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Abstract. We examined the impacts of aerosol–radiation interactions, including the effects of aerosol–
photolysis interaction (API) and aerosol–radiation feedback (ARF), on surface-layer ozone (O3) concentrations
during four multi-pollutant air pollution episodes characterized by high O3 and PM2.5 levels during 28 July
to 3 August 2014 (Episode1), 8–13 July 2015 (Episode2), 5–11 June 2016 (Episode3), and 28 June to 3 July
2017 (Episode4) in North China, by using the Weather Research and Forecasting with Chemistry (WRF-Chem)
model embedded with an integrated process analysis scheme. Our results show that API and ARF reduced the
daytime shortwave radiative fluxes at the surface by 92.4–102.9 Wm−2 and increased daytime shortwave radia-
tive fluxes in the atmosphere by 72.8–85.2 Wm−2, as the values were averaged over the complex air pollution
areas (CAPAs) in each of the four episodes. As a result, the stabilized atmosphere decreased the daytime plane-
tary boundary layer height and 10 m wind speed by 129.0–249.0 m and 0.05–0.15 ms−1, respectively, in CAPAs
in the four episodes. Aerosols were simulated to reduce the daytime near-surface photolysis rates of J [NO2] and
J [O1D] by 1.8× 10−3–2.0× 10−3 and 5.7× 10−6–6.4× 10−6 s−1, respectively, in CAPAs in the four episodes.
All of the four episodes show the same conclusion, which is that the reduction in O3 by API is larger than that
by ARF. API (ARF) was simulated to change daytime surface-layer O3 concentrations by −8.5 ppb (parts per
billion;−2.9 ppb),−10.3 ppb (−1.0 ppb),−9.1 ppb (−0.9 ppb), and−11.4 ppb (+0.7 ppb) in CAPAs of the four
episodes, respectively. Process analysis indicated that the weakened O3 chemical production made the greatest
contribution to API effect, while the reduced vertical mixing was the key process for ARF effect. Our con-
clusions suggest that future PM2.5 reductions may lead to O3 increases due to the weakened aerosol–radiation
interactions, which should be considered in air quality planning.

1 Introduction

The characteristics of air pollution in China during recent
years have changed from a single pollutant (e.g. PM2.5, i.e.
particulate matter with an aerodynamic equivalent diameter
of 2.5 µm or less), to multiple pollutants (e.g. PM2.5 and
ozone and O3; Zhao et al., 2018; Zhu et al., 2019), and
the synchronous occurrence of high PM2.5 and O3 concen-

trations has been frequently observed, especially during the
warm seasons (Dai et al., 2021; Qin et al., 2021). Qin et al.
(2021) reported that the co-occurrence of PM2.5 and O3 pol-
lution days (days with PM2.5 concentration > 75 µgm−3 and
maximum daily 8 h average ozone concentration > 80 ppb;
parts per billion) exceeded 324 d in eastern China during
2015–2019. Understanding complex air pollution is essential
for making plans to improve air quality in China.
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Aerosols can influence O3 by changing the meteorology
through absorbing and scattering solar radiation (defined as
aerosol–radiation feedback (ARF) in this work; Albrecht,
1989; Haywood and Boucher, 2000; Lohmann and Feichter,
2005), which influences the air quality by altering the chem-
ical reactions, transport, and deposition of the pollutant (Gao
et al., 2018; Qu et al., 2021; Xing et al., 2017; Zhang et al.,
2018). Many studies have examined the feedback between
aerosols and meteorology (Gao et al., 2015; M. Gao et al.,
2016; Qiu et al., 2017; Chen et al., 2019; Zhu et al., 2021).
For example, Gao et al. (2015) used the Weather Research
and Forecasting with Chemistry (WRF-Chem) model to in-
vestigate the feedbacks between aerosols and meteorological
variables over the North China Plain in January 2013 and
pointed out that aerosols caused a decrease in surface tem-
perature by 0.8–2.8 ◦C but an increase of 0.1–0.5 ◦C around
925 hPa. By using the same WRF-Chem model, Qiu et al.
(2017) reported that the surface downward shortwave radi-
ation and planetary boundary layer height (PBLH) were re-
duced by 54.6 Wm−2 and 111.4 m, respectively, due to the
aerosol direct radiative effect during 21–27 February 2014
in the North China Plain. Such aerosol-induced changes in
meteorological fields are expected to influence O3 concen-
trations during multi-pollutant episodes with high concentra-
tions of air pollutants.

Aerosols can also influence O3 by altering photolysis rates
(defined as aerosol–photolysis interaction (API) in this work;
Dickerson et al., 1997; Liao et al., 1999; Li et al., 2011;
Lou et al., 2014). Dickerson et al. (1997) reported that the
presence of pure scattering aerosol increased ground level
ozone in the eastern United States by 20 to 45 ppb , while
the presence of strongly absorbing aerosol reduced ground
level ozone by up to 24 ppb. Wang et al. (2019) found that
aerosols reduced the net ozone production rate by 25 % by
reducing the photolysis frequencies during a comprehensive
field observation in Beijing in August 2012. Such aerosol-
induced changes in the photolysis rates are expected to influ-
ence O3 concentrations during multi-pollutant episodes with
high concentrations of air pollutants.

Few previous studies have quantified the effects of ARF
and API on O3 concentrations. Xing et al. (2017) applied a
two-way online coupled WRF-CMAQ (Community Multi-
scale Air Quality) model and reported that the combination
of API and ARF reduced the surface daily maximum 1 h O3
(MDA1 O3) by up to 39 µgm−3 over China during January
2013. Qu et al. (2021) found, by using the UK Earth Sys-
tem Model (UKESM1), that ARF reduced the annual av-
erage surface O3 by 3.84 ppb (14.9 %) in the North China
Plain during 2014. Gao et al. (2020) analysed the impacts
of API on O3 by using the WRF-Chem model and reported
that API reduced surface O3 by 10.6 ppb (19.0 %), 8.6 ppb
(19.4 %), and 8.2 ppb (17.7 %) in Beijing, Tianjin, and Shiji-
azhuang, respectively, during October 2018. However, these
previous studies mostly examined either ARF or API and did
not examine their total and respective roles in O3 pollution

in China. Furthermore, these previous studies lacked process
understanding about the impacts of ARF and API on O3 pol-
lution under the co-occurrence of PM2.5 and O3 pollution
events.

