Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2407-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-2407-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India
Gareth J. Stewart
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
Beth S. Nelson
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
W. Joe F. Acton
Lancaster Environment Centre, Lancaster University, Lancaster LA1
4YQ, UK
now at: School of Geography, Earth and Environmental Sciences,
University of Birmingham, B15 2TT, Birmingham, UK
Adam R. Vaughan
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
Naomi J. Farren
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
James R. Hopkins
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York,
YO10 5DD, UK
Martyn W. Ward
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
Stefan J. Swift
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
Rahul Arya
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New
Delhi, Delhi 110012, India
Arnab Mondal
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New
Delhi, Delhi 110012, India
Ritu Jangirh
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New
Delhi, Delhi 110012, India
Sakshi Ahlawat
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New
Delhi, Delhi 110012, India
Lokesh Yadav
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New
Delhi, Delhi 110012, India
Sudhir K. Sharma
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New
Delhi, Delhi 110012, India
Siti S. M. Yunus
School of Water, Energy and Environment, Cranfield University,
Cranfield, MK43 0AL, UK
C. Nicholas Hewitt
Lancaster Environment Centre, Lancaster University, Lancaster LA1
4YQ, UK
Eiko Nemitz
UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
Neil Mullinger
UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
Ranu Gadi
Indira Gandhi Delhi Technical University for Women, Kashmiri Gate,
New Delhi, Delhi 110006, India
Lokesh K. Sahu
Physical Research Laboratory (PRL), Ahmedabad 380009, India
Nidhi Tripathi
Physical Research Laboratory (PRL), Ahmedabad 380009, India
Andrew R. Rickard
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York,
YO10 5DD, UK
James D. Lee
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York,
YO10 5DD, UK
Tuhin K. Mandal
CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New
Delhi, Delhi 110012, India
Jacqueline F. Hamilton
CORRESPONDING AUTHOR
Wolfson Atmospheric Chemistry Laboratories, Department of
Chemistry, University of York, York, YO10 5DD, UK
Related authors
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Gareth J. Stewart, W. Joe F. Acton, Beth S. Nelson, Adam R. Vaughan, James R. Hopkins, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Rachel E. Dunmore, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, https://doi.org/10.5194/acp-21-2383-2021, 2021
Short summary
Short summary
Biomass burning is a major source of trace gases to the troposphere; however, the composition and quantity of emissions vary greatly between different fuel types. This work provided near-total quantitation of non-methane volatile organic compounds from combustion of biofuels from India. Emissions from cow dung cake combustion were significantly larger than conventional fuelwood combustion, potentially indicating that this source has a disproportionately large impact on regional air quality.
Atallah Elzein, Gareth J. Stewart, Stefan J. Swift, Beth S. Nelson, Leigh R. Crilley, Mohammed S. Alam, Ernesto Reyes-Villegas, Ranu Gadi, Roy M. Harrison, Jacqueline F. Hamilton, and Alastair C. Lewis
Atmos. Chem. Phys., 20, 14303–14319, https://doi.org/10.5194/acp-20-14303-2020, https://doi.org/10.5194/acp-20-14303-2020, 2020
Short summary
Short summary
We collected high-frequency air particle samples (PM2.5) in Beijing (China) and Delhi (India) and measured the concentration of PAHs in daytime and night-time. PAHs were higher in Delhi than in Beijing, and the five-ring PAHs contribute the most to the total PAH concentration. We compared the emission sources and identified the major sectors that could be subject to mitigation measures. The adverse health effects from inhalation exposure to PAHs in Delhi are 2.2 times higher than in Beijing.
Nicholas Cowan, Toby Roberts, Mark Hanlon, Aurelia Bezanger, Galina Toteva, Alex Tweedie, Karen Yeung, Ajinkya Deshpande, Peter Levy, Ute Skiba, Eiko Nemitz, and Julia Drewer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3654, https://doi.org/10.5194/egusphere-2024-3654, 2024
Short summary
Short summary
We measured soil hydrogen (H2) fluxes from two field sites, a managed grassland and a planted deciduous woodland, with flux measurements of H2 covering full seasonal cycles. We estimate annual H2 uptake of -3.1 ± 0.1 and -12.0 ± 0.4 kg H2 ha-1 yr-1 for the grassland and woodland sites, respectively. Soil moisture was found to be the primary driver of H2 uptake, with the clay content of the soils providing a physical barrier which limited H2 uptake.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Rhianna Louise Evans, Daniel Jack Bryant, Aristeidis Voliotis, Dawei Hu, Huihui Wu, Sara Aisyah Syafira, Osayomwanbor Ebenezer Oghama, Gordon McFiggans, Jacqueline Fiona Hamilton, and Andrew Robert Rickard
EGUsphere, https://doi.org/10.5194/egusphere-2024-2642, https://doi.org/10.5194/egusphere-2024-2642, 2024
Short summary
Short summary
The chemical composition of organic aerosol derived from wood burning emissions under different burning conditions was characterised. Fresh emissions from flaming and smouldering were largely aromatic in nature whereas upon aging the aromatic content decreased. This decrease was greater for smouldering due to the loss of toxic polyaromatic species. Whereas under flaming conditions highly toxic polyaromatic species were produced. These differences present an important challenge for policy.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Xuewei Hou, Oliver Wild, Bin Zhu, and James Lee
Atmos. Chem. Phys., 23, 15395–15411, https://doi.org/10.5194/acp-23-15395-2023, https://doi.org/10.5194/acp-23-15395-2023, 2023
Short summary
Short summary
In response to the climate crisis, many countries have committed to net zero in a certain future year. The impacts of net-zero scenarios on tropospheric O3 are less well studied and remain unclear. In this study, we quantified the changes of tropospheric O3 budgets, spatiotemporal distributions of future surface O3 in east Asia and regional O3 source contributions for 2060 under a net-zero scenario using the NCAR Community Earth System Model (CESM) and online O3-tagging methods.
Meghna Soni, Rolf Sander, Lokesh K. Sahu, Domenico Taraborrelli, Pengfei Liu, Ankit Patel, Imran A. Girach, Andrea Pozzer, Sachin S. Gunthe, and Narendra Ojha
Atmos. Chem. Phys., 23, 15165–15180, https://doi.org/10.5194/acp-23-15165-2023, https://doi.org/10.5194/acp-23-15165-2023, 2023
Short summary
Short summary
The study presents the implementation of comprehensive multiphase chlorine chemistry in the box model CAABA/MECCA. Simulations for contrasting urban environments of Asia and Europe highlight the significant impacts of chlorine on atmospheric oxidation capacity and composition. Chemical processes governing the production and loss of chlorine-containing species has been discussed. The updated chemical mechanism will be useful to interpret field measurements and for future air quality studies.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023, https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Short summary
Measurements of OH, HO2 and RO2 radicals and also OH reactivity were made at a UK coastal site and compared to calculations from a constrained box model utilising the Master Chemical Mechanism. The model agreement displayed a strong dependence on the NO concentration. An experimental budget analysis for OH, HO2, RO2 and total ROx demonstrated significant imbalances between HO2 and RO2 production rates. Ozone production rates were calculated from measured radicals and compared to modelled values.
Alfred W. Mayhew, Peter M. Edwards, and Jaqueline F. Hamilton
Atmos. Chem. Phys., 23, 8473–8485, https://doi.org/10.5194/acp-23-8473-2023, https://doi.org/10.5194/acp-23-8473-2023, 2023
Short summary
Short summary
Isoprene nitrates are chemical species commonly found in the atmosphere that are important for their impacts on air quality and climate. This paper investigates modelled changes to daytime isoprene nitrate concentrations resulting from changes in NOx and O3. The results highlight the complex, nonlinear chemistry of this group of species under typical conditions for megacities such as Beijing, with many species showing increased concentrations when NOx is decreased and/or ozone is increased.
Caterina Mapelli, James K. Donnelly, Úna E. Hogan, Andrew R. Rickard, Abbie T. Robinson, Fergal Byrne, Con Rob McElroy, Basile F. E. Curchod, Daniel Hollas, and Terry J. Dillon
Atmos. Chem. Phys., 23, 7767–7779, https://doi.org/10.5194/acp-23-7767-2023, https://doi.org/10.5194/acp-23-7767-2023, 2023
Short summary
Short summary
Solvents are chemical compounds with countless uses in the chemical industry, and they also represent one of the main sources of pollution in the chemical sector. Scientists are trying to develop new
greensafer solvents which present favourable advantages when compared to traditional solvents. Since the assessment of these green solvents often lacks air quality considerations, this study aims to understand the behaviour of these compounds, investigating their reactivity in the troposphere.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023, https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Short summary
This research chemically characterises 173 different NMVOCs (non-methane volatile organic compounds) measured in real time for three seasons in the city of the central Indo-Gangetic basin of India, Lucknow. Receptor modelling is used to analyse probable sources of NMVOCs and their crucial role in forming ozone and secondary organic aerosols. It is observed that vehicular emissions and solid fuel combustion are the highest contributors to the emission of primary and secondary NMVOCs.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
Atmos. Chem. Phys., 23, 2315–2330, https://doi.org/10.5194/acp-23-2315-2023, https://doi.org/10.5194/acp-23-2315-2023, 2023
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by >73 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point-source heat and power generation emissions.
Jacob T. Shaw, Amy Foulds, Shona Wilde, Patrick Barker, Freya A. Squires, James Lee, Ruth Purvis, Ralph Burton, Ioana Colfescu, Stephen Mobbs, Samuel Cliff, Stéphane J.-B. Bauguitte, Stuart Young, Stefan Schwietzke, and Grant Allen
Atmos. Chem. Phys., 23, 1491–1509, https://doi.org/10.5194/acp-23-1491-2023, https://doi.org/10.5194/acp-23-1491-2023, 2023
Short summary
Short summary
Flaring is used by the oil and gas sector to dispose of unwanted natural gas or for safety. However, few studies have assessed the efficiency with which the gas is combusted. We sampled flaring emissions from offshore facilities in the North Sea. Average measured flaring efficiencies were ~ 98 % but with a skewed distribution, including many flares of lower efficiency. NOx and ethane emissions were also measured. Inefficient flaring practices could be a target for mitigating carbon emissions.
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys., 23, 41–59, https://doi.org/10.5194/acp-23-41-2023, https://doi.org/10.5194/acp-23-41-2023, 2023
Short summary
Short summary
In this study, for the first time in South Asia we compare simulated ammonia, ammonium, and total ammonia using the WRF-Chem model and MARGA measurements during winter in the Indo-Gangetic Plain region. Since observations show HCl promotes the fraction of high chlorides in Delhi, we added HCl / Cl emissions to the model. We conducted three sensitivity experiments with changes in HCl emissions, and improvements are reported in accurately simulating ammonia, ammonium, and total ammonia.
Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 23, 61–83, https://doi.org/10.5194/acp-23-61-2023, https://doi.org/10.5194/acp-23-61-2023, 2023
Short summary
Short summary
This paper investigates the sources of isoprene and monoterpene compounds and their particulate-phase oxidation products in Delhi, India. This was done to improve our understanding of the sources, concentrations, and fate of volatile emissions in megacities. By studying the chemical composition of offline filter samples, we report that a significant share of the oxidised organic aerosol in Delhi is from isoprene and monoterpenes. This has implications for human health and policy development.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Alfred W. Mayhew, Ben H. Lee, Joel A. Thornton, Thomas J. Bannan, James Brean, James R. Hopkins, James D. Lee, Beth S. Nelson, Carl Percival, Andrew R. Rickard, Marvin D. Shaw, Peter M. Edwards, and Jaqueline F. Hamilton
Atmos. Chem. Phys., 22, 14783–14798, https://doi.org/10.5194/acp-22-14783-2022, https://doi.org/10.5194/acp-22-14783-2022, 2022
Short summary
Short summary
Isoprene nitrates are chemical species commonly found in the atmosphere that are important for their impacts on air quality and climate. This paper compares 3 different representations of the chemistry of isoprene nitrates in computational models highlighting cases where the choice of chemistry included has significant impacts on the concentration and composition of the modelled nitrates. Calibration of mass spectrometers is also shown to be an important factor when analysing isoprene nitrates.
