Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-875-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-875-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pan-European rural monitoring network shows dominance of NH3 gas and NH4NO3 aerosol in inorganic atmospheric pollution load
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Chris R. Flechard
French National Research Institute for Agriculture, Food and
Environment (INRAE), UMR 1069 SAS, 65 rue de St-Brieuc, 35042 Rennes CEDEX,
France
Ulrich Dämmgen
von Thunen Institut (vTI), Bundesallee 50, 38116 Braunschweig, Germany
Sonja Vidic
Meteorological and Hydrological Service of Croatia (MHSC), Research
and Development Division, Gric 3, 10000 Zagreb, Croatia
Vesna Djuricic
Meteorological and Hydrological Service of Croatia (MHSC), Research
and Development Division, Gric 3, 10000 Zagreb, Croatia
Marta Mitosinkova
Slovak Hydrometeorological Institute (SHMU), Department of Air
Quality, Jeseniova 17, 833 15 Bratislava, Slovak Republic
Hilde T. Uggerud
Norwegian Institute for Air Research (NILU), P.O. Box 100, 2027 Kjeller, Norway
Maria J. Sanz
Fundación CEAM, C/Charles R. Darwin, 46980 Paterna (Valencia),
Spain
Basque Centre for Climate Change, Sede Building 1, Scientific Campus
of the University of the Basque Country, 48940, Leioa, Bizkaia, Spain
Ikerbasque, Basque Science Foundation, María Díaz Haroko
Kalea, 3, 48013 Bilbo, Bizkaia, Spain
Ivan Simmons
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Ulrike Dragosits
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Eiko Nemitz
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Marsailidh Twigg
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Netty van Dijk
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Yannick Fauvel
French National Research Institute for Agriculture, Food and
Environment (INRAE), UMR 1069 SAS, 65 rue de St-Brieuc, 35042 Rennes CEDEX,
France
Francisco Sanz
Fundación CEAM, C/Charles R. Darwin, 46980 Paterna (Valencia),
Spain
Martin Ferm
IVL Swedish Environmental Research Institute, P.O. Box 5302, 400
14, Gothenburg, Sweden
Cinzia Perrino
C.N.R. Institute of Atmospheric Pollution Research, via Salaria Km.
29, 300 – 00015, Monterotondo st, Rome, Italy
Maria Catrambone
C.N.R. Institute of Atmospheric Pollution Research, via Salaria Km.
29, 300 – 00015, Monterotondo st, Rome, Italy
David Leaver
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Christine F. Braban
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
J. Neil Cape
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Mathew R. Heal
School of Chemistry, University of Edinburgh, David Brewster Road,
Edinburgh EH9 3FJ, UK
Mark A. Sutton
UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Penicuik,
Midlothian EH26 0QB, UK
Related authors
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, Alessandra Falcucci, Flavia Casu, and Mark A. Sutton
Geosci. Model Dev., 18, 5051–5099, https://doi.org/10.5194/gmd-18-5051-2025, https://doi.org/10.5194/gmd-18-5051-2025, 2025
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from livestock farming. It is estimated that about 30 % of excreted N from livestock is lost due to NH3 emissions from housing, manure management and land application of manure. High NH3 volatilization often occurs in hot regions, while poor management practices also result in significant N losses through NH3 emissions.
Nicholas Cowan, Toby Roberts, Mark Hanlon, Aurelia Bezanger, Galina Toteva, Alex Tweedie, Karen Yeung, Ajinkya Deshpande, Peter Levy, Ute Skiba, Eiko Nemitz, and Julia Drewer
Biogeosciences, 22, 3449–3461, https://doi.org/10.5194/bg-22-3449-2025, https://doi.org/10.5194/bg-22-3449-2025, 2025
Short summary
Short summary
We measured soil hydrogen (H2) fluxes from two field sites, a managed grassland and a planted deciduous woodland, with flux measurements of H2 covering full seasonal cycles. We estimate annual H2 uptake of −3.1 ± 0.1 and −12.0 ± 0.4 kg H2 ha−1 yr−1 for the grassland and woodland sites, respectively. Soil moisture was found to be the primary driver of H2 uptake, with the silt/clay content of the soils providing a physical barrier which limited H2 uptake.
Florin Unga, Giulia Calzolai, Massimo Chiari, Eleonora Cuccia, Cristina Colombi, Mariolina Franciosa, Adelaide Dinoi, Eva Merico, Antonio Pennetta, Noelia Gómez-Sánchez, Caterina Mapelli, Salvatore Pareti, Cinzia Perrino, Eduardo Yubero, and Daniele Contini
Aerosol Research, 3, 405–415, https://doi.org/10.5194/ar-3-405-2025, https://doi.org/10.5194/ar-3-405-2025, 2025
Short summary
Short summary
This study evaluates the performance of energy-dispersive X-ray fluorescence (ED-XRF) on particulate matter (PM10) samples collected on quartz and Teflon filters through an inter-laboratory comparison. Detection limits were higher on quartz, but measurement repeatability was similar. Strong elemental correlations suggest that, with proper corrections, quartz filters can provide reliable results. These findings support their feasibility for ED-XRF analysis.
Mubaraq Olarewaju Abdulwahab, Christophe Flechard, Yannick Fauvel, Christoph Häni, Adrien Jacotot, Anne-Isabelle Graux, Nadège Edouard, Pauline Buysse, Valérie Viaud, and Albrecht Neftel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1605, https://doi.org/10.5194/egusphere-2025-1605, 2025
Short summary
Short summary
Pastures are an important source of ammonia, a major atmospheric pollutant with manifold environmental impacts. Ammonia is emitted from the decomposition of cattle urine in soils during grazing. We used micrometeorological methods to measure emissions over four grazing seasons. The results show the influence of weather and grassland management on emission processes. Emission factors, used to compile regional inventories, are hugely variable and still very uncertain despite decades of research.
Samuel James Tomlinson, Edward James Carnell, Clare Pearson, Mark A. Sutton, Niveta Jain, and Ulrike Dragosits
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-75, https://doi.org/10.5194/essd-2025-75, 2025
Preprint under review for ESSD
Short summary
Short summary
The release of ammonia into the air poses a serious risk to ecosystems and human health and so it is important to characterise where this polluting gas originates from. It is known that agriculture is an important source of ammonia (e.g. using fertilisers) and that South Asia is a global hotspot of this pollutant. It is, therefore, important to refine methods used to estimate how much ammonia is released in South Asia to be then used in advanced chemistry models for air quality assessments.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024, https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use and also taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers was lost due to NH3 emissions. Hot and dry conditions and regions with high-pH soils can expect higher NH3 emissions.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
Willem E. van Caspel, David Simpson, Jan Eiof Jonson, Anna M. K. Benedictow, Yao Ge, Alcide di Sarra, Giandomenico Pace, Massimo Vieno, Hannah L. Walker, and Mathew R. Heal
Geosci. Model Dev., 16, 7433–7459, https://doi.org/10.5194/gmd-16-7433-2023, https://doi.org/10.5194/gmd-16-7433-2023, 2023
Short summary
Short summary
Radiation coming from the sun is essential to atmospheric chemistry, driving the breakup, or photodissociation, of atmospheric molecules. This in turn affects the chemical composition and reactivity of the atmosphere. The representation of photodissociation effects is therefore essential in atmospheric chemistry modeling. One such model is the EMEP MSC-W model, for which a new way of calculating the photodissociation rates is tested and evaluated in this paper.