The present study aims to quantify the respective/com-
bined impacts of ARF and API on surface O3 concentrations
by using the WRF-Chem model and to identify the prominent
physical and/or chemical processes responsible for ARF and
API effects by using an integrated process rate (IPR) analy-
sis embedded in the WRF-Chem model. We carry out sim-
ulations and analyses on four multi-pollutant air pollution
episodes (Episode1 is 28 July to 3 August 2014; Episode2
is 8–13 July 2015; Episode3 is 5–11 June 2016; Episode4 is
28 June to 3 July 2017) in North China with high O3 and
PM2.5 levels (the daily mean PM2.5 and the maximum daily
8 h average O3 concentration are larger than 75 µgm−3 and
80 ppb, respectively). These episodes are selected because
(1) these events with high concentrations of both PM2.5 and
O3 are the major subjects of air pollution control, (2) high
concentrations of both PM2.5 and O3 allow one to obtain the
strongest signals of ARF and API, (3) the measurements of
J [NO2] during 2014 and 2015 from the Peking University
site (Wang et al., 2019) can help to constrain the simulated
photolysis rates of NO2, and (4) selected events cover dif-
ferent years (2014 to 2017) during which the governmental
Air Pollution Prevention and Control Action Plan was imple-
mented (the changes in emissions and observed PM2.5 in the
studied region during 2014–2017 are shown in Fig. S1 in the
Supplement). We expect that the conclusions obtained from
multiple episodes represent the general understanding of the
impacts of ARF and API.

The model configuration, numerical experiments, obser-
vational data, and the integrated process rate analysis are de-
scribed in Sect. 2. Section 3 shows the model evaluation. Re-
sults and discussions are presented in Sect. 4, and the con-
clusions are summarized in Sect. 5.

2 Methods

2.1 Model configuration

Version 3.7.1 of the online coupled Weather Research and
Forecasting with Chemistry (WRF-Chem) model (Grell
et al., 2005; Skamarock et al., 2008) is used in this study
to explore the impacts of aerosol–radiation interactions on
surface-layer O3 in North China. WRF-Chem can simulate
gas-phase species and aerosols coupled with meteorologi-
cal fields and has been widely used to investigate air pol-
lution over North China (M. Gao et al., 2016; Gao et al.,
2020; Wu et al., 2020). As shown in Fig. 1, we design
two nested model domains with the number of grid points
at 57 (west–east)× 41 (south–north) and 37 (west–east)× 43
(south–north) at 27 and 9 km horizontal resolutions, respec-
tively. The parent domain centres at (39◦ N, 117◦ E). The
model contains 29 vertical levels from the surface to 50 hPa,

Atmos. Chem. Phys., 22, 4101–4116, 2022 https://doi.org/10.5194/acp-22-4101-2022



H. Yang et al.: Impacts of API and ARF on surface-layer ozone in North China 4103

Figure 1. Map of the two WRF-Chem modelling domains, with
the locations of meteorological (white dots) and environmental (red
crosses) observation sites used for model evaluation.

with 14 levels below 2 km for the full description of the ver-
tical structure of planetary boundary layer (PBL).

The Carbon Bond Mechanism Z (CBM-Z) is selected
as the gas-phase chemical mechanism (Zaveri and Peters,
1999), and the full eight-bin MOSAIC (Model for Simulat-
ing Aerosol Interactions and Chemistry) module with aque-
ous chemistry is used to simulate aerosol evolution (Zaveri
et al., 2008). The photolysis rates are calculated by the Fast-J
scheme (Wild et al., 2000). Other major physical parameter-
izations used in this study are listed in Table 1.

The initial and boundary meteorological conditions are
provided by the National Centers for Environmental Predic-
tion (NCEP) Final (FNL) analysis data, with a spatial resolu-
tion of 1◦× 1◦. In order to limit the model bias of simulated
meteorological fields, the four-dimensional data assimilation
(FDDA) is used with the nudging coefficient of 3.0× 10−4

for wind, temperature, and humidity (no analysis nudging is
applied for the inner domain; Lo et al., 2008; Otte, 2008).
Chemical initial and boundary conditions are obtained from
the Model for Ozone and Related chemical Tracers, version
4 (MOZART-4), forecasts (Emmons et al., 2010).

Anthropogenic emissions in these four episodes are taken
from the Multi-resolution Emission Inventory for China
(MEIC; http://www.meicmodel.org/, last access: 24 March
2022; M. Li et al., 2017). These emission inventories provide
emissions of sulfur dioxide (SO2), nitrogen oxides (NOx),
carbon monoxide (CO), non-methane volatile organic com-
pounds (NMVOCs), carbon dioxide (CO2), ammonia (NH3),
black carbon (BC), organic carbon (OC), PM10 (particulate
matter with an aerodynamic diameter of 10 µm and less), and
PM2.5. Emissions are aggregated from four sectors, including
power generation, industry, residential, and transportation,
with 0.25◦× 0.25◦ spatial resolution. Biogenic emissions are
calculated online by the Model of Emissions of Gases and
Aerosols from Nature (MEGAN; Guenther et al., 2006).

