Articles | Volume 22, issue 6
https://doi.org/10.5194/acp-22-4101-2022
https://doi.org/10.5194/acp-22-4101-2022
Research article
 | 
29 Mar 2022
Research article |  | 29 Mar 2022

Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes

Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li

Related authors

A New Parameterization of Photolysis Rates for Oxygenated Volatile Organic Compounds (OVOCs)
Yuwen Peng, Bin Yuan, Sihang Wang, Xin Song, Zhe Peng, Wenjie Wang, Suxia Yang, Jipeng Qi, Xianjun He, Yibo Huangfu, Xiao-Bing Li, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1649,https://doi.org/10.5194/egusphere-2025-1649, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The impact of organic nitrates on summer ozone formation in Shanghai, China
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
Atmos. Chem. Phys., 25, 3905–3918, https://doi.org/10.5194/acp-25-3905-2025,https://doi.org/10.5194/acp-25-3905-2025, 2025
Short summary
Effects of 2010–2045 climate change on ozone levels in China under a carbon neutrality scenario: key meteorological parameters and processes
Ling Kang, Hong Liao, Ke Li, Xu Yue, Yang Yang, and Ye Wang
Atmos. Chem. Phys., 25, 3603–3621, https://doi.org/10.5194/acp-25-3603-2025,https://doi.org/10.5194/acp-25-3603-2025, 2025
Short summary
Rapid near-term warming in a carbon neutral future attributed to substantial aerosol decline
Yang Yang, Li You, Hailong Wang, Huimin Li, Pinya Wang, and Hong Liao
EGUsphere, https://doi.org/10.5194/egusphere-2025-840,https://doi.org/10.5194/egusphere-2025-840, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025,https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Dimethyl sulfide chemistry over the industrial era: comparison of key oxidation mechanisms and long-term observations
Ursula A. Jongebloed, Jacob I. Chalif, Linia Tashmim, William C. Porter, Kelvin H. Bates, Qianjie Chen, Erich C. Osterberg, Bess G. Koffman, Jihong Cole-Dai, Dominic A. Winski, David G. Ferris, Karl J. Kreutz, Cameron P. Wake, and Becky Alexander
Atmos. Chem. Phys., 25, 4083–4106, https://doi.org/10.5194/acp-25-4083-2025,https://doi.org/10.5194/acp-25-4083-2025, 2025
Short summary
Driving factors of aerosol acidity: a new hierarchical quantitative analysis framework and its application in Changzhou, China
Xiaolin Duan, Guangjie Zheng, Chuchu Chen, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 25, 3919–3928, https://doi.org/10.5194/acp-25-3919-2025,https://doi.org/10.5194/acp-25-3919-2025, 2025
Short summary
Understanding the long-term trend of organic aerosol and the influences from anthropogenic emission and regional climate change in China
Wenxin Zhang, Yaman Liu, Man Yue, Xinyi Dong, Kan Huang, and Minghuai Wang
Atmos. Chem. Phys., 25, 3857–3872, https://doi.org/10.5194/acp-25-3857-2025,https://doi.org/10.5194/acp-25-3857-2025, 2025
Short summary
Population exposure to outdoor NO2, black carbon, and ultrafine and fine particles over Paris with multi-scale modelling down to the street scale
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D'Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
Atmos. Chem. Phys., 25, 3363–3387, https://doi.org/10.5194/acp-25-3363-2025,https://doi.org/10.5194/acp-25-3363-2025, 2025
Short summary
Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks (Alaska), the Northern Hemisphere, and the Contiguous United States
Sara L. Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, Fengkui Duan, Tao Ma, Shuping Zhang, and Kathleen Fahey
Atmos. Chem. Phys., 25, 3287–3312, https://doi.org/10.5194/acp-25-3287-2025,https://doi.org/10.5194/acp-25-3287-2025, 2025
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. 
Chen, F. and Dudhia, J.: Coupling an Advanced Land Surface – Hydrology Model with the Penn State – NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Weather Rev., 129, 569–585, 2001. 
Chen, L., Zhu, J., Liao, H., Gao, Y., Qiu, Y., Zhang, M., Liu, Z., Li, N., and Wang, Y.: Assessing the formation and evolution mechanisms of severe haze pollution in the Beijing–Tianjin–Hebei region using process analysis, Atmos. Chem. Phys., 19, 10845–10864, https://doi.org/10.5194/acp-19-10845-2019, 2019. 
China National Environmental Monitoring Centre (CNEMC): Air pollutants dataset in China, CNEMC [data set], https://air.cnemc.cn:18007/, last access: 25 March 2022. 
Dai, H., Zhu, J., Liao, H., Li, J., Liang, M., Yang, Y., and Yue, X.: Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions, Atmos. Res., 249, 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021. 
Download
Short summary
Aerosols can influence O3 through aerosol–radiation interactions, including aerosol–photolysis interaction (API) and aerosol–radiation feedback (ARF). The weakened photolysis rates and changed meteorological conditions reduce surface-layer O3 concentrations by up to 9.3–11.4 ppb, with API and ARF contributing 74.6 %–90.0 % and 10.0 %–25.4 % of the O3 decrease in three episodes, respectively, which indicates that API is the dominant way for O3 reduction related to aerosol–radiation interactions.
Share
Altmetrics
Final-revised paper
Preprint