Gemma Purser, Mathew R. Heal, Edward J. Carnell, Stephen Bathgate, Julia Drewer, James I. L. Morison, and Massimo Vieno
Atmos. Chem. Phys., 23, 13713–13733, https://doi.org/10.5194/acp-23-13713-2023, https://doi.org/10.5194/acp-23-13713-2023, 2023
Short summary
Short summary
Forest expansion is a ″net-zero“ pathway, but change in land cover alters air quality in many ways. This study combines tree planting suitability data with UK measured emissions of biogenic volatile organic compounds to simulate spatial and temporal changes in atmospheric composition for planting scenarios of four species. Decreases in fine particulate matter are relatively larger than increases in ozone, which may indicate a net benefit of tree planting on human health aspects of air quality.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 23, 6083–6112, https://doi.org/10.5194/acp-23-6083-2023, https://doi.org/10.5194/acp-23-6083-2023, 2023
Short summary
Short summary
The sensitivity of fine particles and reactive N and S species to reductions in precursor emissions is investigated using the EMEP MSC-W (European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West) atmospheric chemistry transport model. This study reveals that the individual emissions reduction has multiple and geographically varying co-benefits and small disbenefits on different species, demonstrating the importance of prioritizing regional emissions controls.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
Atmos. Chem. Phys., 23, 2315–2330, https://doi.org/10.5194/acp-23-2315-2023, https://doi.org/10.5194/acp-23-2315-2023, 2023
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by >73 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point-source heat and power generation emissions.
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys., 23, 41–59, https://doi.org/10.5194/acp-23-41-2023, https://doi.org/10.5194/acp-23-41-2023, 2023
Short summary
Short summary
In this study, for the first time in South Asia we compare simulated ammonia, ammonium, and total ammonia using the WRF-Chem model and MARGA measurements during winter in the Indo-Gangetic Plain region. Since observations show HCl promotes the fraction of high chlorides in Delhi, we added HCl / Cl emissions to the model. We conducted three sensitivity experiments with changes in HCl emissions, and improvements are reported in accurately simulating ammonia, ammonium, and total ammonia.
Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 23, 61–83, https://doi.org/10.5194/acp-23-61-2023, https://doi.org/10.5194/acp-23-61-2023, 2023
Short summary
Short summary
This paper investigates the sources of isoprene and monoterpene compounds and their particulate-phase oxidation products in Delhi, India. This was done to improve our understanding of the sources, concentrations, and fate of volatile emissions in megacities. By studying the chemical composition of offline filter samples, we report that a significant share of the oxidised organic aerosol in Delhi is from isoprene and monoterpenes. This has implications for human health and policy development.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, https://doi.org/10.5194/acp-22-8343-2022, 2022
Short summary
Short summary
Reactive N and S gases and aerosols are critical determinants of air quality. We report a comprehensive analysis of the concentrations, wet and dry deposition, fluxes, and lifetimes of these species globally as well as for 10 world regions. We used the EMEP MSC-W model coupled with WRF meteorology and 2015 global emissions. Our work demonstrates the substantial regional variation in these quantities and the need for modelling to simulate atmospheric responses to precursor emissions.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Yao Ge, Mathew R. Heal, David S. Stevenson, Peter Wind, and Massimo Vieno
Geosci. Model Dev., 14, 7021–7046, https://doi.org/10.5194/gmd-14-7021-2021, https://doi.org/10.5194/gmd-14-7021-2021, 2021
Short summary
Short summary
This study reports the first evaluation of the global EMEP MSC-W ACTM driven by WRF meteorology, with a focus on surface concentrations and wet deposition of reactive N and S species. The model–measurement comparison is conducted both spatially and temporally, covering 10 monitoring networks worldwide. The statistics from the comprehensive evaluations presented in this study support the application of this model framework for global analysis of the budgets and fluxes of reactive N and SIA.
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021, https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Short summary
We present an evaluation of the UK's methane emissions between 2013 and 2020 using a network of tall tower measurement sites. We find emissions that are consistent in both magnitude and trend with the UK's reported emissions, with a declining trend driven by a decrease in emissions from England. The impact of various components of the modelling set-up on these findings are explored through a number of sensitivity studies.
Samuel J. Tomlinson, Edward J. Carnell, Anthony J. Dore, and Ulrike Dragosits
Earth Syst. Sci. Data, 13, 4677–4692, https://doi.org/10.5194/essd-13-4677-2021, https://doi.org/10.5194/essd-13-4677-2021, 2021
Short summary
Short summary
Nitrogen (N) may impact the environment in many ways, and estimation of its deposition to the terrestrial surface is of interest. N deposition data have not been generated at a high resolution (1 km × 1 km) over a long time series in the UK before now. This study concludes that N deposition has reduced by ~ 40 % from 1990. The impact of these results allows analysis of environmental impacts at a high spatial and temporal resolution, using a consistent methodology and consistent set of input data.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5089–5106, https://doi.org/10.5194/amt-14-5089-2021, https://doi.org/10.5194/amt-14-5089-2021, 2021
Short summary
Short summary
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to high-frequency losses. There are different methods used to describe this low-pass filtering effect and to correct the measured fluxes. In this study, we analysed the systematic uncertainty related to this correction for various attenuation and signal-to-noise ratios. A new and robust transfer function method is finally proposed.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
James M. Cash, Ben Langford, Chiara Di Marco, Neil J. Mullinger, James Allan, Ernesto Reyes-Villegas, Ruthambara Joshi, Mathew R. Heal, W. Joe F. Acton, C. Nicholas Hewitt, Pawel K. Misztal, Will Drysdale, Tuhin K. Mandal, Shivani, Ranu Gadi, Bhola Ram Gurjar, and Eiko Nemitz
Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, https://doi.org/10.5194/acp-21-10133-2021, 2021
Short summary
Short summary
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry. Seasonal analysis shows peak concentrations occur during the post-monsoon, and novel-tracers reveal the largest sources are a combination of local open and regional crop residue burning. Strong links between increased chloride aerosol concentrations and burning sources of PM1 suggest burning sources are responsible for the post-monsoon chloride peak.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021, https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Short summary
In this study, simulations of atmospheric ammonia (NH3) with MOZART-4 and HTAP-v2 are compared with satellite (IASI) and ground-based measurements to understand the spatial and temporal variability of NH3 over two emission hotspot regions of Asia, the IGP and the NCP. Our simulations indicate that the formation of ammonium aerosols is quicker over the NCP than the IGP, leading to smaller NH3 columns over the higher NH3-emitting NCP compared to the IGP region for comparable emissions.