2.2 Numerical experiments

To quantify the impacts of API and ARF on O3, the fol-
lowing three experiments have been conducted: (1) BASE –
the base simulation coupled with the interactions between
aerosol and radiation, which includes both impacts of API
and ARF; (2) NOAPI – the same as the BASE case but the
impact of API is turned off (aerosol optical properties are
set to zero in the photolysis module), following Wu et al.
(2020); and (3) NOALL – both the impacts of API and ARF
are turned off (removing the mass of aerosol species when
calculating aerosol optical properties in the optical module),
following Qiu et al. (2017). The differences between BASE
and NOAPI (i.e. BASE minus NOAPI) represent the impacts
of API. The contributions from ARF can be obtained by com-
paring NOAPI and NOALL (i.e. NOAPI minus NOALL).
The combined effects of API and ARF on O3 concentrations
can be quantitatively evaluated by the differences between
BASE and NOALL (i.e. BASE minus NOALL).

All the experiments in Episode1, Episode2, Episode3, and
Episode4 are conducted from 26 July to 3 August 2014, 6–
13 July 2015, 3–11 June 2016, and 26 June to 3 July 2017,
respectively, with the first 40 h as the model spin-up in each
case. Simulation results from the BASE cases of the four
episodes are used to evaluate the model performance.

2.3 Observational data

Simulation results are compared with meteorological and
chemical measurements. The surface-layer meteorological
data (2 m temperature (T2), 2 m relative humidity (RH2), and
10 m wind speed (WS10)) with the temporal resolution of 3 h
at 10 stations (Table S1 in the Supplement) are obtained from
NOAA’s National Climatic Data Center (https://www.ncei.
noaa.gov/maps/hourly/, last access: 24 March 2022). The ra-
diosonde data of temperature at 08:00 and 20:00 LST in Bei-
jing (39.93◦ N, 116.28◦ E) are provided by the University of
Wyoming (http://weather.uwyo.edu/, last access: 24 March
2022). Observed hourly concentrations of PM2.5 and O3 at 32
sites (Table S2) in North China are collected from the China
National Environmental Monitoring Center (CNEMC). The
photolysis rate of nitrogen dioxide (J [NO2]) measured at the
Peking University site (39.99◦ N, 116.31◦ E) is also used to
evaluate the model performance. More details about the mea-
surement technique of J [NO2] can be found in Wang et al.
(2019). The aerosol optical depth (AOD) at the Beijing site
(39.98◦ N, 116.38◦ E) is provided by AERONET (level 2.0;
http://aeronet.gsfc.nasa.gov/, last access: 24 March 2022).
The AODs at 675 and 440 nm are used to derive the AOD
at 550 nm to compare with the simulated ones.

2.4 Integrated process rate analysis

Integrated process rate (IPR) analysis has been widely used
to quantify the contributions of different processes to O3
variations (Goncalves et al., 2009; J. Gao et al., 2016; Gao
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Table 1. Physical parameterization options used in the simulation.

Options Schemes

Microphysics scheme Lin (Purdue) scheme (Lin et al., 1983)
Cumulus scheme Grell 3D ensemble scheme
Boundary layer scheme Yonsei University PBL scheme (Hong et al., 2006)
Surface layer scheme Monin–Obukhov surface scheme (Foken, 2006)
Land surface scheme Unified Noah land surface model (Chen and Dudhia, 2001)
Longwave radiation scheme RRTMG (Iacono et al., 2008)
Shortwave radiation scheme RRTMG (Iacono et al., 2008)

Figure 2. Time series of observed (black) and simulated (red) hourly surface (a) PM2.5 and (b) O3 concentrations averaged over the 32
observation sites in Beijing, Tianjin, and Baoding during 28 July to 3 August 2014 (Episode1; a1 and b1), 8–13 July 2015 (Episode2; a2
and b2), 5–11 June 2016 (Episode3; a3 and b3), and 28 June to 3 July 2017 (Episode4; a4 and b4). The error bars represent the standard
deviations. The calculated index of agreement (IOA), mean bias (MB), normalized mean bias (NMB), and root mean square error (RMSE)
are also shown.

et al., 2018; Tang et al., 2017). In this study, four physical/-
chemical processes are considered, including vertical mix-
ing (VMIX), net chemical production (CHEM), horizontal
advection (ADVH), and vertical advection (ADVZ). VMIX
is initiated by turbulent process and closely related to PBL
development, which influences O3 vertical gradients. CHEM
represents the net O3 chemical production (chemical produc-
tion minus chemical consumption). ADVH and ADVZ rep-
resent transport by winds (J. Gao et al., 2016). In this study,
we define ADV as the sum of ADVH and ADVZ.

3 Model evaluation

Reasonable representation of the observed meteorological
and chemical variables by the WRF-Chem model can pro-
vide the foundation for evaluating the impacts of aerosols on
surface-layer ozone concentrations. The model results pre-
sented in this section are taken from the BASE cases in the
four episodes. The concentrations of air pollutants are aver-
aged over the 32 observation sites in Beijing, Tianjin, and

Baoding. To ensure the data quality, the mean value for each
time is calculated only when concentrations are available at
more than 16 sites, as done in J. D. Li et al. (2019).

3.1 Chemical simulations

Figure 2 shows the temporal variations in observed and sim-
ulated PM2.5 and O3 concentrations over North China for
the four episodes. As shown in Fig. 2, the temporal varia-
tions in observed PM2.5 can be well performed by the model
with index of agreement (IOA) of 0.68, 0.68, 0.67, and 0.44
and the normalized mean bias (NMB) of −19.2 %, 4.1 %,
30.4 %, and 13.9 % during Episode1, Episode2, Episode3,
and Episode4, respectively. The model also tracks the diur-
nal variation in O3 over the North China well, with IOA of
0.89, 0.94, 0.92, and 0.87 and NMB of −12.0 %, −0.4 %,
1.6 %, and −13.8 % for Episode1, Episode2, Episode3, and
Episode4, respectively.