Aristeidis Voliotis, Mao Du, Yu Wang, Yunqi Shao, M. Rami Alfarra, Thomas J. Bannan, Dawei Hu, Kelly L. Pereira, Jaqueline F. Hamilton, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 22, 14147–14175, https://doi.org/10.5194/acp-22-14147-2022, https://doi.org/10.5194/acp-22-14147-2022, 2022
Short summary
Short summary
Mixing experiments are crucial and highly beneficial for our understanding of atmospheric chemical interactions. However, interpretation quickly becomes complex, and both the experimental design and evaluation need to be scrutinised carefully. Advanced online and offline compositional measurements can reveal substantial additional information to aid in the interpretation of yield data, including components uniquely found in mixtures and property changes in SOA formed from mixtures of VOCs.
Yunqi Shao, Aristeidis Voliotis, Mao Du, Yu Wang, Kelly Pereira, Jacqueline Hamilton, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 9799–9826, https://doi.org/10.5194/acp-22-9799-2022, https://doi.org/10.5194/acp-22-9799-2022, 2022
Short summary
Short summary
This study explored the chemical properties of secondary organic aerosol (SOA) that formed from photo-oxidation of single and mixed biogenic and anthropogenic precursors. We showed that SOA chemical properties in a mixed vapour system are mainly affected by the
higher-yield precursor's oxidation products and products from
cross-product formation. This study also identifies potential tracer compounds in a mixed vapour system that might be used in SOA source attribution in future ambient studies.
Mao Du, Aristeidis Voliotis, Yunqi Shao, Yu Wang, Thomas J. Bannan, Kelly L. Pereira, Jacqueline F. Hamilton, Carl J. Percival, M. Rami Alfarra, and Gordon McFiggans
Atmos. Meas. Tech., 15, 4385–4406, https://doi.org/10.5194/amt-15-4385-2022, https://doi.org/10.5194/amt-15-4385-2022, 2022
Short summary
Short summary
Atmospheric chemistry plays a key role in the understanding of aerosol formation and air pollution. We designed chamber experiments for the characterization of secondary organic aerosol (SOA) from a biogenic precursor with inorganic seed. Our results highlight the advantages of a combination of online FIGAERO-CIMS and offline LC-Orbitrap MS analytical techniques to characterize the chemical composition of SOA in chamber studies.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Marios Panagi, Roberto Sommariva, Zoë L. Fleming, Paul S. Monks, Gongda Lu, Eloise A. Marais, James R. Hopkins, Alastair C. Lewis, Qiang Zhang, James D. Lee, Freya A. Squires, Lisa K. Whalley, Eloise J. Slater, Dwayne E. Heard, Robert Woodward-Massey, Chunxiang Ye, and Joshua D. Vande Hey
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-379, https://doi.org/10.5194/acp-2022-379, 2022
Revised manuscript not accepted
Short summary
Short summary
A dispersion model and a box model were combined to investigate the evolution of VOCs in Beijing once they are emitted from anthropogenic sources. It was determined that during the winter time the VOC concentrations in Beijing are driven predominantly by sources within Beijing and by a combination of transport and chemistry during the summer. Furthermore, the results in the paper highlight the need for a season specific policy.
Mike J. Newland, Camille Mouchel-Vallon, Richard Valorso, Bernard Aumont, Luc Vereecken, Michael E. Jenkin, and Andrew R. Rickard
Atmos. Chem. Phys., 22, 6167–6195, https://doi.org/10.5194/acp-22-6167-2022, https://doi.org/10.5194/acp-22-6167-2022, 2022
Short summary
Short summary
Alkene ozonolysis produces Criegee intermediates, which can act as oxidants or decompose to give a range of closed-shell and radical products, including OH. Therefore it is essential to accurately represent the chemistry of Criegee intermediates in atmospheric models in order to understand their impacts on atmospheric composition. Here we provide a mechanism construction protocol by which the central features of alkene ozonolysis chemistry can be included in an automatic mechanism generator.
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022, https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Short summary
Glyoxal is a ubiquitous reactive organic compound in the atmosphere, which may form organic aerosol and impact the atmosphere's oxidising capacity. There are limited measurements of glyoxal's abundance in the remote marine atmosphere. We made new measurements of glyoxal using a highly sensitive technique over two 4-week periods in the tropical Atlantic atmosphere. We show that daytime measurements are mostly consistent with our chemical understanding but a potential missing source at night.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J1 Bloss, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-207, https://doi.org/10.5194/acp-2022-207, 2022
Preprint withdrawn
Short summary
Short summary
We measured radicals (OH, HO2, RO2) and OH reactivity at a UK coastal site and compared our observations to the predictions of an MCMv3.3.1 box model. We find variable agreement between measured and modelled radical concentrations and OH reactivity, where the levels of agreement for individual species display strong dependences on NO concentrations. The most substantial disagreement is found for RO2 at high NO (> 1 ppbv), when RO2 levels are underpredicted by a factor of ~10–30.
Amy Foulds, Grant Allen, Jacob T. Shaw, Prudence Bateson, Patrick A. Barker, Langwen Huang, Joseph R. Pitt, James D. Lee, Shona E. Wilde, Pamela Dominutti, Ruth M. Purvis, David Lowry, James L. France, Rebecca E. Fisher, Alina Fiehn, Magdalena Pühl, Stéphane J. B. Bauguitte, Stephen A. Conley, Mackenzie L. Smith, Tom Lachlan-Cope, Ignacio Pisso, and Stefan Schwietzke
Atmos. Chem. Phys., 22, 4303–4322, https://doi.org/10.5194/acp-22-4303-2022, https://doi.org/10.5194/acp-22-4303-2022, 2022
Short summary
Short summary
We measured CH4 emissions from 21 offshore oil and gas facilities in the Norwegian Sea in 2019. Measurements compared well with operator-reported emissions but were greatly underestimated when compared with a 2016 global fossil fuel inventory. This study demonstrates the need for up-to-date and accurate inventories for use in research and policy and the important benefits of best-practice reporting methods by operators. Airborne measurements are an effective tool to validate such inventories.
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is a key source of atmospheric oxidants. We evaluate if the ocean surface is a source of HONO for the marine boundary layer, using measurements from two contrasting coastal locations. We observed no evidence for a night-time ocean surface source, in contrast to previous work. This points to significant geographical variation in the predominant HONO formation mechanisms in marine environments, reflecting possible variability in the sea-surface microlayer composition.
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021, https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Short summary
We present an evaluation of the UK's methane emissions between 2013 and 2020 using a network of tall tower measurement sites. We find emissions that are consistent in both magnitude and trend with the UK's reported emissions, with a declining trend driven by a decrease in emissions from England. The impact of various components of the modelling set-up on these findings are explored through a number of sensitivity studies.
Adam R. Vaughan, James D. Lee, Stefan Metzger, David Durden, Alastair C. Lewis, Marvin D. Shaw, Will S. Drysdale, Ruth M. Purvis, Brian Davison, and C. Nicholas Hewitt
Atmos. Chem. Phys., 21, 15283–15298, https://doi.org/10.5194/acp-21-15283-2021, https://doi.org/10.5194/acp-21-15283-2021, 2021
Short summary
Short summary
Validating emissions estimates of atmospheric pollutants is a vital pathway towards reducing urban concentrations of air pollution and ensuring effective legislative controls are implemented. The work presented here highlights a strategy capable of quantifying and spatially disaggregating NOx emissions over challenging urban terrain. This work shows great scope as a tool for emission inventory validation and independent generation of high-resolution surface emissions on a city-wide scale.
Rebecca L. Wagner, Naomi J. Farren, Jack Davison, Stuart Young, James R. Hopkins, Alastair C. Lewis, David C. Carslaw, and Marvin D. Shaw
Atmos. Meas. Tech., 14, 6083–6100, https://doi.org/10.5194/amt-14-6083-2021, https://doi.org/10.5194/amt-14-6083-2021, 2021
Short summary
Short summary
We describe the use of a selected-ion flow-tube mass spectrometer (SIFT-MS) in a mobile laboratory to provide on-road, high spatial and temporal measurements of CO2, CH4, multiple volatile organic compounds (VOCs) and other trace gases. Results are presented that highlight the potential of this platform for developing characterisation methods of different emissions sources in complex urban areas.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5089–5106, https://doi.org/10.5194/amt-14-5089-2021, https://doi.org/10.5194/amt-14-5089-2021, 2021
Short summary
Short summary
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to high-frequency losses. There are different methods used to describe this low-pass filtering effect and to correct the measured fluxes. In this study, we analysed the systematic uncertainty related to this correction for various attenuation and signal-to-noise ratios. A new and robust transfer function method is finally proposed.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
James M. Cash, Ben Langford, Chiara Di Marco, Neil J. Mullinger, James Allan, Ernesto Reyes-Villegas, Ruthambara Joshi, Mathew R. Heal, W. Joe F. Acton, C. Nicholas Hewitt, Pawel K. Misztal, Will Drysdale, Tuhin K. Mandal, Shivani, Ranu Gadi, Bhola Ram Gurjar, and Eiko Nemitz
Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, https://doi.org/10.5194/acp-21-10133-2021, 2021
Short summary
Short summary
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry. Seasonal analysis shows peak concentrations occur during the post-monsoon, and novel-tracers reveal the largest sources are a combination of local open and regional crop residue burning. Strong links between increased chloride aerosol concentrations and burning sources of PM1 suggest burning sources are responsible for the post-monsoon chloride peak.
Huihui Wu, Jonathan W. Taylor, Justin M. Langridge, Chenjie Yu, James D. Allan, Kate Szpek, Michael I. Cotterell, Paul I. Williams, Michael Flynn, Patrick Barker, Cathryn Fox, Grant Allen, James Lee, and Hugh Coe
Atmos. Chem. Phys., 21, 9417–9440, https://doi.org/10.5194/acp-21-9417-2021, https://doi.org/10.5194/acp-21-9417-2021, 2021
Short summary
Short summary
Seasonal biomass burning over West Africa is a globally significant source of carbonaceous particles in the atmosphere, which have important climate impacts but are poorly constrained. We conducted in situ airborne measurements to investigate the evolution of smoke aerosol properties in this region. We observed absorption enhancement for both black carbon and brown carbon after emission, which provides new field results and constraints on aerosol parameterizations for future climate models.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Simone T. Andersen, Lucy J. Carpenter, Beth S. Nelson, Luis Neves, Katie A. Read, Chris Reed, Martyn Ward, Matthew J. Rowlinson, and James D. Lee
Atmos. Meas. Tech., 14, 3071–3085, https://doi.org/10.5194/amt-14-3071-2021, https://doi.org/10.5194/amt-14-3071-2021, 2021
Short summary
Short summary
NOx has been measured in remote marine air via chemiluminescence detection using two different methods for NO2 to NO photolytic conversion: (a) internal diodes and a reaction chamber made of Teflon-like barium-doped material, which causes a NO2 artefact, and (b) external diodes and a quartz photolysis cell. Once corrections are made for the artefact of (a), the two converters are shown to give comparable NO2 mixing ratios, giving confidence in the quantitative measurement of NOx at low levels.
Stuart K. Grange, James D. Lee, Will S. Drysdale, Alastair C. Lewis, Christoph Hueglin, Lukas Emmenegger, and David C. Carslaw
Atmos. Chem. Phys., 21, 4169–4185, https://doi.org/10.5194/acp-21-4169-2021, https://doi.org/10.5194/acp-21-4169-2021, 2021
Short summary
Short summary
The changes in mobility across Europe due to the COVID-19 lockdowns had consequences for air quality. We compare what was experienced to estimates of "what would have been" without the lockdowns. Nitrogen dioxide (NO2), an important vehicle-sourced pollutant, decreased by a third. However, ozone (O3) increased in response to lower NO2. Because NO2 is decreasing over time, increases in O3 can be expected in European urban areas and will require management to avoid future negative outcomes.
