys, J., Hoogh, K. d., Eriksen, K. T., Jedynska, A., Keuken, M.,
Kooter, I., Lanki, T., Ranzi, A., Sugiri, D., Tsai, M.-Y., Wang, M., Hoek,
G., Brunekreef, B., Peters, A., and Forastiere, F.: Long-term Exposure to
Particulate Matter Constituents and the Incidence of Coronary Events in 11
European Cohorts, Epidemiology, 26, 565–574, https://doi.org/10.1097/ede.0000000000000300, 2015.
Wolf, T., Pettersson, L. H., and Esau, I.: A very high-resolution assessment and modelling of urban air quality, Atmos. Chem. Phys., 20, 625–647, https://doi.org/10.5194/acp-20-625-2020, 2020.
Wolf-Grosse, T., Esau, I., and Reuder, J.: Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study, Atmos. Chem. Phys., 17, 7261–7276, https://doi.org/10.5194/acp-17-7261-2017, 2017.
World Meteorological Congress: Abridged Final Report of the Eighteenth
Session, World Meteorological Organization (WMO) – WMO, WMO-No. 1236, ISBN: 978-92-63-11236-1, 2019.
Wouters, H., Demuzere, M., Blahak, U., Fortuniak, K., Maiheu, B., Camps, J., Tielemans, D., and van Lipzig, N. P. M.: The efficient urban canopy dependency parametrization (SURY) v1.0 for atmospheric modelling: description and application with the COSMO-CLM model for a Belgian summer, Geosci. Model Dev., 9, 3027–3054, https://doi.org/10.5194/gmd-9-3027-2016, 2016.
WWRP: Seamless prediction of the earth system: From minutes to months, WMO,
Geneva, No. 1156, 471 pp., ISBN: 9789263111562, 2015.
Xie, J. and Zhu, Y.: Association between ambient temperature and COVID-19
infection in 122 cities from China, Sci. Total Environ., 724, 138201,
https://doi.org/10.1016/j.scitotenv.2020.138201, 2020.
Xie, Y., Dai, H. C., Zhang, Y. X., Wu, Y. Z., Hanaoka, T., and Masui, T.:
Comparison of health and economic impacts of PM2.5 and ozone pollution in China, Environ. Int., 130, 104881, https://doi.org/10.1016/j.envint.2019.05.075, 2019.
Yang, L. Q., Chen, G., Zhao, J. L., and Rytter, N. G. M.: Ship Speed
Optimization Considering Ocean Currents to Enhance Environmental
Sustainability in Maritime Shipping, Sustainability, 12, 3649, https://doi.org/10.3390/su12093649, 2020.
Yang, Y., Pun, V. C., Sun, S., Lin, H., Mason, T. G., and Qiu, H.:
Particulate matter components and health: a literature review on exposure
assessment, Journal of Public Health and Emergency, 2, 14,
https://doi.org/10.21037/jphe.2018.03.03, 2018.
Zacharof, N., Doulgeris, S., Myrsinias, I., Toumasatos, Z., Kolokotronis,
D., Dimaratos, A., Mellios, G., and Samaras, Z.: MILE 21: Raising user
awareness on on-road fuel consumption, in: Proceedings of 12th International
Conference on Air Quality, Science and Application, edited by: Moussiopoulos,
N., Sokhi, R., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 36, https://doi.org/10.18745/pb.22217, 2020.
Żak, M., Melaniuk-Wolny, E., and Widziewicz, K.: The exposure of
pedestrians, drivers and road transport passengers to nitrogen dioxide,
Atmos. Pollut. Res., 8, 781–790, https://doi.org/10.1016/j.apr.2016.10.011, 2017.
Zanini, P., Chevalier, J., Lebegue, B., Allard, J., and Lascaux, F.:
High-resolution mapping of urban air quality based on low-cost sensors and
neural network model: application to Grenoble City, in: Proceedings of 12th
International Conference on Air Quality, Science and Application, edited by:
Moussiopoulos, N., Sokhi, R. S., Tsegas, G., Fragkou, E., Chourdakis, E., and Pipilis, I., Hatfield, UK, p. 112, https://doi.org/10.18745/pb.22217, 2020.
Zanobetti, A. and Schwartz, J.: The effect of fine and coarse particulate air
pollution on mortality: A national analysis, Environ. Health Persp., 117,
898–903, https://doi.org/10.1289/ehp.0800108, 2009.
Zhan, Y., Luo, Y., Deng, X., Chen, H., Grieneisen, M. L., Shen, X., Zhu, L.,
and Zhang, M.: Spatiotemporal prediction of continuous daily PM2.5
concentrations across China using a spatially explicit machine learning
algorithm, Atmos. Environ., 155, 129–139, 2017.
Zhang, X., Chen, X., and Zhang, X.: The impact of exposure to air pollution
on cognitive performance, P. Natl. Acad. Sci. USA, 115, 9193–9197,
https://doi.org/10.1073/pnas.1809474115, 2018.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part I: History, techniques, and current
status, Atmos. Environ., 60, 632–655, https://doi.org/10.1016/j.atmosenv.2012.06.031,
2012a.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part II: State of the science, current
research needs, and future prospects, Atmos. Environ., 60, 656–676,
https://doi.org/10.1016/j.atmosenv.2012.02.041, 2012b.
Zhang, Y., Hong, C., Yahya, K., Li, Q., Zhang, Q., and He, K.: Comprehensive
evaluation of multi-year real-time air quality forecasting using an
online-coupled meteorology-chemistry model over southeastern United States,
Atmos. Environ., 138, 162–182, https://doi.org/10.1016/j.atmosenv.2016.05.006, 2016.
Zhao, B., Zheng, H., Wang, S., Smith, K. R., Lu, X., Aunan, K., Gu, Y.,
Wang, Y., Ding, D., Xing, J., Fu, X., Yang, X., Liou, K.-N., and Hao, J.:
Change in household fuels dominates the decrease in PM2.5 exposure and
premature mortality in China in 2005–2015, P. Natl. Acad. Sci. USA, 115,
12401–12406, https://doi.org/10.1073/pnas.1812955115, 2018.
Zhao, J., Birmili, W., Wehner, B., Daniels, A., Weinhold, K., Wang, L.,
Merkel, M., Kecorius, S., Tuch, T., Franck, U., Hussein, T., and
Wiedensohler, A.: Particle Mass Concentrations and Number Size Distributions
in 40 Homes in Germany: Indoor-to-Outdoor Relationships, Diurnal and
Seasonal Variation, Aerosol Air Qual. Res., 20, 576–589, https://doi.org/10.4209/aaqr.2019.09.0444, 2020a.
Zhao, J. R., Zhang, Y., Patton, A. P., Ma, W. C., Kan, H. D., Wu, L. B.,
Fung, F., Wang, S. X., Ding, D., and Walker, K.: Projection of ship
emissions and their impact on air quality in 2030 in Yangtze River delta,
China, Environ. Pollut., 263, 114643, https://doi.org/10.1016/j.envpol.2020.114643, 2020b.
Zhu, Y., Xie, J., Huang, F., and Cao, L.: Association between short-term
exposure to air pollution and COVID-19 infection: Evidence from China, Sci.
Total Environ., 727, 138704, https://doi.org/10.1016/j.scitotenv.2020.138704, 2020.
Short summary
This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy.
This review of air quality research focuses on developments over the past decade. The article...
Altmetrics
Final-revised paper
Preprint