Figure S2 shows the correlation between observed and
simulated AOD at 550 nm in Beijing. In the WRF-Chem
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Figure 3. Time series of 3 h observed (blue dots) and hourly simulated (red lines) (a) 2 m temperature (T2), (b) 2 m relative humidity
(RH2), and (c) wind speed at 10 m (WS10), averaged over 10 meteorological observation stations, and the (d) surface photolysis rate of NO2
(J [NO2]) during 28 July to 3 August 2014 (Episode1; a1–d1), 8–13 July 2015 (Episode2; a2–d2), 5–11 June 2016 (Episode3; a3–c3), and
28 June to 3 July 2017 (Episode4; a4–c4). The calculated index of agreement (IOA), mean bias (MB), normalized mean bias (NMB), and
root mean square error (RMSE) are also shown.

model, the AODs at 550 nm are calculated by using the val-
ues at 400 and 600 nm, according to the Ångström exponent.
Analysing Fig. S2, the model can reproduce the observed
AOD with R of 0.7 and NMB of 7.9 %.

3.2 Meteorological simulations

Figure 3 shows the time series of observed and simulated
T2, RH2, WS10, and J [NO2] during the four episodes. The
observed T2, RH2, and WS10 are averaged over the 10 me-
teorological observation stations, and the J [NO2] are mea-
sured at Peking University. Most of the monitored J [NO2]

in Episode3 and Episode4 are unavailable, so the compari-
son of J [NO2] in Episode3 and Episode4 is not shown. Gen-
erally, the model can depict the temporal variations in T2
fairly well, with IOA of 0.94–0.98 and the mean bias (MB)

of−1.9 to−0.6 ◦C. For RH2, the IOA and MB are 0.90–0.98
and −6.5 % to 1.9 %, respectively. Although WRF-Chem
model overestimates WS10 with the MB of 0.6–1.0 ms−1, the
IOA for WS10 is 0.70–0.83, and the root mean square error
(RMSE) is 0.9–1.5 ms−1, which is smaller than the thresh-
old of the model performance criteria (2 ms−1) proposed by
Emery et al. (2001). The positive bias in wind speed has also
been reproduced in other studies (Zhang et al., 2010; Gao
et al., 2015; Liao et al., 2015; Qiu et al., 2017). The pre-
dicted J [NO2] agrees well with the observations with IOA
of 0.98–0.99 and NMB of 6.8 %–6.9 %. We also conduct
comparisons of observed and simulated temperature profiles
at 08:00 and 20:00 LST in Beijing during the four episodes
(Fig. S3). The vertical profiles of observed temperature can
be well captured by the model in these four complex air pol-
lution episodes. Generally, the WRF-Chem model can rea-

https://doi.org/10.5194/acp-22-4101-2022 Atmos. Chem. Phys., 22, 4101–4116, 2022



4106 H. Yang et al.: Impacts of API and ARF on surface-layer ozone in North China

Figure 4. The impacts of aerosol–radiation interactions on shortwave radiation at the surface (BOT_SW), shortwave radiation in the at-
mosphere (ATM_SW), PBL height (PBLH), and 10 m wind speed (WS10) in the daytime (08:00–17:00 LST) during 28 July to 3 August
2014 (Episode1), 8–13 July 2015 (Episode2), 5–11 June 2016 (Episode3), and 28 June to 3 July 2017 (Episode4). The regions sandwiched
between two black lines are defined as the complex air pollution areas (CAPAs), where the mean daily PM2.5 and MDA8 O3 concentrations
in the BASE case are larger than 75 µgm−3 and 80 ppb. The calculated changes (percentage changes) averaged over CAPAs are also shown
at the top of each panel.

sonably reproduce the temporal variations in observed mete-
orological parameters.

4 Results

We examine the impacts of aerosol–radiation interactions
on O3 concentrations with a special focus on the complex
air pollution areas (CAPAs; Fig. S4) in the four episodes,
where the daily mean simulated PM2.5 and MDA8 (maxi-

mum daily 8 h average) O3 concentrations are larger than
75 µgm−3 and 80 ppb, respectively, based on the National
Ambient Air Quality Standards (http://www.mee.gov.cn, last
access: 24 March 2022).
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4.1 Impacts of aerosol–radiation interactions on
meteorology

Figure 4 shows the impacts of aerosol–radiation interac-
tions on shortwave radiation at the surface (BOT_SW), short-
wave radiation in the atmosphere (ATM_SW), PBLH, and
WS10 during the daytime (08:00–17:00 LST) from Episode1
to Episode4. Analysing the results of the interactions be-
tween aerosol and radiation (the combined impacts of API
and ARF), BOT_SW is decreased over the entire simu-
lated domain in the four episodes with the decreases of
93.2 Wm−2 (20.5 %), 100.3 Wm−2 (19.5 %), 92.4 Wm−2

(19.2 %), and 102.9 Wm−2 (20.7 %) over CAPAs, respec-
tively. Contrary to the changes in BOT_SW, ATM_SW is in-
creased significantly in the four episodes, with the increases
of 72.8 Wm−2 (25.3 %), 85.2 Wm−2 (29.0 %), 73.7 Wm−2

(26.4 %), and 76.9 Wm−2 (25.8 %) over CAPAs, respec-
tively. The decreased BOT_SW perturbs the near-surface en-
ergy flux, which weakens convection and suppresses the de-
velopment of PBL (Z. Li et al., 2017). The mean PBLHs
over CAPAs are decreased by 129.0 m (13.0 %), 249.0 m
(20.9 %), 224.6 m (19.0 %), and 227.0 m (20.9 %), respec-
tively. WS10 exhibits overall reductions over CAPAs and
is calculated to decrease by 0.12 ms−1 (3.6 %), 0.05 ms−1

(1.6 %), 0.12 ms−1 (3.0 %), and 0.15 ms−1 (4.3 %) for the
four episodes, respectively. We also examine the changed
meteorological variables caused by API and ARF, respec-
tively. As shown in Figs. S5 and S6, API has little impact on
meteorological variables, which means the major contributor
to the meteorology variability is ARF.