Shona E. Wilde, Pamela A. Dominutti, Grant Allen, Stephen J. Andrews, Prudence Bateson, Stephane J.-B. Bauguitte, Ralph R. Burton, Ioana Colfescu, James France, James R. Hopkins, Langwen Huang, Anna E. Jones, Tom Lachlan-Cope, James D. Lee, Alastair C. Lewis, Stephen D. Mobbs, Alexandra Weiss, Stuart Young, and Ruth M. Purvis
Atmos. Chem. Phys., 21, 3741–3762, https://doi.org/10.5194/acp-21-3741-2021, https://doi.org/10.5194/acp-21-3741-2021, 2021
Short summary
Short summary
We use airborne measurements to evaluate the speciation of volatile organic compound (VOC) emissions from offshore oil and gas (O&G) installations in the North Sea. The composition of emissions varied across regions associated with either gas, condensate or oil extraction, demonstrating that VOC emissions are not uniform across the whole O&G sector. We compare our results to VOC source profiles in the UK emissions inventory, showing these emissions are not currently fully characterized.
Gareth J. Stewart, W. Joe F. Acton, Beth S. Nelson, Adam R. Vaughan, James R. Hopkins, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Rachel E. Dunmore, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, https://doi.org/10.5194/acp-21-2383-2021, 2021
Short summary
Short summary
Biomass burning is a major source of trace gases to the troposphere; however, the composition and quantity of emissions vary greatly between different fuel types. This work provided near-total quantitation of non-methane volatile organic compounds from combustion of biofuels from India. Emissions from cow dung cake combustion were significantly larger than conventional fuelwood combustion, potentially indicating that this source has a disproportionately large impact on regional air quality.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
Y. Sim Tang, Chris R. Flechard, Ulrich Dämmgen, Sonja Vidic, Vesna Djuricic, Marta Mitosinkova, Hilde T. Uggerud, Maria J. Sanz, Ivan Simmons, Ulrike Dragosits, Eiko Nemitz, Marsailidh Twigg, Netty van Dijk, Yannick Fauvel, Francisco Sanz, Martin Ferm, Cinzia Perrino, Maria Catrambone, David Leaver, Christine F. Braban, J. Neil Cape, Mathew R. Heal, and Mark A. Sutton
Atmos. Chem. Phys., 21, 875–914, https://doi.org/10.5194/acp-21-875-2021, https://doi.org/10.5194/acp-21-875-2021, 2021
Short summary
Short summary
The DELTA® approach provided speciated, monthly data on reactive gases (NH3, HNO3, SO2, HCl) and aerosols (NH4+, NO3−, SO42−, Cl−, Na+) across Europe (2006–2010). Differences in spatial and temporal concentrations and patterns between geographic regions and four ecosystem types were captured. NH3 and NH4NO3 were dominant components, highlighting their growing relative importance in ecosystem impacts (acidification, eutrophication) and human health effects (NH3 as a precursor to PM2.5) in Europe.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
James L. France, Prudence Bateson, Pamela Dominutti, Grant Allen, Stephen Andrews, Stephane Bauguitte, Max Coleman, Tom Lachlan-Cope, Rebecca E. Fisher, Langwen Huang, Anna E. Jones, James Lee, David Lowry, Joseph Pitt, Ruth Purvis, John Pyle, Jacob Shaw, Nicola Warwick, Alexandra Weiss, Shona Wilde, Jonathan Witherstone, and Stuart Young
Atmos. Meas. Tech., 14, 71–88, https://doi.org/10.5194/amt-14-71-2021, https://doi.org/10.5194/amt-14-71-2021, 2021
Short summary
Short summary
Measuring emission rates of methane from installations is tricky, and it is even more so when those installations are located offshore. Here, we show the aircraft set-up and demonstrate an effective methodology for surveying emissions from UK and Dutch offshore oil and gas installations. We present example data collected from two campaigns to demonstrate the challenges and solutions encountered during these surveys.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
James D. Lee, Will S. Drysdale, Doug P. Finch, Shona E. Wilde, and Paul I. Palmer
Atmos. Chem. Phys., 20, 15743–15759, https://doi.org/10.5194/acp-20-15743-2020, https://doi.org/10.5194/acp-20-15743-2020, 2020
Short summary
Short summary
Efforts to prevent the COVID-19 virus spreading across the globe have included travel restrictions and the closure of workplaces, leading to a significant drop in emissions of primary air pollutants. This provides for a unique opportunity to examine how air pollutant concentrations respond to an abrupt and prolonged reduction. We examine how NO2 and O3 have been affected at several urban measurement sites in the UK. We look at the change in NO2 compared to previous years and the effect on O3.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Patrick A. Barker, Grant Allen, Martin Gallagher, Joseph R. Pitt, Rebecca E. Fisher, Thomas Bannan, Euan G. Nisbet, Stéphane J.-B. Bauguitte, Dominika Pasternak, Samuel Cliff, Marina B. Schimpf, Archit Mehra, Keith N. Bower, James D. Lee, Hugh Coe, and Carl J. Percival
Atmos. Chem. Phys., 20, 15443–15459, https://doi.org/10.5194/acp-20-15443-2020, https://doi.org/10.5194/acp-20-15443-2020, 2020
Short summary
Short summary
Africa is estimated to account for approximately 52 % of global biomass burning (BB) carbon emissions. Despite this, there has been little previous in situ study of African BB emissions. This work presents BB emission factors for various atmospheric trace gases sampled from an aircraft in two distinct areas of Africa (Senegal and Uganda). Intracontinental variability in biomass burning methane emission is identified, which is attributed to difference in the specific fuel mixtures burnt.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Eloise J. Slater, Lisa K. Whalley, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Leigh R. Crilley, Louisa Kramer, William Bloss, Tuan Vu, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, https://doi.org/10.5194/acp-20-14847-2020, 2020
Short summary
Short summary
The paper details atmospheric chemistry in a megacity (Beijing), focussing on radicals which mediate the formation of secondary pollutants such as ozone and particles. Highly polluted conditions were experienced, including the highest ever levels of nitric oxide (NO), with simultaneous radical measurements. Radical concentrations were large during "haze" events, demonstrating active photochemistry. Modelling showed that our understanding of the chemistry at high NOx levels is incomplete.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Atallah Elzein, Gareth J. Stewart, Stefan J. Swift, Beth S. Nelson, Leigh R. Crilley, Mohammed S. Alam, Ernesto Reyes-Villegas, Ranu Gadi, Roy M. Harrison, Jacqueline F. Hamilton, and Alastair C. Lewis
Atmos. Chem. Phys., 20, 14303–14319, https://doi.org/10.5194/acp-20-14303-2020, https://doi.org/10.5194/acp-20-14303-2020, 2020
Short summary
Short summary
We collected high-frequency air particle samples (PM2.5) in Beijing (China) and Delhi (India) and measured the concentration of PAHs in daytime and night-time. PAHs were higher in Delhi than in Beijing, and the five-ring PAHs contribute the most to the total PAH concentration. We compared the emission sources and identified the major sectors that could be subject to mitigation measures. The adverse health effects from inhalation exposure to PAHs in Delhi are 2.2 times higher than in Beijing.
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Short summary
We report on the interference arising in measurements of nitrogen oxides (NOx) from the presence of a range of alkenes in sampled air when using the most widespread air quality monitoring technique for chemiluminescence detection. Interferences of up to 11 % are reported, depending upon the alkene present and conditions used. Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high volatile organic compound and low NOx environments.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Mike J. Newland, and Andrew R. Rickard
Atmos. Chem. Phys., 20, 12921–12937, https://doi.org/10.5194/acp-20-12921-2020, https://doi.org/10.5194/acp-20-12921-2020, 2020
Short summary
Short summary
Unsaturated organic compounds are emitted in large quantities from natural and human-influenced sources. Atmospheric removal occurs significantly by reaction with ozone, initiating reaction sequences forming free radicals and organic pollutants in the gaseous and particulate phases. Due to their very large number, it is impossible to study the reaction rate for every compound, and most have to be estimated. Updated and extended estimation methods are reported for use in atmospheric models.
Archit Mehra, Yuwei Wang, Jordan E. Krechmer, Andrew Lambe, Francesca Majluf, Melissa A. Morris, Michael Priestley, Thomas J. Bannan, Daniel J. Bryant, Kelly L. Pereira, Jacqueline F. Hamilton, Andrew R. Rickard, Mike J. Newland, Harald Stark, Philip Croteau, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, Lin Wang, and Hugh Coe
Atmos. Chem. Phys., 20, 9783–9803, https://doi.org/10.5194/acp-20-9783-2020, https://doi.org/10.5194/acp-20-9783-2020, 2020
Short summary
Short summary
Aromatic volatile organic compounds (VOCs) emitted from anthropogenic activity are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Here we present a detailed chemical characterisation of SOA from four C9-aromatic isomers and a polycyclic aromatic hydrocarbon (PAH). We identify and compare their oxidation products in the gas and particle phases, showing the different relative importance of oxidation pathways and proportions of highly oxygenated organic molecules.
Liwei Wang, Jay G. Slowik, Nidhi Tripathi, Deepika Bhattu, Pragati Rai, Varun Kumar, Pawan Vats, Rangu Satish, Urs Baltensperger, Dilip Ganguly, Neeraj Rastogi, Lokesh K. Sahu, Sachchida N. Tripathi, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 9753–9770, https://doi.org/10.5194/acp-20-9753-2020, https://doi.org/10.5194/acp-20-9753-2020, 2020
Jacob T. Shaw, Andrew R. Rickard, Mike J. Newland, and Terry J. Dillon
Atmos. Chem. Phys., 20, 9725–9736, https://doi.org/10.5194/acp-20-9725-2020, https://doi.org/10.5194/acp-20-9725-2020, 2020
Short summary
Short summary
This work expands upon the recently developed multivariate relative rate technique, presented in Shaw et al. (2019), for the measurement of rates of reaction between aromatic and aliphatic volatile organic compounds (VOCs) and OH. Knowledge of the rates of such reactions are important for understanding air quality in urban environments. This work also provides a key validation of structure–activity relationship models, which provide a theoretical method for estimating OH + VOC kinetics.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
Daniel J. Bryant, William J. Dixon, James R. Hopkins, Rachel E. Dunmore, Kelly L. Pereira, Marvin Shaw, Freya A. Squires, Thomas J. Bannan, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Bin Ouyang, Tianqu Cui, Jason D. Surratt, Di Liu, Zongbo Shi, Roy Harrison, Yele Sun, Weiqi Xu, Alastair C. Lewis, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 20, 7531–7552, https://doi.org/10.5194/acp-20-7531-2020, https://doi.org/10.5194/acp-20-7531-2020, 2020
Short summary
Short summary
Using the chemical composition of offline filter samples, we report that a large share of oxidized organic aerosol in Beijing during summer is due to isoprene secondary organic aerosol (iSOA). iSOA organosulfates showed a strong correlation with the product of ozone and particulate sulfate. This highlights the role of both photochemistry and the availability of particulate sulfate in heterogeneous reactions and further demonstrates that iSOA formation is controlled by anthropogenic emissions.
