Articles | Volume 21, issue 11
https://doi.org/10.5194/acp-21-8863-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-8863-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Boundary layer structure characteristics under objective classification of persistent pollution weather types in the Beijing area
Zhaobin Sun
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Xiujuan Zhao
CORRESPONDING AUTHOR
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Ziming Li
Environmental Meteorology Forecast Center of Beijing–Tianjin–Hebei, Beijing 100089, China
Guiqian Tang
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 102300, China
Shiguang Miao
Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
Related authors
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025, https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary
Short summary
Climate change and pollution have intensified pollen allergies. We developed a pollen emissions model using phenology and random forests. Key factors affecting annual pollen emissions include temperature, relative humidity and sunshine hours. Pollen dispersal starts around 10 August, peaks around 30 August and ends by 25 September, lasting about 45 d. Over time, annual pollen emissions exhibit significant fluctuations and a downward trend.
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021, https://doi.org/10.5194/gmd-14-337-2021, 2021
Weibin Zhu, Sai Shang, Jieqi Wang, Yunfei Wu, Zhaoze Deng, Liang Ran, Ye Kuang, Guiqian Tang, Xiangpeng Huang, Xiaole Pan, Lanzhong Liu, Weiqi Xu, Yele Sun, Bo Hu, Zifa Wang, and Zirui Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4901, https://doi.org/10.5194/egusphere-2025-4901, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
New particle formation (NPF) contributes to cloud condensation nuclei (CCN), but its role at the boundary-layer top (BLT) under polluted conditions remains unclear. Based on springtime mountain-top observations in the Yangtze River Delta, we show that polluted air masses enhance NPF intensity and accelerate NPF-to-CCN conversion. Ammonia was found to play a crucial role and a new “Time Window” metric reveals oxidation-driven growth and cross-regional transport as key factors.
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025, https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary
Short summary
Climate change and pollution have intensified pollen allergies. We developed a pollen emissions model using phenology and random forests. Key factors affecting annual pollen emissions include temperature, relative humidity and sunshine hours. Pollen dispersal starts around 10 August, peaks around 30 August and ends by 25 September, lasting about 45 d. Over time, annual pollen emissions exhibit significant fluctuations and a downward trend.
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025, https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were conducted based on a 325 m tall tower in urban Beijing. Vertical changes in the concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
Haoyuan Chen, Tao Song, Xiaodong Chen, Yinghong Wang, Mengtian Cheng, Kai Wang, Fuxin Liu, Baoxian Liu, Guiqian Tang, and Yuesi Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3931, https://doi.org/10.5194/egusphere-2024-3931, 2025
Short summary
Short summary
The methane leakage from natural gas may offset the reduced CO2 emissions from its combustion, To quantify its effect, we established the flux observation platform in the urban area of Beijing, the results showed that natural gas has become a common source of both after the transformation of energy structure, the natural gas could escape during storage and use. Although the natural gas leakage rate is not high (1.12 %), the greenhouse effect caused by natural gas leakage can not be ignored.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Hang Liu, Xiaole Pan, Shandong Lei, Yuting Zhang, Aodong Du, Weijie Yao, Guiqian Tang, Tao Wang, Jinyuan Xin, Jie Li, Yele Sun, Junji Cao, and Zifa Wang
Atmos. Chem. Phys., 23, 7225–7239, https://doi.org/10.5194/acp-23-7225-2023, https://doi.org/10.5194/acp-23-7225-2023, 2023
Short summary
Short summary
We provide the average vertical profiles of black carbon (BC) concentration, size distribution and coating thickness at different times of the day in an urban area based on 112 vertical profiles. In addition, it is found that BC in the residual layer generally has a thicker coating, higher absorption enhancement and hygroscopicity than on the surface. Such aged BC could enter into the boundary layer and influence the BC properties in the early morning.