Gemma Purser, Julia Drewer, Mathew R. Heal, Robert A. S. Sircus, Lara K. Dunn, and James I. L. Morison
Biogeosciences, 18, 2487–2510, https://doi.org/10.5194/bg-18-2487-2021, https://doi.org/10.5194/bg-18-2487-2021, 2021
Short summary
Short summary
Short-rotation forest plantations could help reduce greenhouse gases but can emit biogenic volatile organic compounds. Emissions were measured at a plantation trial in Scotland. Standardised emissions of isoprene from foliage were higher from hybrid aspen than from Sitka spruce and low from Italian alder. Emissions of total monoterpene were lower. The forest floor was only a small source. Model estimates suggest an SRF expansion of 0.7 Mha could increase total UK emissions between < 1 %–35 %.
Gareth J. Stewart, Beth S. Nelson, W. Joe F. Acton, Adam R. Vaughan, Naomi J. Farren, James R. Hopkins, Martyn W. Ward, Stefan J. Swift, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2407–2426, https://doi.org/10.5194/acp-21-2407-2021, https://doi.org/10.5194/acp-21-2407-2021, 2021
Short summary
Short summary
Biomass burning releases many lower-molecular-weight organic species which are difficult to analyse but important for the formation of organic aerosol. This study examined a new high-resolution technique to better characterise these difficult-to-analyse organic components. Some burning sources analysed in this study, such as cow dung cake and municipal solid waste, released extremely complex mixtures containing many thousands of different lower-volatility organic compounds.
Gareth J. Stewart, W. Joe F. Acton, Beth S. Nelson, Adam R. Vaughan, James R. Hopkins, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Rachel E. Dunmore, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, https://doi.org/10.5194/acp-21-2383-2021, 2021
Short summary
Short summary
Biomass burning is a major source of trace gases to the troposphere; however, the composition and quantity of emissions vary greatly between different fuel types. This work provided near-total quantitation of non-methane volatile organic compounds from combustion of biofuels from India. Emissions from cow dung cake combustion were significantly larger than conventional fuelwood combustion, potentially indicating that this source has a disproportionately large impact on regional air quality.
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, and Mark A. Sutton
Biogeosciences, 18, 135–158, https://doi.org/10.5194/bg-18-135-2021, https://doi.org/10.5194/bg-18-135-2021, 2021
Short summary
Short summary
Ammonia is a key water and air pollutant and impacts human health and climate change. Ammonia emissions mainly originate from agriculture. We find that chicken agriculture contributes to large ammonia emissions, especially in hot and wet regions. These emissions can be greatly affected by the local environment, i.e. temperature and humidity, and also by human management. We develop a model that suggests ammonia emissions from chicken farming are likely to increase under a warming climate.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Allen, A. G., Harrison, R. M., and Erisman, J. W.: Field measurements of the
dissociation of ammonium nitrate and ammonium chloride aerosols, Atmos.
Environ, 23, 1591–1599.
https://doi.org/10.1016/0004-6981(89)90418-6, 1989.
Allegrini, I., De Santis, F., Di Palo, V., Febo, A., Perrino, C.,
Possanzini, M., and Liberti, A.: Annular denuder method for sampling
reactive gases and aerosols in the atmosphere, Science Total
Environ., 67, 1–16, https://doi.org/10.1016/0048-9697(87)90062-3, 1987.
AQEG (Air
Quality Expert Group): Fine Particulate Matter (PM2.5) in the United Kingdom, Air
Quality Expert Group report prepared for Department for Environment, Food
and Rural Affairs; Scottish Executive; Welsh Government; and Department of
the Environment in Northern Ireland, availabe at: http://uk-air.defra.gov.uk (last access: 24 January 2017), 2012.
Backes, A. M., Aulinger, A., Bieser, J., Matthias, V., and Quante, M.:
Ammonia emissions in Europe, part II: How ammonia emission abatement
strategies affect secondary aerosols, Atmos. Environ., 126, 153–161,
https://doi.org/10.1016/j.atmosenv.2015.11.039, 2016.
Baek, B. H., Aneja, V. P., and Tong, Q.: Chemical coupling between ammonia,
acid gases, and fine particles, Environ. Pollut., 129, 89–98,
https://doi.org/10.1016/j.envpol.2003.09.022, 2004.
Bai, H., Chungsying, L., Chang, K.-F., and Fang, G.-C.: Sources of sampling
error for field measurement of nitric acid gas by a denuder system,
Atmos. Environ., 37, 941–947,
https://doi.org/10.1016/S1352-2310(02)00972-x, 2003.
Bleeker, A., Sutton, M. A., Acherman, B., Alebic-Juretic, A., Aneja, V. P.,
Ellermann, T., Erisman, J. W., Fowler, D., Fagerli, H., Gauger, T., Harlen,
K. S., Hole, L. R., Horvath, L., Mitosinkova, M., Smith, R. I., Tang, Y. S.,
and van Pul, A.: Linking Ammonia Emission Trends to Measured Concentrations
and Deposition of Reduced Nitrogen at Different Scales, in: Atmospheric Ammonia:
Detecting Emission Changes and Environmental Impacts, edited by: Sutton, M.
A., Reis, S., and Baker, S. M. H., Springer, the Netherlands, 123–180, 2009.
Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore,
M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B.,
Erisman, J., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries, W.:
Global assessment of nitrogen deposition effects on terrestrial plant
diversity: a synthesis, Ecol. Appl., 2,: 30–59,
https://doi.org/10.1890/08-1140.1, 2010.
Bower, K. N., Choularton, T. W., Gallagher, M. W., Colvile, R. N., Wells, M.,
Beswick, K. M., Wiedensohler, A., Hansson, H.-C., Svenningsson, B., Swietlicki,
E., Wendisch, M., Berner, A., Kruisz, C., Laj, P., Facchini, M. C., Fuzzi, S.,
Bizjak, M., Dollard, G., Jones, B., Acker, K., Wieprecht, W., Preiss, M., Sutton,
M. A., Hargreaves, K. J., Storeton-West, R. L., Cape, J. N., and Arends, B. G.:
Observations and modelling of the processing of aerosol by a hill cap cloud,
Atmos. Environ., 31, 2527–2544, 1997.