Kirsti Ashworth, Silvia Bucci, Peter J. Gallimore, Junghwa Lee, Beth S. Nelson, Alberto Sanchez-Marroquín, Marina B. Schimpf, Paul D. Smith, Will S. Drysdale, Jim R. Hopkins, James D. Lee, Joe R. Pitt, Piero Di Carlo, Radovan Krejci, and James B. McQuaid
Atmos. Chem. Phys., 20, 7193–7216, https://doi.org/10.5194/acp-20-7193-2020, https://doi.org/10.5194/acp-20-7193-2020, 2020
Short summary
Short summary
In July 2017 we flew three research flights around London during European Facility for Airborne Research (EUFAR) training. We made continuous measurements of concentrations of key pollutants (ozone, NOx, aerosol particles, CO, CO2 and methane) and meteorology, and we collected periodic samples of air to analyse for volatile organic compounds. We saw evidence that plumes of pollution from the city, strong local emissions and pollution from distant sources all contribute to regional pollution.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, Michael Hollaway, David Carruthers, Jie Li, Qiang Zhang, Ruili Wu, Simone Kotthaus, Sue Grimmond, Freya A. Squires, James Lee, and Zongbo Shi
Atmos. Chem. Phys., 20, 2755–2780, https://doi.org/10.5194/acp-20-2755-2020, https://doi.org/10.5194/acp-20-2755-2020, 2020
Short summary
Short summary
Ambient air pollution is a major cause of premature death in China. We examine the street-scale variation of pollutant levels in Beijing using air pollution dispersion and chemistry model ADMS-Urban. Campaign measurements are compared with simulated pollutant levels, providing a valuable means of evaluating the impact of key processes on urban air quality. Air quality modelling at such fine scales is essential for human exposure studies and for informing choices on future emission controls.
Roberto Sommariva, Sam Cox, Chris Martin, Kasia Borońska, Jenny Young, Peter K. Jimack, Michael J. Pilling, Vasileios N. Matthaios, Beth S. Nelson, Mike J. Newland, Marios Panagi, William J. Bloss, Paul S. Monks, and Andrew R. Rickard
Geosci. Model Dev., 13, 169–183, https://doi.org/10.5194/gmd-13-169-2020, https://doi.org/10.5194/gmd-13-169-2020, 2020
Short summary
Short summary
This paper presents the AtChem software, which can be used to build box models for atmospheric chemistry studies. The software is designed to facilitate the use of one of the most important chemical mechanisms used by atmospheric scientists, the Master Chemical Mechanism. AtChem exists in two versions: an on-line application for laboratory studies and educational or outreach activities and an offline version for more complex models and batch simulations. AtChem is open source under MIT License.
James Brean, Roy M. Harrison, Zongbo Shi, David C. S. Beddows, W. Joe F. Acton, C. Nicholas Hewitt, Freya A. Squires, and James Lee
Atmos. Chem. Phys., 19, 14933–14947, https://doi.org/10.5194/acp-19-14933-2019, https://doi.org/10.5194/acp-19-14933-2019, 2019
Short summary
Short summary
Measurements of highly oxidized molecules measured during a summer campaign in Beijing are presented. These molecules represent an intermediary between gas-phase chemicals from which they are formed and airborne particles which form from them. Conclusions are drawn as to the factors affecting the formation of new particles within the Beijing atmosphere.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Kelly L. Pereira, Grazia Rovelli, Young C. Song, Alfred W. Mayhew, Jonathan P. Reid, and Jacqueline F. Hamilton
Atmos. Meas. Tech., 12, 4519–4541, https://doi.org/10.5194/amt-12-4519-2019, https://doi.org/10.5194/amt-12-4519-2019, 2019
Short summary
Short summary
We present the design and operation of a newly built continuous-flow reactor (CFR), which can be used as a tool to gain considerable insights into the composition and physical state of secondary organic aerosol (SOA). The CFR was used to generate large quantities of SOA mass, allowing the use of highly accurate techniques that are not usually accessible. We demonstrate how this unique approach can be used to investigate the relationship between SOA formation and physiochemical properties.
Joseph R. Pitt, Grant Allen, Stéphane J.-B. Bauguitte, Martin W. Gallagher, James D. Lee, Will Drysdale, Beth Nelson, Alistair J. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 8931–8945, https://doi.org/10.5194/acp-19-8931-2019, https://doi.org/10.5194/acp-19-8931-2019, 2019
Short summary
Short summary
This paper presents a new method to assess inventory estimates of greenhouse gas and air pollutant emissions for large cities and their surrounding regions. A case study using data sampled by a research aircraft around London was used to test the method. We found that the UK national inventory agrees with our observations for CO but needed lower emissions for CH4 to agree with the measured data. Repeated studies could help determine how these emissions vary on different timescales.
Atallah Elzein, Rachel E. Dunmore, Martyn W. Ward, Jacqueline F. Hamilton, and Alastair C. Lewis
Atmos. Chem. Phys., 19, 8741–8758, https://doi.org/10.5194/acp-19-8741-2019, https://doi.org/10.5194/acp-19-8741-2019, 2019
Short summary
Short summary
This article investigates the chemical composition of fine particulate matter (PM2.5) in Beijing, China, in winter 2016. It includes the identification and quantification of 35 polycyclic aromatic compounds. The results include their distribution between daytime and night-time. They were correlated with the gas-phase concentrations of atmospheric oxidants. Major emission sources were identified, and the cancer risk associated with particle inhalation in Beijing was estimated.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, and Andrew R. Rickard
Atmos. Chem. Phys., 19, 7691–7717, https://doi.org/10.5194/acp-19-7691-2019, https://doi.org/10.5194/acp-19-7691-2019, 2019
Short summary
Short summary
Organic compounds are emitted in large amounts from natural and human-influenced sources. Peroxy radicals are key intermediates formed during oxidation of organic compounds, and play a central role in mechanisms forming pollutants such as ozone and organic particles. Due to the large number of different peroxy radicals formed, it is impossible to study the rates of all of their reactions, and most have to be estimated. Updated and new estimation methods are reported for use in atmospheric models
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Dantong Liu, Rutambhara Joshi, Junfeng Wang, Chenjie Yu, James D. Allan, Hugh Coe, Michael J. Flynn, Conghui Xie, James Lee, Freya Squires, Simone Kotthaus, Sue Grimmond, Xinlei Ge, Yele Sun, and Pingqing Fu
Atmos. Chem. Phys., 19, 6749–6769, https://doi.org/10.5194/acp-19-6749-2019, https://doi.org/10.5194/acp-19-6749-2019, 2019
Short summary
Short summary
This study provides source attribution and characterization of BC in the Beijing urban environment in both winter and summer. For the first time, the physically and chemically based source apportionments are compared to evaluate the primary source contribution and secondary processing of BC-containing particles. A method is proposed to isolate the BC from the transportation sector and coal combustion sources.
Nidhi Tripathi and Lokesh Kumar Sahu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-335, https://doi.org/10.5194/acp-2019-335, 2019
Preprint withdrawn
Short summary
Short summary
This is the first study presenting the dependence of monoterpene on meteorology during winter-to-summer transition period at urban region of western India. The estimated contribution from local biogenic sources to ambient monoterpene increased from 31 % in first half of February to 67 % in second half of March. This study is important to validate the model and also to identify the anthropogenic and biogenic precursors of ozone and secondary organic aerosols over tropical semi-arid urban region.
Carole Helfter, Neil Mullinger, Massimo Vieno, Simon O'Doherty, Michel Ramonet, Paul I. Palmer, and Eiko Nemitz
Atmos. Chem. Phys., 19, 3043–3063, https://doi.org/10.5194/acp-19-3043-2019, https://doi.org/10.5194/acp-19-3043-2019, 2019
Short summary
Short summary
We present a novel approach to estimate the annual budgets of carbon dioxide (881.0 ± 128.5 Tg) and methane (2.55 ± 0.48 Tg) of the British Isles from shipborne measurements taken over a 3-year period (2015–2017). This study brings independent verification of the emission budgets estimated using alternative products and investigates the seasonality of these emissions, which is usually not possible.
Kate R. Smith, Peter M. Edwards, Peter D. Ivatt, James D. Lee, Freya Squires, Chengliang Dai, Richard E. Peltier, Mat J. Evans, Yele Sun, and Alastair C. Lewis
Atmos. Meas. Tech., 12, 1325–1336, https://doi.org/10.5194/amt-12-1325-2019, https://doi.org/10.5194/amt-12-1325-2019, 2019
Short summary
Short summary
Clusters of low-cost, low-power atmospheric gas sensors were built into a sensor instrument to monitor NO2 and O3 in Beijing, alongside reference instruments, aiming to improve the reliability of sensor measurements. Clustering identical sensors and using the median sensor signal was used to minimize drift over short and medium timescales. Three different machine learning techniques were used for all the sensor data in an attempt to correct for cross-interferences, which worked to some degree.
Naomi J. Farren, Rachel E. Dunmore, Mohammed Iqbal Mead, Mohd Shahrul Mohd Nadzir, Azizan Abu Samah, Siew-Moi Phang, Brian J. Bandy, William T. Sturges, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 19, 1537–1553, https://doi.org/10.5194/acp-19-1537-2019, https://doi.org/10.5194/acp-19-1537-2019, 2019
Short summary
Short summary
During the winter monsoon, air quality on the east coast of Peninsular Malaysia is influenced by local emissions and aged emissions transported from highly polluted East Asian regions. Atmospheric particulate matter has been sampled at a rural coastal location, and ion chromatography has been used to make time-resolved measurements of the major atmospheric ions present. Analysis of aerosol composition and back trajectories has provided an insight into common sources and formation pathways.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Marsailidh M. Twigg, Nicholas Cowan, Matthew R. Jones, Sarah R. Leeson, William J. Bloss, Louisa J. Kramer, Leigh Crilley, Matthias Sörgel, Meinrat Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 18, 16953–16978, https://doi.org/10.5194/acp-18-16953-2018, https://doi.org/10.5194/acp-18-16953-2018, 2018
Short summary
Short summary
Understanding the impact of agricultural activities on the atmosphere requires more measurements of inorganic trace gases and associated aerosol counterparts. This research presents 1 month of measurements above agricultural grassland during a period of fertiliser application. It was found that emissions of the important trace gases ammonia and nitrous acid peaked after fertiliser use and that the velocity at which the measured aerosols were deposited was dependent upon their size.
Fernando Santos, Karla Longo, Alex Guenther, Saewung Kim, Dasa Gu, Dave Oram, Grant Forster, James Lee, James Hopkins, Joel Brito, and Saulo Freitas
Atmos. Chem. Phys., 18, 12715–12734, https://doi.org/10.5194/acp-18-12715-2018, https://doi.org/10.5194/acp-18-12715-2018, 2018
Short summary
Short summary
We investigated the impact of biomass burning on the chemical composition of trace gases in the Amazon. The findings corroborate the influence of biomass burning activity not only on direct emissions of particulate matter but also on the oxidative capacity to produce secondary organic aerosol. The scientists plan to use this information to improve the numerical model simulation with a better representativeness of the chemical processes, which can impact on global climate prediction.
Paul I. Palmer, Simon O'Doherty, Grant Allen, Keith Bower, Hartmut Bösch, Martyn P. Chipperfield, Sarah Connors, Sandip Dhomse, Liang Feng, Douglas P. Finch, Martin W. Gallagher, Emanuel Gloor, Siegfried Gonzi, Neil R. P. Harris, Carole Helfter, Neil Humpage, Brian Kerridge, Diane Knappett, Roderic L. Jones, Michael Le Breton, Mark F. Lunt, Alistair J. Manning, Stephan Matthiesen, Jennifer B. A. Muller, Neil Mullinger, Eiko Nemitz, Sebastian O'Shea, Robert J. Parker, Carl J. Percival, Joseph Pitt, Stuart N. Riddick, Matthew Rigby, Harjinder Sembhi, Richard Siddans, Robert L. Skelton, Paul Smith, Hannah Sonderfeld, Kieran Stanley, Ann R. Stavert, Angelina Wenger, Emily White, Christopher Wilson, and Dickon Young
Atmos. Chem. Phys., 18, 11753–11777, https://doi.org/10.5194/acp-18-11753-2018, https://doi.org/10.5194/acp-18-11753-2018, 2018
Short summary
Short summary
This paper provides an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) experiment. GAUGE was designed to quantify nationwide GHG emissions of the UK, bringing together measurements and atmospheric transport models. This novel experiment is the first of its kind. We anticipate it will inform the blueprint for countries that are building a measurement infrastructure in preparation for global stocktakes, which are a key part of the Paris Agreement.