Xingxia Kou, Zhen Peng, Meigen Zhang, Fei Hu, Xiao Han, Ziming Li, and Lili Lei
Atmos. Chem. Phys., 23, 6719–6741, https://doi.org/10.5194/acp-23-6719-2023, https://doi.org/10.5194/acp-23-6719-2023, 2023
Short summary
Short summary
A CMAQ EnSRF-based regional inversion system was extended to resolve satellite retrievals into biogenic source–sink changes. The size of the assimilated biosphere sink in China inferred from GOSAT was −0.47 Pg C yr−1. The biosphere flux at the provincial scale was re-estimated following the refined description in the regional inversion.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Ying Wei, Xueshun Chen, Huansheng Chen, Yele Sun, Wenyi Yang, Huiyun Du, Qizhong Wu, Dan Chen, Xiujuan Zhao, Jie Li, and Zifa Wang
Geosci. Model Dev., 14, 4411–4428, https://doi.org/10.5194/gmd-14-4411-2021, https://doi.org/10.5194/gmd-14-4411-2021, 2021
Short summary
Short summary
The sub-grid particle formation (SGPF) in plumes plays an important role in air pollution and climate. We coupled an SGPF scheme to a chemical transport model with an aerosol microphysics module and applied it to investigate the SGPF impact over China. The scheme clearly improved the model performance in simulating aerosol components and particle number at typical sites influenced by point sources. The results indicate the significant effects of SGPF on aerosol particles in industrial areas.
Yunyan Jiang, Jinyuan Xin, Ying Wang, Guiqian Tang, Yuxin Zhao, Danjie Jia, Dandan Zhao, Meng Wang, Lindong Dai, Lili Wang, Tianxue Wen, and Fangkun Wu
Atmos. Chem. Phys., 21, 6111–6128, https://doi.org/10.5194/acp-21-6111-2021, https://doi.org/10.5194/acp-21-6111-2021, 2021
Short summary
Short summary
Multiscale-circulation coupling affects pollution by changing the planetary boundary layer (PBL) structure. The multilayer PBL under cyclonic circulation has no diurnal variation; the temperature inversion and zero-speed zone can reach 600–900 m with strong mountain winds. The monolayer PBL under southwestern circulation can reach 2000 m; the inversion is lower than nocturnal PBL (400 m) with strong ambient winds. The zonal winds' vertical shear produces the inversion under western circulation.
Dandan Zhao, Jinyuan Xin, Chongshui Gong, Jiannong Quan, Yuesi Wang, Guiqian Tang, Yongxiang Ma, Lindong Dai, Xiaoyan Wu, Guangjing Liu, and Yongjing Ma
Atmos. Chem. Phys., 21, 5739–5753, https://doi.org/10.5194/acp-21-5739-2021, https://doi.org/10.5194/acp-21-5739-2021, 2021
Short summary
Short summary
The influence of aerosol radiative forcing (ARF) on the boundary layer structure is nonlinear. The threshold of the modification effects of ARF on the boundary layer structure was determined for the first time, highlighting that once ARF exceeded a certain value, the boundary layer would quickly stabilize and aggravate air pollution. This could provide useful information for relevant atmospheric-environment improvement measures and policies.
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021, https://doi.org/10.5194/gmd-14-337-2021, 2021
Yang Yang, Min Chen, Xiujuan Zhao, Dan Chen, Shuiyong Fan, Jianping Guo, and Shaukat Ali
Atmos. Chem. Phys., 20, 12527–12547, https://doi.org/10.5194/acp-20-12527-2020, https://doi.org/10.5194/acp-20-12527-2020, 2020
Short summary
Short summary
This study analyzed the impacts of aerosol–radiation interaction on radiation and meteorological forecasts using the offline coupling of WRF and high-frequency updated AOD simulated by WRF-Chem. The results revealed that aerosol–radiation interaction had a positive influence on the improvement of predictive accuracy, including 2 m temperature (~ 73.9 %) and horizontal wind speed (~ 7.8 %), showing potential prospects for its application in regional numerical weather prediction in northern China.