Cape, J. N., Tang, Y. S., van Dijk, N., Love, L., Sutton, M. A., and Palmer, S. C.
F.: Concentrations of ammonia and nitrogen dioxide at roadside verges and
their contribution to nitrogen deposition, Environ. Pollut., 132,
469–478, https://doi.org/10.1016/j.envpol.2004.05.009, 2004.
Cape, J. N., van der Eerden, L. J., Sheppard, L. J., Leith, I. D., and
Sutton, M. A.: Evidence for changing the critical level for ammonia,
Environ. Pollut., 157, 1033–1037,
https://doi.org/10.1016/j.envpol.2008.09.049, 2009.
Cape, J. N., Tang, Y. S., González-Beníez, J. M., Mitošinková, M., Makkonen, U., Jocher, M., and Stolk, A.: Organic nitrogen in precipitation across Europe, Biogeosciences, 9, 4401–4409, https://doi.org/10.5194/bg-9-4401-2012, 2012.
Chang, W. L., Bhave, P. V., Brown, S. S., Riemer, N., Stutz, J., and Dabdub,
D.: Heterogeneous Atmospheric Chemistry, Ambient Measurements, and Model
Calculations of N2O5: A Review, Aerosol Sci. Tech.,
45, 665–695, https://doi.org/10.1080/02786826.2010.551672, 2011.
Dämmgen, U., Erisman, J. W., Cape, J. N., Grűnhage, L., and Fowler,
D.: Practical considerations for addressing uncertainties in monitoring bulk
deposition, Environ. Pollut., 134, 535–548,
https://doi.org/10.1016/j.envpol.2004.08.013, 2005.
Dore, A. J., Carslaw, D. C., Braban, C., Cain, M., Chemel, C., Conolly, C.,
Derwent, R. G., Griffiths, S. J., Hall, J., Hayman, G., Lawrence, S.,
Metcalfe, S. E., Redington, A., Simpson, D., Sutton, M. A., Sutton, P.,
Tang, Y. S., Vieno, M., Werner, M., and Whyatt, J. D.: Evaluation of the
performance of different atmospheric chemical transport models and
inter-comparison of nitrogen and sulphur deposition estimates for the UK,
Atmos. Environ., 119, 131–143,
https://doi.org/10.1016/j.atmosenv.2015.08.008, 2015.
EC: The Nitrates Directive (91/676/EEC), available at: https://eur-lex.europa.eu/eli/dir/1991/676/2008-12-11 (last access: 11 January 2020), 1991.
EEA (European Environment Agency): European Union emission inventory report 1990–2017 under the UNECE
Convention on Long-range Transboundary Air Pollution (LRTAP), EEA Report No
8/2019, available at: https://www.eea.europa.eu/publications/european-union-emissions-inventory-report-2017, last access: 9 December 2019.
EEA (European Environment Agency): Datasource, available at:
https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-2,
last access: 15 January 2020.
EMEP: Air pollution trends in the EMEP region between 1990 and 2012,
CCC-Report 1/2016, available at:
http://www.ivl.se/download/18.7e136029152c7d48c202d81/1466685735821/C206.pdf) (last access: 9 November 2018),
2016.
EMEP: Transboundary particulate matter, photooxidants, acidifying and
eutrophying components, EMEP Status Report 1/2018, availabe at:
https://emep.int/publ/reports/2018/EMEP_Status_Report_1_2018.pdf (last access: 22 October 2019), 2018.
EMEP: Transboundary particulate matter, photooxidants, acidifying and
eutrophying components, EMEP Status Report 1/2019, availab;e at:
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1371039&dswid=-7800
(last access: 22 October 2019),
2019.
EMEP: Datasource: EMEP/CEIP 2019, distributed emission data as used in EMEP
models, available at:https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-1, last access: 15 January 2020.
EU: Directive (EU) 2008/50/EC of the European Parliament and of the Council
of 21 May 2008 on ambient air quality and cleaner air for Europe, available at: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050
(last access: 1 November 2019), 2008.
EU: Directive (EU) 2016/2284 of the European Parliament and of the Council
of 14 December 2016 on the reduction of national emissions of certain
atmospheric pollutants, amending Directive 2003/35/EC and repealing
Directive 2001/81/EC, available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016L2284
(last access: 1 November 2019), 2016.
Evans, C. D., Monteith, D. T., Fowler, D., Cape, J. N., and Brayshaw, S.:
Hydrochloric Acid: An Overlooked Driver of Environmental Change,
Environ. Sci. Technol., 45, 1887–1894,
https://doi.org/10.1021/es103574u, 2011.
Fahey, D. W., Hübler, G., Parrish, D. D., Williams, E. J., Norton, R.
B., Ridley, B. A., Singh, H. B., Liu, S. C., and Fehsenfeld, F. C.: Reactive
nitrogen species in the troposphere: Measurements of NO, NO2,
HNO3, particulate nitrate, peroxyacetyl nitrate (PAN), O3, and
total reactive odd nitrogen (NOy) at Niwot Ridge, Colorado, J.
Geophys. Res., 91, 9781–9793,
https://doi.org/10.1029/JD091iD09p09781, 1986.
Ferm, M.: Method for determination of atmospheric ammonia, Atmos.
Environ., 13, 1385–1393, https://doi.org/10.1016/0004-6981(79)90107-0,
1979.
Ferm, M.: A Na2CO3-coated denuder and filter for determination of
gaseous HNO3 and particulate NO in the atmosphere,
Atmos. Environ., 20, 1193–1201, https://doi.org/10.1016/0004-6981(86)90153-8, 1986.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower
atmosphere: theory, experiments, and applications, Academic Press, San
Diego, CA, USA, 1999.
Fitz, D. R.: Evaluation of Diffusion Denuder Coatings for Removing Acid
Gases from Ambient Air, Final Report, US Environmental Protection Agency,
Riverside, Washington, DC, USA, available at: https://www3.epa.gov/ttnamti1/files/ambient/pm25/spec/denudr.pdf (last access: 10 December 2019), 173 pp., 2002.
Flechard, C. R., Fowler, D., Sutton, M. A., and Cape, J. N.: A dynamic
chemical model of bi-directional ammonia exchange between semi-natural
vegetation and the atmosphere, Q. J. Roy. Meteor. Soc., 125, 2611–2641,
1999.
Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker, A., Erisman, J. W., Simpson, D., Zhang, L., Tang, Y. S., and Sutton, M. A.: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network, Atmos. Chem. Phys., 11, 2703–2728, https://doi.org/10.5194/acp-11-2703-2011, 2011.
Flechard, C. R., Massad, R.-S., Loubet, B., Personne, E., Simpson, D., Bash, J. O., Cooter, E. J., Nemitz, E., and Sutton, M. A.: Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange, Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, 2013.