Wei Zhou, Jian Zhao, Bin Ouyang, Archit Mehra, Weiqi Xu, Yuying Wang, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Qi Chen, Conghui Xie, Qingqing Wang, Junfeng Wang, Wei Du, Yingjie Zhang, Xinlei Ge, Penglin Ye, James D. Lee, Pingqing Fu, Zifa Wang, Douglas Worsnop, Roderic Jones, Carl J. Percival, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, https://doi.org/10.5194/acp-18-11581-2018, 2018
Short summary
Short summary
We present measurements of gas-phase N2O5 and ClNO2 by ToF-CIMS during summer in urban Beijing as part of the APHH campaign. High reactivity of N2O5 indicative of active nocturnal chemistry was observed. The lifetime of N2O5 as a function of aerosol surface area and relative humidity was characterized, and N2O5 uptake coefficients were estimated. We also found that the N2O5 loss in this study is mainly attributed to its indirect loss via reactions of NO3 with VOCs and NO.
Prasad Kasibhatla, Tomás Sherwen, Mathew J. Evans, Lucy J. Carpenter, Chris Reed, Becky Alexander, Qianjie Chen, Melissa P. Sulprizio, James D. Lee, Katie A. Read, William Bloss, Leigh R. Crilley, William C. Keene, Alexander A. P. Pszenny, and Alma Hodzic
Atmos. Chem. Phys., 18, 11185–11203, https://doi.org/10.5194/acp-18-11185-2018, https://doi.org/10.5194/acp-18-11185-2018, 2018
Short summary
Short summary
Recent measurements of NOx and HONO suggest that photolysis of particulate nitrate in sea-salt aerosols is important in terms of marine boundary layer oxidant chemistry. We present the first global-scale assessment of the significance of this new chemical pathway for NOx, O3, and OH in the marine boundary layer. We also present a preliminary assessment of the potential impact of photolysis of particulate nitrate associated with other aerosol types on continental boundary layer chemistry.
Kelly L. Pereira, Rachel Dunmore, James Whitehead, M. Rami Alfarra, James D. Allan, Mohammed S. Alam, Roy M. Harrison, Gordon McFiggans, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 18, 11073–11096, https://doi.org/10.5194/acp-18-11073-2018, https://doi.org/10.5194/acp-18-11073-2018, 2018
Short summary
Short summary
Exhaust emissions from a light-duty diesel engine were introduced into an atmospheric simulation chamber which was used as a holding-cell for sampling, allowing instruments capable of providing detailed chemical speciation of exhaust gas emissions to be used. The effect of different engine conditions on the exhaust gas composition was investigated. The exhaust composition changed considerably due to two influencing factors, engine combustion and diesel oxidative catalyst efficiency.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Andrew R. Rickard, and Timothy J. Wallington
Atmos. Chem. Phys., 18, 9297–9328, https://doi.org/10.5194/acp-18-9297-2018, https://doi.org/10.5194/acp-18-9297-2018, 2018
Short summary
Short summary
Organic compounds are emitted in large quantities from natural and human-influenced sources. Removal from the atmosphere occurs mainly by reaction with hydroxyl (OH) radicals, and initiates reaction sequences forming pollutants such as ozone and organic particles. Due to their very large number, it is impossible to measure the removal rate for all compounds, and most have to be estimated. An updated and extended estimation method is reported for use in atmospheric models and impact assessments.
Michael E. Jenkin, Richard Valorso, Bernard Aumont, Andrew R. Rickard, and Timothy J. Wallington
Atmos. Chem. Phys., 18, 9329–9349, https://doi.org/10.5194/acp-18-9329-2018, https://doi.org/10.5194/acp-18-9329-2018, 2018
Short summary
Short summary
Organic compounds are emitted in large quantities from natural and human-influenced sources. Removal from the atmosphere occurs mainly by reaction with hydroxyl (OH) radicals, and initiates reaction sequences forming pollutants such as ozone and organic particles. Due to their very large number, it is impossible to measure the removal rate for all compounds, and most have to be estimated. An updated and extended estimation method is reported for use in atmospheric models and impact assessments.
Mike J. Newland, Andrew R. Rickard, Tomás Sherwen, Mathew J. Evans, Luc Vereecken, Amalia Muñoz, Milagros Ródenas, and William J. Bloss
Atmos. Chem. Phys., 18, 6095–6120, https://doi.org/10.5194/acp-18-6095-2018, https://doi.org/10.5194/acp-18-6095-2018, 2018
Short summary
Short summary
Stabilised Criegee intermediates (SCIs) are formed in the reaction of alkenes with ozone, both of which are ubiquitous throughout the troposphere. We determine the fate and global distribution of SCI from monoterpene ozonolysis. One major fate of SCI is reaction with H2O, but for a fraction of SCIs, unimolecular reactions dominate. Concentrations of SCIs are high enough regionally to play a key role in the conversion of sulfur dioxide to aerosol, affecting air quality and climate.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Silvia Bucci, Paolo Cristofanelli, Stefano Decesari, Angela Marinoni, Silvia Sandrini, Johannes Größ, Alfred Wiedensohler, Chiara F. Di Marco, Eiko Nemitz, Francesco Cairo, Luca Di Liberto, and Federico Fierli
Atmos. Chem. Phys., 18, 5371–5389, https://doi.org/10.5194/acp-18-5371-2018, https://doi.org/10.5194/acp-18-5371-2018, 2018
Short summary
Short summary
This paper analyses some of the processes affecting PM levels over the Po Valley, one of the most polluted regions of Europe, during the 2012 summer campaigns. Under conditions of air transport from the Sahara, data show that desert dust can rapidly penetrate into the lower atmosphere, directly affecting the PM concentration at the ground. Processes of particles growth in high relative humidity and uplift of local soil particles, potentially affecting PM level, are also analysed.
Felix A. Mackenzie-Rae, Helen J. Wallis, Andrew R. Rickard, Kelly L. Pereira, Sandra M. Saunders, Xinming Wang, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 18, 4673–4693, https://doi.org/10.5194/acp-18-4673-2018, https://doi.org/10.5194/acp-18-4673-2018, 2018
Short summary
Short summary
Native to Australasia, the remarkable adaptability, rapid growth rates and high quality wood of eucalypt trees has led to them the most widely planted hardwood forest trees in the world. In contrast to boreal and tropical forests, there has been little study of aerosol formation in these regions. Here, we study the secondary organic aerosol formation from the very fast reaction of α-phellandrene, emitted from eucalypts, and identify key products and reaction pathways.
Riinu Ots, Mathew R. Heal, Dominique E. Young, Leah R. Williams, James D. Allan, Eiko Nemitz, Chiara Di Marco, Anais Detournay, Lu Xu, Nga L. Ng, Hugh Coe, Scott C. Herndon, Ian A. Mackenzie, David C. Green, Jeroen J. P. Kuenen, Stefan Reis, and Massimo Vieno
Atmos. Chem. Phys., 18, 4497–4518, https://doi.org/10.5194/acp-18-4497-2018, https://doi.org/10.5194/acp-18-4497-2018, 2018
Short summary
Short summary
The main hypothesis of this paper is that people who live in large cities in the UK disobey the
smoke control lawas it has not been actively enforced for decades now. However, the use of wood in residential heating has increased, partly due to renewable energy targets, but also for discretionary (i.e. pleasant fireplaces) reasons. Our study is based mainly in London, but similar struggles with urban air quality due to residential wood and coal burning are seen in other major European cities.
James D. Lee, Stephen D. Mobbs, Axel Wellpott, Grant Allen, Stephane J.-B. Bauguitte, Ralph R. Burton, Richard Camilli, Hugh Coe, Rebecca E. Fisher, James L. France, Martin Gallagher, James R. Hopkins, Mathias Lanoiselle, Alastair C. Lewis, David Lowry, Euan G. Nisbet, Ruth M. Purvis, Sebastian O'Shea, John A. Pyle, and Thomas B. Ryerson
Atmos. Meas. Tech., 11, 1725–1739, https://doi.org/10.5194/amt-11-1725-2018, https://doi.org/10.5194/amt-11-1725-2018, 2018
Short summary
Short summary
This work describes measurements, made from an aircraft platform, of the emission of methane and other organic gases from an uncontrolled leak from an oil platform in the North Sea (Total Elgin). The measurements made helped the platform operators to devise a strategy for repairing the leak and serve as a methodology for assessing future similar incidents.
Jacob T. Shaw, Richard T. Lidster, Danny R. Cryer, Noelia Ramirez, Fiona C. Whiting, Graham A. Boustead, Lisa K. Whalley, Trevor Ingham, Andrew R. Rickard, Rachel E. Dunmore, Dwayne E. Heard, Ally C. Lewis, Lucy J. Carpenter, Jacqui F. Hamilton, and Terry J. Dillon
Atmos. Chem. Phys., 18, 4039–4054, https://doi.org/10.5194/acp-18-4039-2018, https://doi.org/10.5194/acp-18-4039-2018, 2018
Short summary
Short summary
The lifetime of a chemical in the atmosphere is largely governed by the rate of its reaction with the hydroxyl radical (OH). Measurements of rates for many of the thousands of identified volatile organic compounds (VOCs) have yet to be determined experimentally. We have developed a new technique for the rapid determination of gas-phase rate coefficients for the simultaneous reactions between multiple VOCs and OH. The method is tasted across a range of scenarios and is used to derive new values.
Daniel Stone, Tomás Sherwen, Mathew J. Evans, Stewart Vaughan, Trevor Ingham, Lisa K. Whalley, Peter M. Edwards, Katie A. Read, James D. Lee, Sarah J. Moller, Lucy J. Carpenter, Alastair C. Lewis, and Dwayne E. Heard
Atmos. Chem. Phys., 18, 3541–3561, https://doi.org/10.5194/acp-18-3541-2018, https://doi.org/10.5194/acp-18-3541-2018, 2018
Short summary
Short summary
Halogen chemistry in the troposphere impacts oxidising capacity, but model studies assessing the nature of these impacts can vary according to the model framework used. In this work we present simulations of OH and HO2 radicals using both box and global model frameworks, and compare to observations made at the Cape Verde Atmospheric Observatory. We highlight, and rationalise, differences between the model frameworks.
Lisa K. Whalley, Daniel Stone, Rachel Dunmore, Jacqueline Hamilton, James R. Hopkins, James D. Lee, Alastair C. Lewis, Paul Williams, Jörg Kleffmann, Sebastian Laufs, Robert Woodward-Massey, and Dwayne E. Heard
Atmos. Chem. Phys., 18, 2547–2571, https://doi.org/10.5194/acp-18-2547-2018, https://doi.org/10.5194/acp-18-2547-2018, 2018
Short summary
Short summary
This paper presents the first radical observations made in London and subsequent model comparisons. This work highlights that there are uncertainties in the degradation mechanism of complex biogenic and diesel-related VOC species under low-NOx conditions and under high-NOx conditions there is a missing source of RO2 radicals. The impact of these model uncertainties on in situ ozone production as a function of NOx is discussed.
Ben Langford, James Cash, W. Joe F. Acton, Amy C. Valach, C. Nicholas Hewitt, Silvano Fares, Ignacio Goded, Carsten Gruening, Emily House, Athina-Cerise Kalogridis, Valérie Gros, Richard Schafers, Rick Thomas, Mark Broadmeadow, and Eiko Nemitz
Biogeosciences, 14, 5571–5594, https://doi.org/10.5194/bg-14-5571-2017, https://doi.org/10.5194/bg-14-5571-2017, 2017
Short summary
Short summary
Isoprene flux measurements made above five European oak forests were reviewed to generate new emission potentials. Six variations of the Guenther algorithms were inverted to back out time series of isoprene emission potential, and then an “average” emission potential was determined using one of four commonly used approaches. Our results show that emission potentials can vary by up to a factor of 4 and highlight the need for the community to now harmonize their approach to reduce uncertainty.