Cited articles
Cai, W. J., Li, K., Liao, H., Wang, H. J., and Wu, L. X.:
Weather conditions conducive to Beijing severe haze more frequent under climate change,
Nat. Clim. Change,
7, 257–262, https://doi.org/10.1038/nclimate3249, 2017.
Chamorro, L. P. and Porte-Agel, F.:
Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study,
Bound.-Lay. Meteorol,
136, 515–533, https://doi.org/10.1007/s10546-010-9512-1, 2010.
Chen, G. T.-J., Jiang, Z., and Wu, M.-C.:
Spring heavy rain events in Taiwan during warm episodes and the associated large-scale conditions,
Mon. Weather Rev.,
131, 1173–1188, 2003.
Chen, H. P. and Wang, H. J.:
Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012,
J. Geophys. Res.-Atmos.,
120, 5895–5909, https://doi.org/10.1002/2015jd023225, 2015.
Christoph, M., Noora, E., Janne, R., and Ari, K.: Retrieval of mixing height and dust concentration with lidar ceilometer, Bound.-Lay. Meteorol., 124, 117–128, https://doi.org/10.1007/s10546-006-9103-3, 2007.
Deroubaix, A., Menut, L., Flamant, C., Brito, J., Denjean, C., Dreiling, V., Fink, A., Jambert, C., Kalthoff, N., Knippertz, P., Ladkin, R., Mailler, S., Maranan, M., Pacifico, F., Piguet, B., Siour, G., and Turquety, S.: Diurnal cycle of coastal anthropogenic pollutant transport over southern West Africa during the DACCIWA campaign, Atmos. Chem. Phys., 19, 473–497, https://doi.org/10.5194/acp-19-473-2019, 2019.
Dockery, D. W., Pope 3rd, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr., B. G., and Speizer, F. E.:
An association between air pollution and mortality in six U. S. cities,
New Engl. J. Med.,
329, 1753–1759, https://doi.org/10.1056/nejm199312093292401, 1993.
Dommenget, D. and Latif, M.:
A cautionary note on the interpretation of EOFs,
J. Climate,
15, 216–225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2, 2002.
El-Kadi, A. K. A. and Smithson, P. A.:
Atmospheric classifications and synoptic climatology,
Prog. Phys. Geog.,
16, 432–455, https://doi.org/10.1177/030913339201600403, 1992.
Gong, T. Y., Sun, Z. B., Zhang, X. L., Zhang, Y., Wang, S. G., Han, L., Zhao, D. L., Ding, D. P., and Zheng, C. J.:
Associations of black carbon and PM2.5 with daily cardiovascular mortalityin Beijing, China,
Atmos. Environ.,
214, 116876, https://doi.org/10.1016/j.atmosenv.2019.116876, 2019.
Hannachi, A.:
Pattern hunting in climate: A new method for finding trends in gridded climate data,
Int. J. Climatol.,
27, 1–15, https://doi.org/10.1002/joc.1375, 2007.
Han, L., Sun, Z. B., He, J., Zhang, X. L., Hao, Y., and Zhang, Y.:
Does the early haze warning policy in Beijing reflect the associated health risks, even for slight haze?,
Atmos. Environ.,
210, 110–119, https://doi.org/10.1016/j.atmosenv.2019.04.051, 2019.
Han, L., Sun, Z. B., He, J., Hao, Y., Tang, Q. L., Zhang, X. L., Zheng, C. J., and Miao, S. G.:
Seasonal variation in health impacts associated with visibility in Beijing, China,
Sci. Total Environ.,
730, 139149, https://doi.org/10.1016/j.scitotenv.2020.139149, 2020a.
Han, L., Sun, Z. B., He, J., Zhang, B. H., Lv, M. Y., Zhang, X. L., and Zheng, C. J.:
Estimating the mortality burden attributable to temperature and PM2.5 from the perspective of atmospheric flow,
Environ. Res. Lett.,
15, 124059, https://doi.org/10.1088/1748-9326/abc8b9, 2020b.