4.2 Impacts of aerosol–radiation interactions on
photolysis

Figure 5 shows the spatial distributions of mean daytime
surface-layer PM2.5 concentrations simulated by the BASE
cases and the changes in J [NO2] and J [O1D] due to
aerosol–radiation interactions from Episode1 to Episode4.
When the combined impacts (API and ARF) are consid-
ered, J [NO2] and J [O1D] are decreased over the entire do-
main in the four episodes, and the spatial patterns of changed
J [NO2] and J [O1D] are similar to that of simulated PM2.5.
Analysing the four simulated episodes, the surface J [NO2]

averaged over CAPAs is decreased by 1.8× 10−3 s−1

(40.5 %), 2.0× 10−3 s−1 (36.8 %), 1.8× 10−3 s−1 (36.0 %),
and 2.0× 10−3 s−1 (38.0 %), respectively. The decreased
surface J [O1D] over CAPAs is 6.1× 10−6 s−1 (48.8 %),
6.3× 10−6 s−1 (41.4 %), 5.7× 10−6 s−1 (44.6 %), and
6.4× 10−6 s−1 (46.9 %), respectively. Figure S7 exhibits the
impacts of API and ARF on surface J [NO2] and J [O1D].
Conclusions can be summarized that J [NO2] and J [O1D]
are significantly modified by API and little affected by ARF.

4.3 Impacts of aerosol–radiation interactions on O3

Figure 6 shows the changes in surface-layer O3 due to
API, ARF, and the combined effects (denoted as ALL) from
Episode1 to Episode4. As shown in Fig. 6a1–a4, API alone
leads to overall surface O3 decreases over the entire do-
main, with average reductions of 8.5 ppb (10.2 %), 10.3 ppb
(11.8 %), 9.1 ppb (11.2 %), and 11.4 ppb (12.2 %) over CA-
PAs in the four episodes, respectively. The changes can be ex-
plained by the substantially diminished UV radiation due to
aerosol loading, which significantly weakens the efficiency
of photochemical reactions and restrains O3 formation. How-
ever, the decreased surface O3 concentrations due to ARF are
only 2.9 ppb (3.2 %; Fig. 6b1), 1.0 ppb (1.1 %; Fig. 6b2) and
0.9 ppb (1.0 %; Fig. 6b3) for the Episode1 to Episode3 but
ARF increased surface O3 concentrations by 0.7 ppb (0.5 %;
Fig. 6b4) during Episode4, which was caused by the en-
hancement of chemical production (Fig. S10 and Sect. 4.4).
All the episodes show same conclusion in that the reduc-
tion in O3 by API is larger than that by ARF. Figure 6c1–c4
presents the combined effects of API and ARF. Generally,
aerosol–radiation interactions decrease the surface O3 con-
centrations by 11.4 ppb (13.7 %), 11.3 ppb (13.0 %), 10.0 ppb
(12.3 %), and 10.7 ppb (11.6 %) averaged over CAPAs in the
four episodes, respectively.

4.4 Influencing mechanism of aerosol–radiation
interactions on O3

Figure 7a shows mean results of the four episodes (Episode1,
Episode2, Episode3, and Episode4) in diurnal variations of
simulated daytime surface-layer O3 concentrations from the
BASE, NOAPI, and NOALL cases averaged over CAPAs.
All of the experiments (BASE, NOAPI, and NOALL) present
O3 increases from 08:00 LST. It is shown that the simulated
O3 concentrations in the BASE case increase more slowly
than that in the NOAPI and NOALL cases. To explain the
underlying mechanisms of API and ARF impacts on O3, we
quantify the variations in contributions of different processes
(ADV, CHEM, and VMIX) to O3 by using the IPR analysis.

Figure 7b shows hourly surface O3 changes induced
by each physical/chemical process (i.e. ADV, CHEM, and
VMIX) in the BASE case averaged from Episode1 to
Episode4. The significant positive contribution to the hourly
variation in O3 is contributed by VMIX, and the contribu-
tion reaches the maximum at about 09:00 LST, since VMIX
increases the surface O3 concentrations by transporting O3
from aloft (where O3 concentrations are high) to the sur-
face layer (Tang et al., 2017; Xing et al., 2017; Gao et al.,
2018). The CHEM process makes negative contributions at
around 09:00 and 16:00 LST, which means that the chemical
consumption of O3 is stronger than the chemical production.
At noon, the net chemical contribution turns positive due to
stronger solar UV radiation. The contribution from all the
processes (NET, which is the sum of VMIX, CHEM, and
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Figure 5. Spatial distributions of (a) simulated surface-layer PM2.5 concentrations in BASE cases and the changes in surface (b) J [NO2] and
(c) J [O1D] due to aerosol–radiation interactions in the daytime (08:00–17:00 LST) during 28 July to 3 August 2014 (Episode1), 8–13 July
2015 (Episode2), 5–11 June 2016 (Episode3), and 28 June to 3 July 2017 (Episode4). The calculated values (percentage changes) averaged
over CAPAs are also shown at the top of each panel.

ADV) to a O3 variation is peaked at noon and then becomes
weakened. After sunset (17:00 LST), the NET contribution
turns negative over CAPAs, leading to a O3 decrease.