Andrea Móring, Massimo Vieno, Ruth M. Doherty, Celia Milford, Eiko Nemitz, Marsailidh M. Twigg, László Horváth, and Mark A. Sutton
Biogeosciences, 14, 4161–4193, https://doi.org/10.5194/bg-14-4161-2017, https://doi.org/10.5194/bg-14-4161-2017, 2017
Short summary
Short summary
This study describes and evaluates a new ammonia (NH3) exchange model for grazed fields (GAG_field). GAG_field is able to simulate the main features of the observed NH3 fluxes. A sensitivity analysis for the non-meteorological model parameters showed that the sensitivity of the NH3 fluxes to a parameter varies among urine patches. Moreover, the fluxes modelled with a dynamic soil pH are similar if a constant pH 7.5 is used, suggesting a useful simplification for regional-scale model application.
Stephanie K. Jones, Carole Helfter, Margaret Anderson, Mhairi Coyle, Claire Campbell, Daniela Famulari, Chiara Di Marco, Netty van Dijk, Y. Sim Tang, Cairistiona F. E. Topp, Ralf Kiese, Reimo Kindler, Jan Siemens, Marion Schrumpf, Klaus Kaiser, Eiko Nemitz, Peter E. Levy, Robert M. Rees, Mark A. Sutton, and Ute M. Skiba
Biogeosciences, 14, 2069–2088, https://doi.org/10.5194/bg-14-2069-2017, https://doi.org/10.5194/bg-14-2069-2017, 2017
Short summary
Short summary
We assessed the nitrogen (N), carbon (C) and greenhouse gas (GHG) budget from an intensively managed grassland in southern Scotland using flux budget calculations as well as changes in soil N and C pools over time. Estimates from flux budget calculations indicated that N and C were sequestered, whereas soil stock measurements indicated a smaller N storage and a loss of C from the ecosystem. The GHG sink strength of the net CO2 ecosystem exchange was strongly affected by CH4 and N2O emissions.
Chris Reed, Mathew J. Evans, Leigh R. Crilley, William J. Bloss, Tomás Sherwen, Katie A. Read, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 17, 4081–4092, https://doi.org/10.5194/acp-17-4081-2017, https://doi.org/10.5194/acp-17-4081-2017, 2017
Short summary
Short summary
The source of ozone-depleting compounds in the remote troposphere has been thought to be long-range transport of secondary pollutants such as organic nitrates. Processing of organic nitrates to nitric acid and subsequent deposition on surfaces in the atmosphere was thought to remove these nitrates from the ozone–NOx–HOx cycle. We found through observation of NOx in the remote tropical troposphere at the Cape Verde Observatory that surface nitrates can be released back into the atmosphere.
Eleonora Aruffo, Fabio Biancofiore, Piero Di Carlo, Marcella Busilacchio, Marco Verdecchia, Barbara Tomassetti, Cesare Dari-Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen J. Andrews, Alistair C. Lewis, Paul I. Palmer, Edward Hyer, Michael Le Breton, and Carl Percival
Atmos. Meas. Tech., 9, 5591–5606, https://doi.org/10.5194/amt-9-5591-2016, https://doi.org/10.5194/amt-9-5591-2016, 2016
Short summary
Short summary
During the BORTAS aircraft campaign, we measured NO2 and their oxidtation products (as peroxy nitrates) with a custom laser-induced fluorescence instrument. Because of the high correlation between known pyrogenic tracers (i.e., carbon monoxide) and peroxy nitrates, we provide two methods to use these species for the identification of biomass burning (BB) plumes. Using an artifical neural network, we improved the BB identification taking into account of a meteorological parameter (pressure).
Riinu Ots, Massimo Vieno, James D. Allan, Stefan Reis, Eiko Nemitz, Dominique E. Young, Hugh Coe, Chiara Di Marco, Anais Detournay, Ian A. Mackenzie, David C. Green, and Mathew R. Heal
Atmos. Chem. Phys., 16, 13773–13789, https://doi.org/10.5194/acp-16-13773-2016, https://doi.org/10.5194/acp-16-13773-2016, 2016
Short summary
Short summary
Emissions of cooking organic aerosol (COA; from charbroiling, frying, etc.) are currently absent in European emissions inventories yet measurements have pointed to significant COA concentrations. In this study, emissions of COA were developed for the UK by model iteration against year-long measurements at two sites in London. Modelled COA dropped rapidly outside of major urban areas, suggesting that although a notable component in UK urban air, COA does not have a significant effect on rural PM.
Stephen J. Andrews, Lucy J. Carpenter, Eric C. Apel, Elliot Atlas, Valeria Donets, James R. Hopkins, Rebecca S. Hornbrook, Alastair C. Lewis, Richard T. Lidster, Richard Lueb, Jamie Minaeian, Maria Navarro, Shalini Punjabi, Daniel Riemer, and Sue Schauffler
Atmos. Meas. Tech., 9, 5213–5225, https://doi.org/10.5194/amt-9-5213-2016, https://doi.org/10.5194/amt-9-5213-2016, 2016
Short summary
Short summary
We present a comparison of aircraft measurements of important trace gases from a co-ordinated campaign in Jan–Feb 2014 in the tropical west Pacific involving the NASA Global Hawk, NCAR GV and FAAM BAe-146 aircraft.
The paper studies the comparability of separate measurements across platforms and demonstrates that aircraft measurements are relevant for characterising the vertical uplift of important gases, such as those with ozone-depleting potential, to the upper troposphere–lower stratosphere.
Marsailidh M. Twigg, Evgenia Ilyinskaya, Sonya Beccaceci, David C. Green, Matthew R. Jones, Ben Langford, Sarah R. Leeson, Justin J. N. Lingard, Gloria M. Pereira, Heather Carter, Jan Poskitt, Andreas Richter, Stuart Ritchie, Ivan Simmons, Ron I. Smith, Y. Sim Tang, Netty Van Dijk, Keith Vincent, Eiko Nemitz, Massimo Vieno, and Christine F. Braban
Atmos. Chem. Phys., 16, 11415–11431, https://doi.org/10.5194/acp-16-11415-2016, https://doi.org/10.5194/acp-16-11415-2016, 2016
Short summary
Short summary
This study integrates high and low resolution temporal measurements to assess the impact of the Holuhraun effusive eruption in 2014 across the UK. Measurements, modelling and satellite analysis provides details on the transport and chemistry of both gases and particulates during this unique event. The results of the study can be used verify existing atmospheric chemistry models of volcano plumes in order to carry improved risk assessments for future volcanic eruptions.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Carole Helfter, Anja H. Tremper, Christoforos H. Halios, Simone Kotthaus, Alex Bjorkegren, C. Sue B. Grimmond, Janet F. Barlow, and Eiko Nemitz
Atmos. Chem. Phys., 16, 10543–10557, https://doi.org/10.5194/acp-16-10543-2016, https://doi.org/10.5194/acp-16-10543-2016, 2016
Short summary
Short summary
There are relatively few long-term, direct measurements of pollutant emissions in urban settings. We present over 3 years of measurements of fluxes of CO, CO2 and CH4, study their respective temporal and spatial dynamics and offer an independent verification of the London Atmospheric Emissions Inventory. CO and CO2 were strongly controlled by traffic and well characterised by the inventory whilst measured CH4 was two-fold larger and linked to natural gas usage and perhaps biogenic sources.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
Matthew J. Alvarado, Chantelle R. Lonsdale, Helen L. Macintyre, Huisheng Bian, Mian Chin, David A. Ridley, Colette L. Heald, Kenneth L. Thornhill, Bruce E. Anderson, Michael J. Cubison, Jose L. Jimenez, Yutaka Kondo, Lokesh K. Sahu, Jack E. Dibb, and Chien Wang
Atmos. Chem. Phys., 16, 9435–9455, https://doi.org/10.5194/acp-16-9435-2016, https://doi.org/10.5194/acp-16-9435-2016, 2016
Short summary
Short summary
Understanding the scattering and absorption of light by aerosols is necessary for understanding air quality and climate change. We used data from the 2008 ARCTAS campaign to evaluate aerosol optical property models using a closure methodology that separates errors in these models from other errors in aerosol emissions, chemistry, or transport. We find that the models on average perform reasonably well, and make suggestions for how remaining biases could be reduced.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
W. Joe F. Acton, Simon Schallhart, Ben Langford, Amy Valach, Pekka Rantala, Silvano Fares, Giulia Carriero, Ralf Tillmann, Sam J. Tomlinson, Ulrike Dragosits, Damiano Gianelle, C. Nicholas Hewitt, and Eiko Nemitz
Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, https://doi.org/10.5194/acp-16-7149-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) represent a large source of reactive carbon in the atmosphere and hence have a significant impact on air quality. It is therefore important that we can accurately quantify their emission. In this paper we use three methods to determine the fluxes of reactive VOCs from a woodland canopy. We show that two different canopy-scale measurement methods give good agreement, whereas estimates based on leaf-level-based emission underestimate isoprene fluxes.
Chris Reed, Charlotte A. Brumby, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Paul W. Seakins, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 9, 2483–2495, https://doi.org/10.5194/amt-9-2483-2016, https://doi.org/10.5194/amt-9-2483-2016, 2016
Short summary
Short summary
A new method of measuring nitrous acid (HONO), a potent mediator of air quality in the atmosphere as well as an important indoor pollutant, is presented. The new method relies on simple, proven techniques already widely applied to other atmospheric compounds. The technique can be retrofitted to existing analysers at minimal cost, or developed into instruments capable of very fast measurement which allow for more complex analysis of the behaviour of HONO.
Riinu Ots, Dominique E. Young, Massimo Vieno, Lu Xu, Rachel E. Dunmore, James D. Allan, Hugh Coe, Leah R. Williams, Scott C. Herndon, Nga L. Ng, Jacqueline F. Hamilton, Robert Bergström, Chiara Di Marco, Eiko Nemitz, Ian A. Mackenzie, Jeroen J. P. Kuenen, David C. Green, Stefan Reis, and Mathew R. Heal
Atmos. Chem. Phys., 16, 6453–6473, https://doi.org/10.5194/acp-16-6453-2016, https://doi.org/10.5194/acp-16-6453-2016, 2016
Short summary
Short summary
This study investigates the contribution of diesel vehicle emissions to organic aerosol formation and particulate matter concentrations in London. Comparisons of simulated pollutant concentrations with observations show good agreement and give confidence in the skill of the model applied. The contribution of diesel vehicle emissions, which are currently not included in official emissions inventories, is demonstrated to be substantial, indicating that more research on this topic is required.
Hannah Sonderfeld, Iain R. White, Iain C. A. Goodall, James R. Hopkins, Alastair C. Lewis, Ralf Koppmann, and Paul S. Monks
Atmos. Chem. Phys., 16, 6303–6318, https://doi.org/10.5194/acp-16-6303-2016, https://doi.org/10.5194/acp-16-6303-2016, 2016
Short summary
Short summary
Unknown sinks of OH and oxidation processes in the atmosphere have been attributed to what has been termed "missing" OH reactivity. Often overlooked are the differences in timescales over which the diverse measurement techniques operate. The effect of the sampling time and thus the contribution of unmeasured VOC variability on OH reactivity is investigated.
Rebecca M. McKenzie, Mustafa Z. Özel, J. Neil Cape, Julia Drewer, Kerry J. Dinsmore, Eiko Nemitz, Y. Sim Tang, Netty van Dijk, Margaret Anderson, Jacqueline F. Hamilton, Mark A. Sutton, Martin W. Gallagher, and Ute Skiba
Biogeosciences, 13, 2353–2365, https://doi.org/10.5194/bg-13-2353-2016, https://doi.org/10.5194/bg-13-2353-2016, 2016
Short summary
Short summary
Dissolved organic nitrogen (DON) contributes significantly to the overall nitrogen budget and can potentially be biologically available as a source of N. Despite this it is not routinely measured. This study found that DON contributed up to 10 % of the total dissolved nitrogen (TDN) found in precipitation and was the most dominant fraction in soil water (99 %) and stream water (75 %).