Flechard, C. R., Ibrom, A., Skiba, U. M., de Vries, W., van Oijen, M., Cameron, D. R., Dise, N. B., Korhonen, J. F. J., Buchmann, N., Legout, A., Simpson, D., Sanz, M. J., Aubinet, M., Loustau, D., Montagnani, L., Neirynck, J., Janssens, I. A., Pihlatie, M., Kiese, R., Siemens, J., Francez, A.-J., Augustin, J., Varlagin, A., Olejnik, J., Juszczak, R., Aurela, M., Berveiller, D., Chojnicki, B. H., Dämmgen, U., Delpierre, N., Djuricic, V., Drewer, J., Dufrêne, E., Eugster, W., Fauvel, Y., Fowler, D., Frumau, A., Granier, A., Gross, P., Hamon, Y., Helfter, C., Hensen, A., Horváth, L., Kitzler, B., Kruijt, B., Kutsch, W. L., Lobo-do-Vale, R., Lohila, A., Longdoz, B., Marek, M. V., Matteucci, G., Mitosinkova, M., Moreaux, V., Neftel, A., Ourcival, J.-M., Pilegaard, K., Pita, G., Sanz, F., Schjoerring, J. K., Sebastià, M.-T., Tang, Y. S., Uggerud, H., Urbaniak, M., van Dijk, N., Vesala, T., Vidic, S., Vincke, C., Weidinger, T., Zechmeister-Boltenstern, S., Butterbach-Bahl, K., Nemitz, E., and Sutton, M. A.: Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling, Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, 2020.
Fowler, D. and Reis, S.: Challenges in quantifying biosphere-atmosphere
exchange of nitrogen species, Environ. Pollut., 150, 125–139,
https://doi.org/10.1016/j.envpol.2007.04.014, 2007.
Fowler, D., Cape, N., and Unsworth, M. H.: Deposition of atmospheric
pollutants on forests, Philos. T. Roy. Soc. B, 324, 247–265,
https://doi.org/10.1098/rstb.1989.0047, 1989.
Fowler, D., Coyle, M., Flechard, C., Hargreaves1, K., Nemitz, E.,
Storeton-West, R., Sutton, M., and Erisman, J. W.: Advances in
micrometeorological methods for the measurement and interpretation of gas
and particle nitrogen fluxes, Plant Soil, 228, 117–129,
https://doi.org/10.1023/A:1004871511282, 2001.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer,
J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C.,
Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt,
J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R.,
Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G.,
Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti,
E., Mikkelsen, T. N, Ro-Poulsen, H., Cellier, P., Cape, J. N., Horváth,
L., Loreto, F., Niinemets, Ü., Palmer, P. I., Rinne, J., Misztal, P.,
Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U.,
Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C.,
Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman,
J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions,
Atmos. Environ., 43, 5193–5267,
https://doi.org/10.1016/j.atmosenv.2009.07.068, 2009.
Hallsworth S., Dore A. J., Bealey W. J., Dragosits U., Vieno M., Hellsten S.,
Tang Y. S., and Sutton M. A.: The role of indicator choice in quantifying the
threat of atmospheric ammonia to the “Natura 2000” network, Environ.
Sci. Policy, 13, 671–687,
https://doi.org/10.1016/j.envsci.2010.09.010, 2010.
Hauschild, M. and Wenzel, H.: Acidification as a criterion in the
environmental assessment of products, in: Environmental assessment of
products, Volume 2 Scientific background, edited by: Hauschild, M. and Wenzel, H., Chapman and Hall,
London, UK, p. 565, 1998.
Hellsten, S., Dragosits, U., Place, C. J., Misselbrook, T. H., Tang, Y. S.,
and Sutton, M. A.: Modelling Seasonal Dynamics from Temporal Variation in
Agricultural Practices in the UK Ammonia Emission Inventory, Water Air
Soil Poll., 7, 3–13,
https://doi.org/10.1007/s11267-006-9087-5, 2007.
Hendriks, C., Kranenburg, R., Kuenen, J., van Gijlswijk, R., Kruit, R. W.,
Segers, A., van der Gon, H. D., and Schaap, M.: The origin of ambient
particulate matter concentrations in the Netherlands, Atmos.
Environ., 69, 289–303, https://doi.org/10.1016/j.atmosenv.2012.12.017,
2013.
Huntzicker, J. J., Robert A., Cary, R. A., and Ling, C-S.: Neutralization of
sulfuric acid aerosol by ammonia, Environ. Sci. Technol., 14, 819–824, https://doi.org/10.1021/es60167a009, 1980.
Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Hu, M., and Zhu, T.: Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China), Atmos. Chem. Phys., 11, 10803–10822, https://doi.org/10.5194/acp-11-10803-2011, 2011.
Jones, A.M. and Harrison, R.M.: Temporal trends in sulphate concentrations
at European sites and relationships to sulphur dioxide, Atmos.
Environ., 45, 873–882, https://doi.org/10.1016/j.atmosenv.2010.11.020,
2011.
Keene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E.: Sea
salt corrections and interpretation of constitutent ratios in marine
precipitation, J. Geophys. Res., 91, 6647–6658,
https://doi.org/10.1029/JD091iD06p06647, 1986.
Keene, W. C., Aslam, M., Khalil, K., Erickson, D. J., McCulloch, A., Graedel,
T. E., Lobert, J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G.,
Midgley, P., Moore, R. M., Seuzaret, C., Sturges, W. T., Benkovitz, C. M.,
Koropalov, V., Barrie, L. A., and Li, Y. F.: Composite global emissions of
reactive chlorine from anthropogenic and natural sources: Reactive Chlorine
Emissions Inventory, J. Geophys. Res., 104, 8429– 8440,
https://doi.org/10.1029/1998JD100084, 1999.
Lolkema, D. E., Noordijk, H., Stolk, A. P., Hoogerbrugge, R., van Zanten, M. C., and van Pul, W. A. J.: The Measuring Ammonia in Nature (MAN) network in the Netherlands, Biogeosciences, 12, 5133–5142, https://doi.org/10.5194/bg-12-5133-2015, 2015.
Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359–10386, https://doi.org/10.5194/acp-10-10359-2010, 2010.
McCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G.,
Midgley, P. M., and Li, Y.-F.: Global emissions of hydrogen chloride and
chloromethane from coal combustion, incineration and industrial activities:
Reactive Chlorine Emissions Inventory, J. Geophys. Res., 104, 8391–8403, https://doi.org/10.1029/1999JD900025, 1999.
Nemitz, E., Jimenez, J. L., Huffman, J. A., Ulbrich, I. M., Canagaratna, M. R.,
Worsnop, D. R., and Guenther, A. B.: An Eddy-Covariance System for the
Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol
Chemical Species – First Application Above an Urban Area, Aerosol Sci.
Tech., 42, 636–657, https://doi.org/10.1080/02786820802227352,
2008.