Figure 7c shows the changes in the hourly process contri-
butions caused by API averaged from Episode1 to Episode4.
The chemical production of O3 is suppressed significantly

due to aerosol impacts on photolysis rates. The weakened
O3 chemical production decreases the contribution from
CHEM and results in a negative value of CHEM_DIF
(−3.44 ppbh−1). In contrast to CHEM_DIF, the contribu-
tion from changed VMIX (VMIX_DIF) to the O3 concen-
tration due to API is always positive, and the mean value
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Figure 6. The changes in surface-layer ozone due to (a) aerosol–photolysis interaction (API), (b) aerosol–radiation feedback (ARF), and
(c) the combined effects (ALL; defined as API+ARF) in the daytime (08:00–17:00 LST) during 28 July to 3 August 2014 (Episode1),
8–13 July 2015 (Episode2), 5–11 June 2016 (Episode3), and 28 June to 3 July 2017 (Episode4). The changes (percentage changes) in O3
concentrations caused by API, ARF, and ALL, averaged over CAPAs, are also shown at the top of each panel.
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Figure 7. Temporal evolution characteristics of aerosol–radiation interactions on O3 averaged over the four episodes. (a) Diurnal variations
in simulated surface O3 concentrations in BASE (black dotted line), NOAPI (blue dotted line), and NOALL (red dotted line) cases over
CAPAs. (b) The hourly surface O3 changes induced by each physical/chemical process, using the IPR analysis method in BASE case, are
shown. (c–e) Changes in hourly surface O3 process contributions caused by API (BASE minus NOAPI), ARF (NOAPI minus NOALL), and
ALL (BASE minus NOALL) over CAPAs during the daytime (08:00–17:00 LST) are shown. The black lines with squares denote the net
contribution of all processes (NET; defined as VMIX+CHEM+ADV). Differences in each process contribution are denoted as VMIX_DIF,
CHEM_DIF, ADV_DIF, and NET_DIF.

is +3.26 ppbh−1. The positive change in VMIX due to API
may be associated with the different vertical gradient of O3
between the BASE and NOAPI cases (Gao et al., 2020), as
shown in Fig. 8a. The impact of API on ADV process is rel-
atively small (−0.26 ppbh−1). NET_DIF, namely the sum of
VMIX_DIF, CHEM_DIF, and ADV_DIF, indicates the dif-
ferences in hourly O3 changes caused by API. As shown in
Fig. 7c, NET_DIF is almost negative during the daytime over
CAPAs, with the mean value of −0.44 ppbh−1. This is be-
cause the decreases in CHEM and ADV are larger than the
increases in VMIX caused by API; the O3 decrease is mainly
attributed to the significantly decreased contribution from
CHEM. The maximum difference in O3 between the BASE
and NOAPI appears at 11:00 LST, with a value of −12.5 ppb
(Fig. 7a).

Figure 7d shows the impacts of ARF on each physical/-
chemical process contribution to the hourly O3 variation av-
eraged from Episode1 to Episode4. At 08:00 LST, the change
in VMIX due to ARF is large, with a value of −3.5 ppbh−1,
resulting in a net negative variation with all processes con-
sidered. The decrease in O3 reaches the maximum with the
value of 5.0 ppb at around 08:00 LST over CAPAs (Fig. 7a).
During 09:00 to 16:00 LST, the positive VMIX_DIF (mean
value of +0.10 ppb h−1) or the positive CHEM_DIF (mean
value of +0.75 ppb h−1) is the major process leading to the
positive NET_DIF. The positive VMIX_DIF is related to

the evolution in the boundary layer during the daytime. The
VOC/NOx ratio is calculated to classify sensitivity regimes
and to indicate the possible O3 responses to changes in
volatile organic compounds (VOCs) and/or NOx concentra-
tions. O3 production is VOC limited if the ratio is less than 4
and is NOx limited if the ratio is larger than 15 (Edson et al.,
2017; K. Li et al., 2017). The ratio of VOCs/NOx ranges
around 4–15 and indicates a transitional regime, where ozone
is nearly equally sensitive to both species (Sillman, 1999). As
shown in Fig. S8a–h, O3 is mainly formed under the VOC
limited conditions and the transition regimes in CAPAs. As
shown in Fig. S8i–l and m–p, both the surface concentrations
of VOCs and NOx are increased when the impacts of ARF
are considered. Thus, the contribution of CHEM in NOAPI
is larger than that in NOALL.

When both impacts of API and ARF are considered, the
variation pattern of the difference in hourly process contri-
bution shown in Fig. 7e is similar to that in Fig. 7c, which
indicates that API is the dominant factor to surface-layer O3
reduction.

Figure 8 presents the vertical profiles of simulated day-
time O3 concentrations in three cases (BASE, NOAPI, and
NOALL), and the differences in contributions from each
physical/chemical process to hourly O3 variations caused by
API, ARF, and the combined effects averaged over CAPAs
from Episode1 to Episode4. As shown in Fig. 8a, the O3 con-
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Figure 8. The impacts of aerosol–radiation interactions on vertical O3 averaged over the four episodes. (a) Vertical profiles of simulated
O3 concentrations in BASE (black dotted line), NOAPI (blue dotted line), and NOALL (red dotted line) cases over CAPAs. (b–d) Changes
in O3 budget due to API, ARF, and ALL over CAPAs during the daytime (08:00–17:00 LST). Differences in each process contribution are
denoted by ADVZ_DIF, ADVH_DIF, CHEM_DIF, and VMIX_DIF.

centration is lower in BASE than that in other two scenarios
(NOAPI and NOALL), especially at the lower 12 levels (be-
low 801.8 m), owing to the impacts of aerosols (API and/or
ARF).

The changes in each process contribution caused by API
are presented in Fig. 8b. The contribution from CHEM_DIF
is −2.1 ppbh−1 for the first seven layers (from 25.6 to
318.5 m). Conversely, the contribution from VMIX_DIF
shows a positive value under the 318.5 m (between the
first layer to the seventh layer), with the mean value of
+1.8 ppbh−1. The positive variation in VMIX due to API
may be associated with the different vertical gradient of
O3 between BASE and NOAPI again. The contributions of
changed advection (ADVH_DIF and ADVZ_DIF) are rela-
tively small, with mean values of +0.03 and −0.18 ppbh−1

below the first seven layers, which may result from the small
impact of API on the wind field (Fig. S6a4 to d4). The net dif-
ference is a negative value (−0.45 ppbh−1), and API leads to
a O3 reduction not only near the surface but also aloft.