Chris Reed, Mathew J. Evans, Piero Di Carlo, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 16, 4707–4724, https://doi.org/10.5194/acp-16-4707-2016, https://doi.org/10.5194/acp-16-4707-2016, 2016
Short summary
Short summary
The self-cleaning capacity of the atmosphere in places like Antarctica can be measured by quantifying very low amounts of combustion products that exist in a well-known ratio. When this ratio deviates from 1 it points to the existence of unknown compounds. Several unknown compounds have been theorized to exist but never measured. We have found the method for measuring the ratio of combustion products suffers a bias in remote places, which when taken into account disproves any unknown compounds.
Marcella Busilacchio, Piero Di Carlo, Eleonora Aruffo, Fabio Biancofiore, Cesare Dari Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen Andrews, Alistair C. Lewis, Mark Parrington, Paul I. Palmer, Edward Hyer, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 3485–3497, https://doi.org/10.5194/acp-16-3485-2016, https://doi.org/10.5194/acp-16-3485-2016, 2016
Short summary
Short summary
Boreal fire emissions have little effect on ozone concentrations but evident impact on some NOx reservoirs as peroxy nitrates that we quantified. This should be taken into account since NOx reservoirs can be efficiently transported and may influence the ozone budget far away from the fire emission.
The study is based on observations carried out on board the BAe 146 aircraft during BORTAS in Canada. We used a custom laser-induced fluorescence system to measure NO2 and NOx reservoirs.
J. D. Lee, L. K. Whalley, D. E. Heard, D. Stone, R. E. Dunmore, J. F. Hamilton, D. E. Young, J. D. Allan, S. Laufs, and J. Kleffmann
Atmos. Chem. Phys., 16, 2747–2764, https://doi.org/10.5194/acp-16-2747-2016, https://doi.org/10.5194/acp-16-2747-2016, 2016
Short summary
Short summary
This paper presents field measurements of HONO and a range of other gas phase and particulate species from an urban background site in London. The measured daytime HONO cannot be reproduced with a simple box model and thus a significant daytime missing source of HONO is present. We show that this missing source could be responsible for 40 % of the OH radical source and 57 % of the OH initiation; hence its potential importance for atmospheric oxidation and ozone production.
Lisa K. Whalley, Daniel Stone, Brian Bandy, Rachel Dunmore, Jacqueline F. Hamilton, James Hopkins, James D. Lee, Alastair C. Lewis, and Dwayne E. Heard
Atmos. Chem. Phys., 16, 2109–2122, https://doi.org/10.5194/acp-16-2109-2016, https://doi.org/10.5194/acp-16-2109-2016, 2016
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
M. E. Jenkin, J. C. Young, and A. R. Rickard
Atmos. Chem. Phys., 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, https://doi.org/10.5194/acp-15-11433-2015, 2015
Short summary
Short summary
Atmospheric isoprene oxidation has an important effect on the formation of pollutants such as ozone and particles. A reliable representation is an essential component of climate change/air quality models. Systematic updates to the detailed chemistry in the MCM are described, with reference to recently reported kinetic/mechanistic data. Results of box model calculations are used to illustrate the impacts of the updates, with particular focus on the key atmospheric cycles involving HOx and NOx.
B. Langford, W. Acton, C. Ammann, A. Valach, and E. Nemitz
Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, https://doi.org/10.5194/amt-8-4197-2015, 2015
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
R. E. Dunmore, J. R. Hopkins, R. T. Lidster, J. D. Lee, M. J. Evans, A. R. Rickard, A. C. Lewis, and J. F. Hamilton
Atmos. Chem. Phys., 15, 9983–9996, https://doi.org/10.5194/acp-15-9983-2015, https://doi.org/10.5194/acp-15-9983-2015, 2015
Short summary
Short summary
Technological shifts between fuel sources have had unexpected impacts on atmospheric composition and these significant changes can go undetected if source-specific monitoring infrastructure is not in place. We present chemically comprehensive, continuous measurements of organic compounds in a developed megacity (London), that show diesel-related hydrocarbons can dominate reactive carbon and ozone formation potential, highlighting a serious underestimation of this source in emission inventories.
J. G. Levine, A. R. MacKenzie, O. J. Squire, A. T. Archibald, P. T. Griffiths, N. L. Abraham, J. A. Pyle, D. E. Oram, G. Forster, J. F. Brito, J. D. Lee, J. R. Hopkins, A. C. Lewis, S. J. B. Bauguitte, C. F. Demarco, P. Artaxo, P. Messina, J. Lathière, D. A. Hauglustaine, E. House, C. N. Hewitt, and E. Nemitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-24251-2015, https://doi.org/10.5194/acpd-15-24251-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
This study explores our ability to simulate atmospheric chemistry stemming from isoprene emissions—a reactive gas emitted from vegetation—in pristine and polluted regions of the Amazon basin. We explore how two contrasting models fare in reproducing recent airborne measurements in the region. Their differing treatments of transport and mixing are found to: profoundly affect their performance; and yield very different pictures of the exposure of the rainforest to harmful ozone concentrations.
M. J. Newland, A. R. Rickard, L. Vereecken, A. Muñoz, M. Ródenas, and W. J. Bloss
Atmos. Chem. Phys., 15, 9521–9536, https://doi.org/10.5194/acp-15-9521-2015, https://doi.org/10.5194/acp-15-9521-2015, 2015
Short summary
Short summary
Stabilised Criegee intermediates (SCIs) are formed through alkene-ozone reactions, which occur throughout the atmospheric boundary layer. Recent direct laboratory studies have shown that SCI react rapidly with SO2, NO2 and other trace gases, affecting air quality and climate. We present experimental data from the EUPHORE atmospheric simulation chamber, in which we determine the effects of the ozonolysis of isoprene, on the oxidation of SO2 as a function of H2O and dimethyl sulfide concentration.
S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni
Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, https://doi.org/10.5194/acp-15-8217-2015, 2015
Short summary
Short summary
Particulate matter (PM) constitutes one of the most challenging problems both for air quality and climate change policies. This paper reviews the most recent scientific results on the issue and the policy needs that have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-PM interactions and the effects of PM on human health and the environment.
H. M. Walker, D. Stone, T. Ingham, S. Vaughan, M. Cain, R. L. Jones, O. J. Kennedy, M. McLeod, B. Ouyang, J. Pyle, S. Bauguitte, B. Bandy, G. Forster, M. J. Evans, J. F. Hamilton, J. R. Hopkins, J. D. Lee, A. C. Lewis, R. T. Lidster, S. Punjabi, W. T. Morgan, and D. E. Heard
Atmos. Chem. Phys., 15, 8179–8200, https://doi.org/10.5194/acp-15-8179-2015, https://doi.org/10.5194/acp-15-8179-2015, 2015
M. M. Twigg, C. F. Di Marco, S. Leeson, N. van Dijk, M. R. Jones, I. D. Leith, E. Morrison, M. Coyle, R. Proost, A. N. M. Peeters, E. Lemon, T. Frelink, C. F. Braban, E. Nemitz, and J. N. Cape
Atmos. Chem. Phys., 15, 8131–8145, https://doi.org/10.5194/acp-15-8131-2015, https://doi.org/10.5194/acp-15-8131-2015, 2015
Short summary
Short summary
Hourly inorganic composition of UK background particulate matter (PM10 and PM2.5) has been studied for a 6.5-year period at Auchencorth Moss, Scotland. Long-range transport of both anthropogenic secondary and natural primary PM is observed, driven primarily by meteorology. The importance of nitrate, sulfate and ammonium during pollution events in the UK is demonstrated.
K. P. Wyche, P. S. Monks, K. L. Smallbone, J. F. Hamilton, M. R. Alfarra, A. R. Rickard, G. B. McFiggans, M. E. Jenkin, W. J. Bloss, A. C. Ryan, C. N. Hewitt, and A. R. MacKenzie
Atmos. Chem. Phys., 15, 8077–8100, https://doi.org/10.5194/acp-15-8077-2015, https://doi.org/10.5194/acp-15-8077-2015, 2015
Short summary
Short summary
This paper describes a new ensemble methodology for the statistical analysis of atmospheric gas- & particle-phase composition data sets. The methodology reduces the huge amount of data derived from many chamber experiments to show that organic reactivity & resultant particle formation can be mapped into unique clusters in statistical space. The model generated is used to map more realistic plant mesocosm oxidation data, the projection of which gives insight into reactive pathways & precursors.
A. C. Valach, B. Langford, E. Nemitz, A. R. MacKenzie, and C. N. Hewitt
Atmos. Chem. Phys., 15, 7777–7796, https://doi.org/10.5194/acp-15-7777-2015, https://doi.org/10.5194/acp-15-7777-2015, 2015
Short summary
Short summary
Concentrations and fluxes of selected volatile organic compounds were measured over a 5-month period in central London as part of the ClearfLo project using a proton transfer reaction mass spectrometer. Emission sources within the city were inferred from spatio-temporal patterns and showed a detectable biogenic source during warmer months, which was modelled using the Guenther 95 algorithm. Comparisons were made with the local emissions inventories showing mostly underestimated emissions.
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015, https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Short summary
The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements was assessed with respect to ACTRIS and GAW data quality objectives. The participants were asked to measure both a 30-component NMHC mixture in nitrogen and whole air. The NMHCs were analysed either by GC-FID or GC-MS. Most systems performed well for the NMHC in nitrogen, whereas in air more scatter was observed. Reasons for this are explained in the paper.
M. D. Shaw, J. D. Lee, B. Davison, A. Vaughan, R. M. Purvis, A. Harvey, A. C. Lewis, and C. N. Hewitt
Atmos. Chem. Phys., 15, 5083–5097, https://doi.org/10.5194/acp-15-5083-2015, https://doi.org/10.5194/acp-15-5083-2015, 2015
Short summary
Short summary
This paper presents the first highly spatially resolved simultaneous mixing ratios of VOCs, NOx and O3 in the atmospheric boundary layer above Greater London (UK) using an research aircraft. Average mixing ratios measured at 360±10 m agl over outer London were always lower than over inner London, indicative of strong local vehicular sources. The comparison of airborne mixing ratio with LAQN air quality ground monitoring stations suggests that the mixing ratios were characteristic of the surface.
L. R. Crilley, W. J. Bloss, J. Yin, D. C. S. Beddows, R. M. Harrison, J. D. Allan, D. E. Young, M. Flynn, P. Williams, P. Zotter, A. S. H. Prevot, M. R. Heal, J. F. Barlow, C. H. Halios, J. D. Lee, S. Szidat, and C. Mohr
Atmos. Chem. Phys., 15, 3149–3171, https://doi.org/10.5194/acp-15-3149-2015, https://doi.org/10.5194/acp-15-3149-2015, 2015
Short summary
Short summary
Wood is a renewable fuel but its combustion for residential heating releases a number of locally acting air pollutants, most notably particulate matter known to have adverse effects on human health. This paper used chemical tracers for wood smoke to estimate the contribution that burning wood makes to concentrations of airborne particles in the atmosphere of southern England and most particularly in London.
C. Helfter, C. Campbell, K. J. Dinsmore, J. Drewer, M. Coyle, M. Anderson, U. Skiba, E. Nemitz, M. F. Billett, and M. A. Sutton
Biogeosciences, 12, 1799–1811, https://doi.org/10.5194/bg-12-1799-2015, https://doi.org/10.5194/bg-12-1799-2015, 2015
Short summary
Short summary
The CO2 sink strength of a temperate peatland in SE Scotland exhibited large inter-annual variability which was well-correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating a phenological memory effect. Autotrophic respiration is thought to be dominant, but heterotrophic processes might have been enhanced during dry spells increasing the loss of CO2 to the atmosphere.
J. W. Taylor, J. D. Allan, G. Allen, H. Coe, P. I. Williams, M. J. Flynn, M. Le Breton, J. B. A. Muller, C. J. Percival, D. Oram, G. Forster, J. D. Lee, A. R. Rickard, M. Parrington, and P. I. Palmer
Atmos. Chem. Phys., 14, 13755–13771, https://doi.org/10.5194/acp-14-13755-2014, https://doi.org/10.5194/acp-14-13755-2014, 2014
Short summary
Short summary
We present a case study of BC wet removal by examining aerosol properties in three biomass burning plumes, one of which passed through a precipitating cloud. Nucleation scavenging preferentially removed the largest and most coated BC-containing particles. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume.