EC: The Nitrates Directive (91/676/EEC), available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1561542776070&uri=CELEX:01991L0676-20081211 (last access: 11 January 2020), 1991.
O'Dowd, C. D. and de Leeuw, G.: Marine aerosol production: a review of the
current knowledge, Philos. T. Roy. Soc. A, 365, 1753–1774, https://doi.org/10.1098/rsta.2007.2043, 2007.
Paulot, F., Fan, S., and Horowitz, L. W.: Contrasting seasonal responses of
sulfate aerosols to declining SO2 emissions in the Eastern US:
Implications for the ecacy of SO2 emission controls, Geophys. Res.
Lett., 44, 455–464, https://doi.org/10.1002/2016GL070695, 2017.
Perrino, C., De Santis, F., and Febo, A.: Criteria for the choice of a
denuder sampling technique devoted to the measurement of atmospheric nitrous
and nitric acids, Atmos. Environ., 24,
617–626, https://doi.org/10.1016/0960-1686(90)90017-H, 1990.
Pitcairn, C. E. R., Leith, I. D., Sheppard, L. J., Sutton, M. A., Fowler,
D., Munro, R. C., Tang, S., and Wilson, D.: The relationship between
nitrogen deposition, species composition and foliar nitrogen concentrations
in woodland flora in the vicinity of livestock farms, Environ.
Pollut., 102, 41–48, https://doi.org/10.1016/s0269-7491(98)80013-4, 1998.
Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W.,
Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R.
M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A. M.,
Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T. A. J., Löschau, G.,
Maenhaut, W., Molnar, A., Moreno, T., Pekkanen, J., Perrino, C., Pitz, M.,
Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J.,
Schneider, J., Spindler, G., ten Brink, H., Tursic, J., Viana, M.,
Wiedensohler, A., and Raes, F.: A European aerosol phenomenology III:
Physical and chemical characteristics of particulate matter from 60 rural,
urban, and kerbside sites across Europe, Atmos. Environ., 44,
1–13, https://doi.org/10.1016/j.atmosenv.2009.12.011, 2010.
Reis, S., Grennfelt, P., Klimont, Z., Amann, M., ApSimon, H., Hettelingh,
J.-P., Holland, M., LeGall, A.-C., Maas, R., Posch, M., Spranger, T.,
Sutton, M. A., and Williams, M.: From acid rain to climate change, Science,
338, 1153–1154, https://doi.org/10.1126/science.1226514, 2012.
Ricciardelli, I., Bacco, D., Rinaldi, M., Bonafè, G., Scotto, F.,
Trentini, A., Bertacci, G., Ugolini, P., Zigola, C., Rovere, F., Maccone,
C., Pironi, C., and Poluzzi, V.: A three-year investigation of daily
PM2.5 main chemical components in four sites: the routine measurement
program of the Supersito Project (Po Valley, Italy), Atmos.
Environ., 152, 418–430, https://doi.org/10.1016/j.atmosenv.2016.12.052,
2017.
ROTAP: Review of Transboundary Air Pollution: Acidification, Eutrophication,
Ground Level Ozone and Heavy Metals in the UK, Contract Report to the
Department for Environment, Food and Rural Affairs, Centre for Ecology and
Hydrology, available at: http://www.rotap.ceh.ac.uk/ (last access: 9 November 2018), 2012.
Roth, B. and Okada, K.: On the modification of sea-salt particles in the
coastal atmosphere, Atmos. Environ., 32, 1555–1569,
https://doi.org/10.1016/S1352-2310(97)00378-6, 1998.
Saxena, P. and Seigneur, C.: On the oxidation of SO2 to sulfate in
atmospheric aerosols, Atmos. Environ., 21, 807–812,
https://doi.org/10.1016/0004-6981(87)90077-1, 1987.
Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., and
Zechmeister-Boltenstern, S.: Greenhouse gas emissions from European soils
under different land use: effects of soil moisture and temperature, Eur.
J. Soil Sci., 61, 683–696, https://doi.org/10.1111/j.1365-2389.2010.01277.x,
2010.
Schrader, F., Schaap, M., Zöll, U., Kranenburg, R., and Brümmer, C.:
The hidden cost of using low resolution concentration data in the estimation
of NH3 dry deposition fluxes, Nat. Sci. Rep., 8, 1–11,
https://:10.1038/s41598-017-18021-6, 2018.
Schwarz, J., Cusack, M., Karban, J., Chalupníčková, E.,
Havránek, V., Smolík, J., and Ždímal, V.: PM2.5
chemical composition at a rural background site in Central Europe, including
correlation and air mass back trajectory analysis, Atmos. Res.,
176/177, 108–120, https://doi.org/10.1016/j.atmosres.2016.02.017, 2016.
Sheppard, L. J., Leith, I. D., Mizunuma, T., Cape, J. N, Crossley, A.,
Leeson, S., Sutton, M. A., van Dijk, N., and Fowler, D.: Dry deposition of
ammonia gas drives species change faster than wet deposition of ammonium
ions: evidence from a long-term field manipulation, Glob. Change Biol.,
17, 3589–3607, https://doi.org/10.1111/j.1365-2486.2011.02478.x, 2011.
Sickles, J. E. and Shadwick, D. S.: Seasonal and regional air quality and
atmospheric deposition in the eastern United States, J. Geophys.
Res., 112, D17302, https://doi.org/10.1029/2006JD008356, 2007.
Sievering, H., Tomaszewski, T., and Torizzo, J.: Canopy uptake of
atmospheric N deposition at a conifer forest: part I – canopy N budget,
photosynthetic efficiency and net ecosystem exchange, Tellus B, 59, 483–492,
https://doi.org/10.1111/j.1600-0889.2007.00264.x, 2007.
Simpson, D., Butterbach-Bahl, K., Fagerli, H., Kesik, M., Skiba, U., and
Tang, Y.: Deposition and emissions of reactive nitrogen over European
forests: A modelling study, Atmos. Environ., 40, 5712–5726,
https://doi.org/10.1016/j.atmosenv.2006.04.063, 2006.
Skiba, U., Drewer, J., Tang, Y. S., van Dijk, N., Helfter, C., Nemitz, E.,
Famulari, D., Cape, J. N., Jones, S. K., Twigg, M., Pihlatie, M., Vesala,
T., Larsen, K. S., Carter, M. S., Ambus, P., Ibrom, A., Beier, C., Hensen,
A., Frumau, A., Erisman, J. W., Brűggemann, N., Gasche, R.,
Butterbach-Bahl, K., Neftel, A., Spirig, C., Horvath, L., Freibauer, A.,
Cellier, P., Laville, P., Loubet, B., Magliulo, E., Bertolini, T., Seufert,
G., Andersson, M., Manca, G., Laurila, T., Aurela, M., Lohila, A.,
Zechmeister-Boltenstern, S., Kitzler, B., Schaufler, G., Siemens, J.,
Kindler, R., Flechard, C., and Sutton, M. A.: Biosphere-atmosphere exchange
of reactive nitrogen and greenhouse gases at the NitroEurope core flux
measurement sites: Measurement strategy and first data sets, Agr.