Han, L., Sun, Z. B., Gong, T. Y., Zhang, X. L., He, J., Xing, Q., Li, Z. M., Wang, J., Ye, D. X., and Miao, S. G.:
Assessment of the short-term mortality effect of the national actionplan on air pollution in Beijing, China,
Environ. Res. Lett.,
15, 034052, https://doi.org/10.1088/1748-9326/ab6f13, 2020c.
He, J. J., Gong, S. L., Zhou, C. H., Lu, S. H., Wu, L., Chen, Y., Yu, Y., Zhao, S. P., Yu, L. J., and Yin, C. M.:
Analyses of winter circulation types and their impacts on haze pollution in Beijing,
Atmos. Environ.,
192, 94–103, https://doi.org/10.1016/j.atmosenv.2018.08.060, 2018.
He, K. B., Yao, Z. L., and Zhang, Y. Z.:
Characteristics of vehicle emissions in China based on portable emission measurement system,
in: 19th Annual International Emission Inventory Conference “Emissions Inventories-Informing Emerging Issues”, San Antonio, Texas, 2010.
Hou, Q., An, X. Q., Tao, Y., and Sun Z. B.:
Assessment of resident's exposure level and health economic costs of PM10 in Beijing from 2008 to 2012,
Sci. Total Environ.,
563–564, 557–565, https://doi.org/10.1016/j.scitotenv.2016.03.215, 2016.
Huang, S.: Air pollution and control: past, present and future, Chin. Sci. Bull., 63, 895–919, 2018 (in Chinese).
Inness, A., Benedetti, A., Flemming, J., Huijnen, V., Kaiser, J. W., Parrington, M., and Remy, S.: The ENSO signal in atmospheric composition fields: emission-driven versus dynamically induced changes, Atmos. Chem. Phys., 15, 9083–9097, https://doi.org/10.5194/acp-15-9083-2015, 2015.
Kang, H., Zhu, B., Gao, J., He, Y., Wang, H., Su, J., Pan, C., Zhu, T., and Yu, B.: Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China, Atmos. Chem. Phys., 19, 3673–3685, https://doi.org/10.5194/acp-19-3673-2019, 2019.
Lee, Y., Shindell, D. T., Faluvegi, G., and Pinder, R. W.: Potential impact of a US climate policy and air quality regulations on future air quality and climate change, Atmos. Chem. Phys., 16, 5323–5342, https://doi.org/10.5194/acp-16-5323-2016, 2016.
Li, J., Du, H. Y., Wang, Z. F., Sun, Y. L., Yang, W. Y., Li, J. J., Tang, X., and Fu, P. Q.:
Rapid formation of a severe regional winter haze episode over a mega-city cluster on the North China Plain,
Environ. Pollut.,
223, 605–615, https://doi.org/10.1016/j.envpol.2017.01.063, 2017.
Li, J., Sun, J., Zhou, M., Cheng, Z., Li, Q., Cao, X., and Zhang, J.: Observational analyses of dramatic developments of a severe air pollution event in the Beijing area, Atmos. Chem. Phys., 18, 3919–3935, https://doi.org/10.5194/acp-18-3919-2018, 2018.
Li, J., Sun, Z., Lenschow, D. H., Zhou, M., Dou, Y., Cheng, Z., Wang, Y., and Li, Q.: A foehn-induced haze front in Beijing: observations and implications, Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, 2020.
Li, J. B., Cook, E. R., D'arrigo, R., Chen, F. H., and Gou, X. H.:
Moisture variability across China and Mongolia: 1951–2005,
Clim. Dynam.,
32, 1173–1186, https://doi.org/10.1007/s00382-008-0436-0, 2009.
Li, Q. C., Li, J., Zheng, Z. F., Wang, Y. T., and Yu, M.:
Influence of mountain valley breeze and sea land breeze in winter on distribution of air pollutants in Beijing–Tianjin–Hebei region,
Enviromental Science,
40, 513–524, https://doi.org/10.13227/j.hjkx.201803193, 2019.