Figure 8c shows the differences in O3 budget due to ARF.
When the ARF is considered, the vertical turbulence is weak-
ened and the development of the PBL is inhibited, which
makes VMIX_DIF negative at the lower seven layers (be-

low the 318.5 m), with a mean value of −0.69 ppbh−1, but
the variation in CHEM caused by ARF is positive, with a
mean value of +0.86 ppbh−1. The enhanced O3 precursors
due to ARF can promote the chemical production of O3
(Tie et al., 2009; Gao et al., 2018). The changes in ADVZ
and ADVH (ADVZ_DIF and ADVH_DIF) caused by ARF
are associated with the variations in the wind field. When
ARF is considered, the horizontal wind speed is decreased
(Fig. S9a), which makes ADVH_DIF positive at the lower
12 layers, with a mean value of +0.30 ppbh−1. However,
ADVZ_DIF is negative at these layers, with a mean value
of −0.26 ppbh−1, because aerosol radiative effects decrease
the transport of O3 from the upper to lower layers (Fig. S9b).

In Fig. 8d, the pattern and magnitude of the differences in
process contributions between BASE and NOALL are simi-
lar to those caused by API, indicating the dominate contrib-
utor of API on O3 changes. The impacts of API on O3 both
near the surface and aloft are greater than those of ARF.

Figures S10 and S11 detail the influencing mechanism of
aerosol–radiation interactions on O3 in each episode. Sim-
ilar variation characteristics can be found among the four
episodes as the mean situation (discussed above), with the
larger impacts of API on O3 both near the surface and aloft
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Table 2. Detailed information of the analysed episodes, including the impacts of API, ARF, and ALL on O3 concentrations under different
air pollution conditions. The numbers in italics indicate the concentrations exceeded the Class II limit of the National Ambient Air Quality
Standards of China. The numbers in parentheses indicate the percentage changes in the O3 concentration.

Type Episode Time PM2.5 pollution O3 pollution API ARF ALL
(µgm−3) (ppb) (ppb) (ppb)

Complex air pollution Episode1 2014.7.28–2014.8.3 113.3 80.0 −8.5 (−10.2 %) −2.9 (−3.2 %) −11.4 (−13.7 %)
Episode2 2015.7.8–2015.7.13 79.3 89.6 −10.3 (−11.8 %) −1.0 (−1.1 %) −11.3 (−13.0 %)
Episode3 2016.6.5–2016.6.11 76.5 87.6 −9.1 (−11.2 %) −0.9 (−1.0 %) −10.0 (−12.3 %)
Episode4 2017.6.28–2017.7.3 75.4 113.8 −11.4 (−12.2 %) 0.7 (0.5 %) −10.7 (−11.6 %)

High_PM Episode1 2014.10.7–2014.10.12 223.5 46.9 −15.3 (−29.3 %) −3.9 (−6.2 %) −19.2 (−37.6 %)
Episode2 2014.4.7–2014.4.11 111.7 54.8 −7.3 (−16.9 %) −2.4 (−4.7 %) −9.7 (−22.6 %)

High_O3 Episode1 2017.6.15–2017.6.21 61.9 103.6 −4.5 (−5.3 %) −0.1 (−0.1 %) −4.6 (−5.5 %)
Episode2 2017.7.12–2017.7.17 45.6 100.4 −3.8 (−4.5 %) −0.1 (−0.1 %) −3.9 (−4.6 %)

Low_POL Episode1 2016.6.13–2016.6.18 36.5 62.4 −4.4 (−6.8 %) −0.6 (−1.0 %) −5.0 (−7.9 %)
Episode2 2016.7.13–2016.7.17 38.3 55.9 −1.9 (−2.9 %) −0.5 (−0.7 %) −2.4 (−3.7 %)

than those of ARF, indicating that the role of API is much
larger than that of ARF during all the simulated episodes.

4.5 Discussions

We presented above the results from our simulations of
multi-pollutant air pollution episodes. In order to make the
conclusion more general, we carried out simulations for
three additional air pollution conditions, i.e. (1) PM2.5 pol-
lution alone (High_PM, with daily mean PM2.5 concentra-
tion larger than 75 µgm−3), (2) O3 pollution alone (High_O3,
with the maximum daily 8 h average O3 concentration larger
than 80 ppb), and (3) neither PM2.5 nor O3 exceeded air
quality standard (Low_POL, with daily mean PM2.5 and the
maximum daily 8 h average O3 concentrations smaller than
75 µgm−3 and 80 ppb, respectively). For each condition of
air pollution, we examined two episodes.

Figures S12 and S13 show the temporal variations
in observed and simulated PM2.5 and O3 concentra-
tions during 7–12 October 2014 (High_PM_Episode1),
7–11 April 2014 (High_PM_Episode2), 15–
21 June 2017 (High_O3_Episode1), 12–17 July
2017 (High_O3_Episode2), 13–18 June 2016
(Low_POL_Episode1), and 13–17 July 2016
(Low_POL_Episode2). The temporal variations in ob-
served PM2.5 can be well captured by the model,
with IOAs of 0.63, 0.82, 0.56, 0.42, 0.76, and 0.54
and NMBs of 7.4 %, 20.3 %, −21.7 %, −25.9 %,
14.7 %, and −29.3 % during High_PM_Episode1,
High_PM_Episode2, High_O3_Episode1,
High_O3_Episode2, Low_POL_Episode1, and
Low_POL_Episode2, respectively. The model also simulates
the diurnal variation in O3 over the North China well, with
IOAs of 0.87, 0.80, 0.87, 0.90, 0.84, and 0.86 and NMBs of
−9.4 %, −29.5 %, −15.2 %, −9.4 %, 11.6 %, and 18.0 % in
these six episodes, respectively.