Ecosyst. Environ., 133, 139–149,
https://doi.org/10.1016/j.agee.2009.05.018, 2009.
Smith, R. I., Fowler, D., Sutton, M. A., Flechard, C., and Coyle, M.:
Regional estimation of pollutant gas dry deposition in the UK: model
description, sensitivity analyses and outputs, Atmos. Environ., 34,
3757–3777, https://doi.org/10.1016/s1352-2310(99)00517-8, 2000.
Stelson, A. W. and Seinfeld, J. H.: Relative humidity and temperature
dependence of the ammonium nitrate dissociation constant, Atmos.
Environ., 16, 983–992,
https://doi.org/10.1016/0004-6981(82)90184-6, 1982.
Stevens, C. J., Thompson, K., Grime, J. P., Long, C. J., and Gowing, D. J. G.:
Contribution of acidification and eutrophication to declines in species
richness of calcifuge grasslands along a gradient of atmospheric nitrogen
deposition, Funct. Ecol., 24, 478–484,
https://doi.org/10.1111/j.1365-2435.2009.01663.x, 2010.
Sutton, M. A. and Howard, C.: Satellite pinpoints ammonia sources globally,
Nature, 564, 49–50, https://doi.org/10.1038/d41586-018-07584-7, 2018.
Sutton, M. A., Fowler, D., Burkhardt, J. K., and Milford, C.: Vegetation
atmosphere exchange of ammonia: Canopy cycling and the impacts of elevated
nitrogen inputs, Water Air Soil Poll., 85, 2057–2063,
https://doi.org/10.1007/bf01186137, 1995.
Sutton, M. A., Milford, C., Dragosits, U., Place, C. J., Singles, R. J.,
Smith, R. I., Pitcairn, C. E. R., Fowler, D., Hill, J., ApSimon, H. M.,
Ross, C., Hill, R., Jarvis, S. C., Pain, B. F., Phillips, V. C., Harrison,
R., Moss, D., Webb, J., Espenhahn, S. E., Lee, D. S., Hornung, M., Ullyett,
J., Bull, K. R., Emmett, B. A., Lowe, J., and Wyers, G. P.: Dispersion,
deposition and impacts of atmospheric ammonia: quantifying local budgets and
spatial variability, Environ. Pollut., 102, 349–361,
https://doi.org/10.1016/s0269-7491(98)80054-7, 1998.
Sutton, M. A., Tang, Y. S., Miners, B., and Fowler, D.: A new diffusion
denuder system for long-term, regional monitoring of atmospheric ammonia and
ammonium, Water Air Soil Poll., 1, 145–156,
https://doi.org/10.1023/A:1013138601753, 2001a.
Sutton, M. A., Tang, Y. S., Dragosits, U., Fournier, N., Dore, A. J., Smith, R. I., Weston, K. J., and Fowler, D.: A spatial analysis of atmospheric ammonia and ammonium in the U.K, Sci. World J., 1, 275–286, https://doi.org/10.1100/tsw.2001.313, 2001b.
Sutton, M. A., Nemitz, E., Erisman, J. W., Beier, C., Bahl, K. B., Cellier, P.,
de Vries, W., Cotrufo, F., Skiba, U., Di Marco, C., Jones, S., Laville, P.,
Soussana, J. F., Loubet, B., Twigg, M., Famulari, D., Whitehead, J.,
Gallagher, M. W., Neftel, A., Flechard, C. R., Herrmann, B., Calanca, P. L.,
Schjoerring, J. K., Daemmgen, U., Horvath, L., Tang, Y. S., Emmett, B. A.,
Tietema, A., Penuelas, J., Kesik, M., Brueggemann, N., Pilegaard, K.,
Vesala, T., Campbell, C. L., Olesen, J. E., Dragosits, U., Theobald, M. R.,
Levy, P., Mobbs, D. C., Milne, R., Viovy, N., Vuichard, N., Smith, J. U.,
Smith, P., Bergamaschi, P., Fowler, D., and Reis, S.: Challenges in
quantifying biosphere-atmosphere exchange of nitrogen species, Environ.
Pollut., 150, 125–139, https://doi.org/10.1016/j.envpol.2007.04.014, 2007.
Sutton, M. A., Nemitz, E., Milford, C., Campbell, C., Erisman, J. W., Hensen, A., Cellier, P., David, M., Loubet, B., Personne, E., Schjoerring, J. K., Mattsson, M., Dorsey, J. R., Gallagher, M. W., Horvath, L., Weidinger, T., Meszaros, R., Dämmgen, U., Neftel, A., Herrmann, B., Lehman, B. E., Flechard, C., and Burkhardt, J.: Dynamics of ammonia exchange with cut grassland: synthesis of results and conclusions of the GRAMINAE Integrated Experiment, Biogeosciences, 6, 2907–2934, https://doi.org/10.5194/bg-6-2907-2009, 2009.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald,
M. R., Tang, Y. S., Braban, C. F. Vieno, M., Dore, A. J., Mitchell, R. F.,
Wanless, S., Daunt, F., Fowler, D., Blackall, T. D., Milford, C., Flechard,
C. R., Loubet, B., Massad, R., Cellier, P., Personne, E., Coheur, P.,
Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C., Skjoth, C., Geels, C.,
Hertel, O., Kruit, R. J. W., Pinder, R. W., Bash, J. O., Walker, J. T., Simpson,
D., Horvath, L., Misselbrook, T. H., Bleeker, A., Dentener, F., and de Vries,
W.: Towards a climate-dependent paradigm of ammonia emission and deposition,
Philos. T. Roy. Soc. B, 368, 20130166,
https://doi.org/10.1098/rstb.2013.0166, 2013.
Szigeti, T., Óvári, M., Dunster, C., Kelly, F. J., Lucarelli, F., and
Záray, G.: Changes in chemical composition and oxidative potential of
urban PM2.5 between 2010 and 2013 in Hungary, Sci. Total
Environ., 518/519, 534–544,
https://doi.org/10.1016/j.scitotenv.2015.03.025, 2015.
Tang, Y. S. and Sutton, M. A.: Quality management in the UK national
ammonia monitoring network, in: Proceedings of the International Conference:
QA/QC in the field of emission and air quality measurements: harmonization,
standardization and accreditation, Prague, Czech Republic, 21–23 May 2003,
297–307, 2003.