Lian, T. and Chen, D.:
An Evaluation of Rotated EOF Analysis and Its Application to Tropical Pacific SST Variability,
J. Climate,
25, 5361–5373, https://doi.org/10.1175/JCLI-D-11-00663, 2012.
Liao, Z., Sun, J., Yao, J., Liu, L., Li, H., Liu, J., Xie, J., Wu, D., and Fan, S.: Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing, Atmos. Chem. Phys., 18, 6771–6783, https://doi.org/10.5194/acp-18-6771-2018, 2018.
Lin, C.-Y., Wang, Z., Chen, W.-N., Chang, S.-Y., Chou, C. C. K., Sugimoto, N., and Zhao, X.: Long-range transport of Asian dust and air pollutants to Taiwan: observed evidence and model simulation, Atmos. Chem. Phys., 7, 423–434, https://doi.org/10.5194/acp-7-423-2007, 2007.
Lorenz, E. N.:
Empirical orthogonal functions and statistical weather prediction, Statistical Forecasting Project Rep. 1,
Dept. of Meteorology, Massachusetts Institute of Technology, Boston, Massachusetts, USA, 49 pp, 1956.
Luan, T., Guo, X., Guo, L., and Zhang, T.: Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing, Atmos. Chem. Phys., 18, 203–225, https://doi.org/10.5194/acp-18-203-2018, 2018.
Markakis, K., Valari, M., Engardt, M., Lacressonniere, G., Vautard, R., and Andersson, C.: Mid-21st century air quality at the urban scale under the influence of changed climate and emissions – case studies for Paris and Stockholm, Atmos. Chem. Phys., 16, 1877–1894, https://doi.org/10.5194/acp-16-1877-2016, 2016.
McDonnell, W. F., Nishino-Ishikawa, N., Petersen, F. F., Chen, L. H., and Abbey, D. E.:
Relationships of mortality with the fine and coarse fractions of long-term ambient PM10 concentrations in nonsmokers,
J. Expo. Anal. Env. Epid.,
10, 427–436, https://doi.org/10.1038/sj.jea.7500095, 2000.
Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097–3110, https://doi.org/10.5194/acp-17-3097-2017, 2017.
Millan, M. M., Salvador, R., Mantilla, E., and Kallos, G.:
Photooxidantdynamics in the Mediterranean basin in summer: Results from European research projects,
J. Geophys. Res.,
102, 8811–8823, https://doi.org/10.1029/96JD03610, 1997.
Oanh, N. T. K., Chutimon, P., Ekbordin, W., and Supat, W.:
Meteorological pattern classification and application for forecasting air pollution episode potential in a mountain-valley area,
Atmos. Environ.,
39, 1211–1225, https://doi.org/10.1016/j.atmosenv.2004.10.015, 2005.
Paegle, J. N. and Mo, K. C.:
Linkages between summer rainfall variability over South America and sea surface temperature anomalies,
J. Climate,
15, 1389–1407, https://doi.org/10.1175/1520-0442(2002)015<1389:LBSRVO>2.0.CO;2, 2002.
Park, J., Basu, S., and Manuel, L.:
Large-eddy simulation of stable boundary layer turbulence and estimation of associated wind turbine loads,
Wind Energy,
17, 359–384, https://doi.org/10.1002/we.1580, 2014.
Quan, J. N., Dou, Y. J., Zhao, X. J., Liu, Q., Sun, Z. B., Pan, Y. B., Jia, X. C., Cheng, Z. G., Ma, P. K., Su, J., Xin, J. Y., and Liu, Y. G.:
Regional atmospheric pollutant transport mechanisms over the North China Plain driven by topography and planetary boundary layer processes,
Atmos. Environ.,
221, 117098, 1–9, https://doi.org/10.1016/j.atmosenv.2019.117098, 2020.
Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and Wang, Y.: Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, 2015.
Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, 2016.
Wang, C., An, X., Zhai, S., Hou, Q., and Sun, Z.:
Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model,
Atmos. Environ.,
175, 154–166, https://doi.org/10.1016/j.atmosenv.2017.11.041, 2018.