Figure 9 shows changes in daytime surface-layer O3
due to API, ARF, and the combined effects (denoted

as ALL) of High_PM_Episode1, High_PM_Episode2,
High_O3_Episode1, High_O3_Episode2,
Low_POL_Episode1, and Low_POL_Episode2. As sum-
marized in Table 2, all the simulations confirm the same
conclusion, which is that the reduction in O3 by API is
larger than that by ARF. Averaged over the entire domain,
the percentage reductions in O3 by API and ARF are,
respectively, 29.3 % and 6.2 % in High_PM_Episode1,
16.9 % and 4.7 % in High_PM_Episode2, 5.3 % and 0.1 % in
High_O3_Episode1, 4.5 % and 0.1 % in High_O3_Episode2,
6.8 % and 1.0 % in Low_POL_Episode1, and 2.9 % and
0.7 % in Low_POL_Episode2. It is worth noting that the
percentage reductions in O3 from both API and ARF in
High_PM episodes are 1.6–3.2 times the impacts in the
complex episodes, while the impacts in cases of Low_POL
and High_O3 are 0.3–0.7 times the impacts of complex
episodes.

5 Conclusions

In this study, the fully coupled regional chemistry trans-
port model WRF-Chem is applied to investigate the im-
pacts of aerosol–radiation interactions, including the impacts
of aerosol–photolysis interaction (API) and the impacts of
aerosol–radiation feedback (ARF), on O3 during summer-
time complex air pollution episodes during 28 July to 3 Au-
gust 2014 (Episode1), 8–13 July 2015 (Episode2), 5–11 June
2016 (Episode3), and 28 June to 3 July 2017 (Episode4). In
total, three sensitivity experiments are designed to quantify
the respective and combined impacts from API and ARF.
Generally, the spatiotemporal distributions of the observed
pollutant concentrations and meteorological parameters can
be captured fairly well by the model, with an index of agree-
ment of 0.44–0.94 for pollutant concentrations and 0.70–0.99
for meteorological parameters.

Sensitivity experiments show that aerosol–radiation
interactions decrease BOT_SW, WS10, PBLH, J [NO2], and
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Figure 9. The changes in surface-layer O3 due to aerosol–photolysis interaction (API), aerosol–radiation feedback (ARF), and the
combined effects (ALL; API+ARF) in the daytime (08:00–17:00 LST) of 7–12 October 2014 (High_PM_Episode1), 7–11 April
2014 (High_PM_Episode2), 13–18 June 2016 (Low_POL_Episode1), 13–17 July 2016 (Low_POL_Episode2), 15–21 June 2017
(High_O3_Episode1), and 12–17 July 2017 (High_O3_Episode2). The changes (percentage changes) in O3 concentrations caused by API,
ARF, and ALL, averaged over the entire simulated domain, are also shown at the top of each panel.

J [O1D] by 92.4–102.9 Wm−2, 0.05–0.15 ms−1, 129.0–
249.0 m, 1.8× 10−3 –2.0× 10−3 s−1, and 5.7× 10−6 –
6.4× 10−6 s−1 over CAPAs and increase ATM_SW by
72.8–85.2 Wm−2, respectively. The changed meteorological
variables and weakened photochemistry reaction further
reduce surface-layer O3 concentrations by 10.0–11.4 ppb,
with relative changes of 74.6 %–106.5 % by API and of
−6.5 % to 25.4 % by ARF.

We further examine the influencing mechanism of
aerosol–radiation interactions on O3 by using integrated pro-
cess rate analysis. API can directly affect O3 by reducing
the photochemistry reactions within the lower several hun-
dred metres and, therefore, amplify the O3 vertical gradient,
which promotes the vertical mixing of O3. The reduced pho-
tochemistry reactions of O3 weaken the chemical contribu-
tion and reduce the surface O3 concentrations, even though
the enhanced vertical mixing can partly counteract the reduc-
tion. ARF affects O3 concentrations indirectly through the
changed meteorological variables, e.g. the decreased PBLH.
The suppressed PBL can weaken the vertical mixing of O3
by turbulence. Generally, the impacts of API on O3 both near

the surface and aloft are greater than those of ARF, indicating
the dominant role of API on O3 reduction related to aerosol–
radiation interactions.

This study provides a detailed understanding of aerosol
impacts on O3 through aerosol–radiation interactions (in-
cluding both API and ARF), with the general conclu-
sion summarized as follows: when the impacts of aerosol–
radiation interactions are considered, the changed meteoro-
logical variables and weakened photochemistry reaction can
change surface-layer O3 concentrations during the warm sea-
son, and the API is the dominant factor for O3 reduction.
The results can also imply that future PM2.5 reductions may
lead to O3 increases due to weakened aerosol–radiation in-
teractions. A recent study emphasized the need for control-
ling VOC emissions to mitigate O3 pollution (K. Li et al.,
2019a). Therefore, tighter controls of O3 precursors (espe-
cially VOC emissions) are needed to counteract future O3
increases caused by weakened aerosol–radiation interactions.

There are some limitations in this work. (1) In the cur-
rent Carbon Bond Mechanism Z (CBM-Z) and MOSAIC
schemes, the formation of SOA (secondary organic aerosol)
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is not included (Gao et al., 2015; Chen et al., 2019). The
absence of SOA can underestimate the impacts of API and
ARF on O3. Meanwhile, the lack of SOA may lead to weaker
heterogeneous reactions and result in higher O3 concentra-
tions (K. Li et al., 2019b). The net effect of the two pro-
cesses will be discussed and quantified in our future study.
(2) The CNEMC network was built in 2013. Before 2013, the
national observations of PM2.5 and O3 concentrations were
not available, which makes it difficult to select the time and
location of complex air pollution events and to evaluate the
model results. Based on observation data, we were mainly fo-
cused on impacts of ARF and API on surface O3 for complex
air pollution episodes from 2014 to 2017. Additional simu-
lations of High_PM, High_O3, and Low_POL support the
conclusion obtained from the complex air pollution episodes
that the reduction in O3 by API is larger than that by ARF.
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