Tang, Y. S., Cape, J. N., and Sutton, M. A.: Development and types of
passive samplers for monitoring atmospheric NO2 and NH3
concentrations, Sci. World J., 1, 513–529,
https://doi.org/10.1100/tsw.2001.82, 2001.
Tang, Y. S., Simmons, I., van Dijk, N., Di Marco, C., Nemitz, E.,
Dämmgen, U., Gilke, K., Djuricic, V., Vidic, S., Gliha, Z., Borovecki,
D., Mitosinkova, M., Hanssen, J. E., Uggerud, T. H., Sanz, M. J., Sanz, P.,
Chorda, J. V., Flechard, C. R., Fauvel, Y., Ferm, M., Perrino, C., and
Sutton, M. A.: European scale application of atmospheric reactive nitrogen
measurements in a low-cost approach to infer dry deposition fluxes,
Agr. Ecosyst. Environ., 133, 183–195,
https://doi.org/10.1016/j.agee.2009.04.027, 2009.
Tang, Y. S., Cape, J. N., Braban, C. F., Twigg, M. M., Poskitt, J., Jones,
M. R., Rowland, P., Bentley, P., Hockenhull, K., Woods, C., Leaver, D.,
Simmons, I., van Dijk, N., Nemitz, E., and Sutton, M. A.: Development of a
new model DELTA sampler and assessment of potential sampling artefacts in
the UKEAP AGANet DELTA system: summary and technical report, London, Defra.
(CEH Project no. C04544, C04845), available at:
https://uk-air.defra.gov.uk/library/reports?report_id=861 (last access: 9 November 2018),
2015.
Tang, Y. S., Braban, C. F., Dragosits, U., Dore, A. J., Simmons, I., van Dijk, N., Poskitt, J., Dos Santos Pereira, G., Keenan, P. O., Conolly, C., Vincent, K., Smith, R. I., Heal, M. R., and Sutton, M. A.: Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK, Atmos. Chem. Phys., 18, 705–733, https://doi.org/10.5194/acp-18-705-2018, 2018a.
Tang, Y. S., Braban, C. F., Dragosits, U., Simmons, I., Leaver, D., van Dijk, N., Poskitt, J., Thacker, S., Patel, M., Carter, H., Pereira, M. G., Keenan, P. O., Lawlor, A., Conolly, C., Vincent, K., Heal, M. R., and Sutton, M. A.: Acid gases and aerosol measurements in the UK (1999–2015): regional distributions and trends, Atmos. Chem. Phys., 18, 16293–16324, https://doi.org/10.5194/acp-18-16293-2018, 2018b.
Tang, Y. S., Dämmgen, U., Gilke, K., Djuricic, V., Vidic, S., Gliha, Z., Borovecki, D., Mitosinkova, M., Hanssen, J. E., Uggerud, T. H., Sanz, M. J., Sanz, P., Chorda, J. V., Flechard, C. R., Fauvel, Y., Ferm,M., Perrino, C., Nemitz, E., Simmons, I., van Dijk, N., Di Marco, C., Lever, D. Owen, S., and Sutton, M. A.: Field measurements – Inferential sites (Code “C1L1”): “Bulk measurements” of anions, cations and total water soluble N; “DELTA” measurements of gaseous HNO3, HONO, SO2, HCl, NH3, aerosol NO , NO , SO , Cl−, NH and basic cations, available at: http://www.nitroeurope.ceh.ac.uk/, last access: 29 July 2020.
Theobald, M. R., Milford, C., Hargreaves, K. J., Sheppard, L. J., Nemitz,
E., Tang, Y. S., Phillips, V. R., Sneath, R., McCartney, L., Harvey, F. J.,
Leith, I. D., Cape, J. N., Fowler, D., and Sutton, M. A.: Potential for
Ammonia Recapture by Farm Woodlands: Design and Application of a New
Experimental Facility, Sci. World J., 1, 956452,
https://doi.org/10.1100/tsw.2001.338, 2001.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
UNECE: 1999 Protocol to Abate Acidification, Eutrophication and Ground-level
Ozone to the Convention on Long range Transboundary Air Pollution, as
amended on 4 May 2012, available at: https://unece.org/environment-policyair/protocol-abate-acidification-eutrophication-and-ground-level-ozone
(last access: 9 November 2018), 2012.
van Zanten, M. C., Wichink Kruit, R. J., Hoogerbrugge, R., Van der Swaluw,
E., and van Pul, W. A. J.: Trends in ammonia measurements in the Netherlands
over the period 1993–2014, Atmos. Environ., 148, 352–360,
https://doi.org/10.1016/j.atmosenv.2016.11.007, 2017.
Vieno, M., Heal, M. R., Hallsworth, S., Famulari, D., Doherty, R. M., Dore, A. J., Tang, Y. S., Braban, C. F., Leaver, D., Sutton, M. A., and Reis, S.: The role of long-range transport and domestic emissions in determining atmospheric secondary inorganic particle concentrations across the UK, Atmos. Chem. Phys., 14, 8435–8447, https://doi.org/10.5194/acp-14-8435-2014, 2014.
Vieno, M., Heal, M. R., Williams, M. L., Carnell, E. J., Nemitz, E., Stedman, J. R., and Reis, S.: The sensitivities of emissions reductions for the mitigation of UK PM2.5, Atmos. Chem. Phys., 16, 265–276, https://doi.org/10.5194/acp-16-265-2016, 2016a.
Vieno, M., Heal, M. R., Twigg, M. M., MacKenzie, I. A., Braban, C. F.,
Lingard, J. N. N., Ritchie, S., Beck, R.C., Móring, A., Ots, R., Di
Marco, C. F., Nemitz, E., Sutton, M. A., and Reis S.: The UK particulate
matter air pollution episode of March–April 2014: more than Saharan dust,
Environ. Res. Lett., 11, 044004,
https://doi.org/10.1088/1748-9326/11/4/044004, 2016b.
Zaehle, S. and Dalmonech, D.: Carbon-nitrogen interactions on land at
global scales: current understanding in modelling climate biosphere
feedbacks, Curr. Opin. Env. Sust., 3, 311–320,
https://doi.org/10.1016/j.cosust.2011.08.008, 2011.
Short summary
The DELTA® approach provided speciated, monthly data on reactive gases (NH3, HNO3, SO2, HCl) and aerosols (NH4+, NO3−, SO42−, Cl−, Na+) across Europe (2006–2010). Differences in spatial and temporal concentrations and patterns between geographic regions and four ecosystem types were captured. NH3 and NH4NO3 were dominant components, highlighting their growing relative importance in ecosystem impacts (acidification, eutrophication) and human health effects (NH3 as a precursor to PM2.5) in Europe.
The DELTA® approach provided speciated, monthly data on reactive gases (NH3, HNO3, SO2, HCl)...
Altmetrics
Final-revised paper
Preprint