Wang, H., Chen, H., and Liu, J.:
Arctic sea ice decline intensified haze pollution in Eastern China,
Atmospheric and Oceanic Science Letters,
8, 1–9, https://doi.org/10.3878/AOSL20140081, 2015b.
Wang, Y. H., Liu, Z. R., Zhang, J. K., Hu, B., Ji, D. S., Yu, Y. C., and Wang, Y. S.: Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing, Atmos. Chem. Phys., 15, 3205–3215, https://doi.org/10.5194/acp-15-3205-2015, 2015a.
Wolf-Grosse, T., Esau, I., and Reuder, J.: Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study, Atmos. Chem. Phys., 17, 7261–7276, https://doi.org/10.5194/acp-17-7261-2017, 2017.
Wu, P., Ding, Y. H., and Liu, Y. J.:
Atmospheric circulation and dynamic mechanism for persistent haze events in the Beijing–Tianjin–Hebei region,
Adv. Atmos. Sci.,
34, 429–440, https://doi.org/10.1007/s00376-016-6158-z, 2017.
Xu, J. M., Chang, L. Y., Ma, J. H., Mao, Z. C., Chen, L., and Cao, Y.:
Objective synoptic weather classification on PM2.5 pollution during autumn and winter seasons in Shanghai,
Acta Scientiae Circumstantiae,
36, 4303–4314, https://doi.org/10.13671/j.hjkxxb.2016.0224, 2016.
Zhai, L., Sun, Z. B., Li, Z. M., Yin, X. M., Xiong, Y. J., Wu, J., Li, E. J., and Kou, X. X. :
Dynamic effects of topography on dust particles in the Beijing region of China,
Atmos. Environ.,
213, 413–423, https://doi.org/10.1016/j.atmosenv.2019.06.029, 2019.
Zhai, S. X., An, X. Q., Liu, Z., Sun, Z. B., and Hou, Q.:
Model assessment of atmospheric pollution control schemes for critical emission regions,
Atmos. Environ.,
124, 367–377, https://doi.org/10.1016/j.atmosenv.2015.08.093, 2016.
Zhang, W., Zhang, Y., Lv, Y., Li, K., and Li, Z.:
Observation of atmospheric boundary layer height by ground-based LiDAR during haze days,
Journal of Remote Sensing,
17, 981–992, 2013.
Zhang, Y., Ding, A. J., Mao, H. T., Nie, W., Zhou, D. R., Liu, L. X., Huang, X., and Fu, C. B.:
Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980–2013,
Atmos. Environ.,
124, 119–128, https://doi.org/10.1016/j.atmosenv.2015.05.063, 2016.
Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., and Che, H.: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016, Atmos. Chem. Phys., 18, 247–258, https://doi.org/10.5194/acp-18-247-2018, 2018.
Zhao, X., Zhang, X., Xu, X., Xu, J., Meng, W., and Pu, W.:
Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing,
Atmos. Environ.,
43, 2893–2900, https://doi.org/10.1016/j.atmosenv.2009.03.009, 2009.
Zheng, X. Y., Fu, Y. F., Yang, Y. J., and Liu, G. S.: Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: observational evidence, Atmos. Chem. Phys., 15, 12115–12138, https://doi.org/10.5194/acp-15-12115-2015, 2015.
Zou, Y. F., Wang, Y. H., Zhang, Y. Z., and Koo, J. H.:
Arctic sea ice, Eurasia snow, and extreme winter haze in China,
Science Advances,
3, 1–8, https://doi.org/10.1126/sciadv.1602751, 2017.
Short summary
Different weather types will shape significantly different structures of the pollution boundary layer. The findings of this study allow us to understand the inherent difference among heavy pollution boundary layers; in addition, they reveal the formation mechanism of haze pollution from an integrated synoptic-scale and boundary layer structure perspective.
Different weather types will shape significantly different structures of the pollution boundary...
Altmetrics
Final-revised paper
Preprint