G. Allen, S. M. Illingworth, S. J. O'Shea, S. Newman, A. Vance, S. J.-B. Bauguitte, F. Marenco, J. Kent, K. Bower, M. W. Gallagher, J. Muller, C. J. Percival, C. Harlow, J. Lee, and J. P. Taylor
Atmos. Meas. Tech., 7, 4401–4416, https://doi.org/10.5194/amt-7-4401-2014, https://doi.org/10.5194/amt-7-4401-2014, 2014
Short summary
Short summary
This paper presents a validated method and data set for new retrievals of trace gas concentrations and temperature from the ARIES infrared spectrometer instrument on the UK Atmospheric Research Aircraft (www.faam.ac.uk). This new capability for the aircraft will allow new science to be done because of the way it can sense information about the atmosphere without having to physically pass through it (remote sensing). This will allow us to better understand the make-up of the lower atmosphere.
K. P. Wyche, A. C. Ryan, C. N. Hewitt, M. R. Alfarra, G. McFiggans, T. Carr, P. S. Monks, K. L. Smallbone, G. Capes, J. F. Hamilton, T. A. M. Pugh, and A. R. MacKenzie
Atmos. Chem. Phys., 14, 12781–12801, https://doi.org/10.5194/acp-14-12781-2014, https://doi.org/10.5194/acp-14-12781-2014, 2014
J. D. Allan, W. T. Morgan, E. Darbyshire, M. J. Flynn, P. I. Williams, D. E. Oram, P. Artaxo, J. Brito, J. D. Lee, and H. Coe
Atmos. Chem. Phys., 14, 11393–11407, https://doi.org/10.5194/acp-14-11393-2014, https://doi.org/10.5194/acp-14-11393-2014, 2014
C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière
Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, https://doi.org/10.5194/acp-14-10085-2014, 2014
D. Liu, J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, A. S. H. Prevot, J. W. Taylor, J. Yin, P. I. Williams, and P. Zotter
Atmos. Chem. Phys., 14, 10061–10084, https://doi.org/10.5194/acp-14-10061-2014, https://doi.org/10.5194/acp-14-10061-2014, 2014
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
J. E. Franklin, J. R. Drummond, D. Griffin, J. R. Pierce, D. L. Waugh, P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, J. W. Taylor, J. D. Allan, H. Coe, K. A. Walker, L. Chisholm, T. J. Duck, J. T. Hopper, Y. Blanchard, M. D. Gibson, K. R. Curry, K. M. Sakamoto, G. Lesins, L. Dan, J. Kliever, and A. Saha
Atmos. Chem. Phys., 14, 8449–8460, https://doi.org/10.5194/acp-14-8449-2014, https://doi.org/10.5194/acp-14-8449-2014, 2014
R. T. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, J. R. Hopkins, S. Punjabi, A. R. Rickard, and J. C. Young
Atmos. Chem. Phys., 14, 6677–6693, https://doi.org/10.5194/acp-14-6677-2014, https://doi.org/10.5194/acp-14-6677-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
O. Peltola, A. Hensen, C. Helfter, L. Belelli Marchesini, F. C. Bosveld, W. C. M. van den Bulk, J. A. Elbers, S. Haapanala, J. Holst, T. Laurila, A. Lindroth, E. Nemitz, T. Röckmann, A. T. Vermeulen, and I. Mammarella
Biogeosciences, 11, 3163–3186, https://doi.org/10.5194/bg-11-3163-2014, https://doi.org/10.5194/bg-11-3163-2014, 2014
K. L. Pereira, J. F. Hamilton, A. R. Rickard, W. J. Bloss, M. S. Alam, M. Camredon, A. Muñoz, M. Vázquez, E. Borrás, and M. Ródenas
Atmos. Chem. Phys., 14, 5349–5368, https://doi.org/10.5194/acp-14-5349-2014, https://doi.org/10.5194/acp-14-5349-2014, 2014
N. Niedermeier, A. Held, T. Müller, B. Heinold, K. Schepanski, I. Tegen, K. Kandler, M. Ebert, S. Weinbruch, K. Read, J. Lee, K. W. Fomba, K. Müller, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 14, 2245–2266, https://doi.org/10.5194/acp-14-2245-2014, https://doi.org/10.5194/acp-14-2245-2014, 2014
D. Stone, M. J. Evans, H. Walker, T. Ingham, S. Vaughan, B. Ouyang, O. J. Kennedy, M. W. McLeod, R. L. Jones, J. Hopkins, S. Punjabi, R. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, L. J. Carpenter, G. Forster, D. E. Oram, C. E. Reeves, S. Bauguitte, W. Morgan, H. Coe, E. Aruffo, C. Dari-Salisburgo, F. Giammaria, P. Di Carlo, and D. E. Heard
Atmos. Chem. Phys., 14, 1299–1321, https://doi.org/10.5194/acp-14-1299-2014, https://doi.org/10.5194/acp-14-1299-2014, 2014
X. Pang, A. C. Lewis, A. R. Rickard, M. T. Baeza-Romero, T. J. Adams, S. M. Ball, M. J. S. Daniels, I. C. A. Goodall, P. S. Monks, S. Peppe, M. Ródenas García, P. Sánchez, and A. Muñoz
Atmos. Meas. Tech., 7, 373–389, https://doi.org/10.5194/amt-7-373-2014, https://doi.org/10.5194/amt-7-373-2014, 2014
O. J. Squire, A. T. Archibald, N. L. Abraham, D. J. Beerling, C. N. Hewitt, J. Lathière, R. C. Pike, P. J. Telford, and J. A. Pyle
Atmos. Chem. Phys., 14, 1011–1024, https://doi.org/10.5194/acp-14-1011-2014, https://doi.org/10.5194/acp-14-1011-2014, 2014
M. R. Alfarra, N. Good, K. P. Wyche, J. F. Hamilton, P. S. Monks, A. C. Lewis, and G. McFiggans
Atmos. Chem. Phys., 13, 11769–11789, https://doi.org/10.5194/acp-13-11769-2013, https://doi.org/10.5194/acp-13-11769-2013, 2013
J. F. Hamilton, M. R. Alfarra, N. Robinson, M. W. Ward, A. C. Lewis, G. B. McFiggans, H. Coe, and J. D. Allan
Atmos. Chem. Phys., 13, 11295–11305, https://doi.org/10.5194/acp-13-11295-2013, https://doi.org/10.5194/acp-13-11295-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
P. M. Edwards, M. J. Evans, K. L. Furneaux, J. Hopkins, T. Ingham, C. Jones, J. D. Lee, A. C. Lewis, S. J. Moller, D. Stone, L. K. Whalley, and D. E. Heard
Atmos. Chem. Phys., 13, 9497–9514, https://doi.org/10.5194/acp-13-9497-2013, https://doi.org/10.5194/acp-13-9497-2013, 2013
N. J. Warwick, A. T. Archibald, K. Ashworth, J. Dorsey, P. M. Edwards, D. E. Heard, B. Langford, J. Lee, P. K. Misztal, L. K. Whalley, and J. A. Pyle
Atmos. Chem. Phys., 13, 9183–9194, https://doi.org/10.5194/acp-13-9183-2013, https://doi.org/10.5194/acp-13-9183-2013, 2013
J. Schmale, J. Schneider, E. Nemitz, Y. S. Tang, U. Dragosits, T. D. Blackall, P. N. Trathan, G. J. Phillips, M. Sutton, and C. F. Braban
Atmos. Chem. Phys., 13, 8669–8694, https://doi.org/10.5194/acp-13-8669-2013, https://doi.org/10.5194/acp-13-8669-2013, 2013
M. Parrington, P. I. Palmer, A. C. Lewis, J. D. Lee, A. R. Rickard, P. Di Carlo, J. W. Taylor, J. R. Hopkins, S. Punjabi, D. E. Oram, G. Forster, E. Aruffo, S. J. Moller, S. J.-B. Bauguitte, J. D. Allan, H. Coe, and R. J. Leigh
Atmos. Chem. Phys., 13, 7321–7341, https://doi.org/10.5194/acp-13-7321-2013, https://doi.org/10.5194/acp-13-7321-2013, 2013
C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton
Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, https://doi.org/10.5194/bg-10-5183-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
P. Di Carlo, E. Aruffo, M. Busilacchio, F. Giammaria, C. Dari-Salisburgo, F. Biancofiore, G. Visconti, J. Lee, S. Moller, C. E. Reeves, S. Bauguitte, G. Forster, R. L. Jones, and B. Ouyang
Atmos. Meas. Tech., 6, 971–980, https://doi.org/10.5194/amt-6-971-2013, https://doi.org/10.5194/amt-6-971-2013, 2013
J. T. Walker, M. R. Jones, J. O. Bash, L. Myles, T. Meyers, D. Schwede, J. Herrick, E. Nemitz, and W. Robarge
Biogeosciences, 10, 981–998, https://doi.org/10.5194/bg-10-981-2013, https://doi.org/10.5194/bg-10-981-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
A. C. Lewis, M. J. Evans, J. R. Hopkins, S. Punjabi, K. A. Read, R. M. Purvis, S. J. Andrews, S. J. Moller, L. J. Carpenter, J. D. Lee, A. R. Rickard, P. I. Palmer, and M. Parrington
Atmos. Chem. Phys., 13, 851–867, https://doi.org/10.5194/acp-13-851-2013, https://doi.org/10.5194/acp-13-851-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia
Experimental observation of the impact of nanostructure on hygroscopicity and reactivity of fatty acid atmospheric aerosol proxies
Technical note: High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 1: Continuous flow analysis of the SIGMA-D ice core using the wide-range Single-Particle Soot Photometer and a high-efficiency nebulizer
Particulate emissions from cooking: emission factors, emission dynamics, and mass spectrometric analysis for different cooking methods
Nocturnal atmospheric synergistic oxidation reduces the formation of low-volatility organic compounds from biogenic emissions
The interplay between aqueous replacement reaction and the phase state of internally mixed organic/ammonium aerosols
Measurement report: The Fifth International Workshop on Ice Nucleation phase 1 (FIN-01): intercomparison of single-particle mass spectrometers
Enhanced Sulfate Formation in Mixed Biomass Burning and Sea-salt Particles Mediated by Photosensitization: Effects of Chloride and Nitrogen-containing Compounds
Characterization of the particle size distribution, mineralogy, and Fe mode of occurrence of dust-emitting sediments from the Mojave Desert, California, USA
The lifetimes and potential change in planetary albedo owing to the oxidation of organic films extracted from atmospheric aerosol by hydroyxl (OH) radical oxidation at the air-water interface of aerosol particles
Atmospheric oxidation of 1,3-butadiene: influence of acidity and relative humidity on SOA composition and air toxic compounds
Measurement Report: Changes of ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice core record
Measurement report: Effects of transition metal ions on the optical properties of humic-like substances (HULIS) reveal a structural preference – a case study of PM2.5 in Beijing, China
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Probing Iceland's dust-emitting sediments: particle size distribution, mineralogy, cohesion, Fe mode of occurrence, and reflectance spectra signatures
Photoenhanced sulfate formation by the heterogeneous uptake of SO2 on non-photoactive mineral dust
Comparison of water-soluble and water-insoluble organic compositions attributing to different light absorption efficiency between residential coal and biomass burning emissions
Suppressed atmospheric chemical aging of cooking organic aerosol particles in wintertime conditions
Formation and loss of light absorbance by phenolic aqueous SOA by ●OH and an organic triplet excited state
Technical Note: A technique to convert NO2 to NO2− with S(IV) and its application to measuring nitrate photolysis
Distribution, chemical, and molecular composition of high and low molecular weight humic-like substances in ambient aerosols
Desorption lifetimes and activation energies influencing gas–surface interactions and multiphase chemical kinetics
Molecular analysis of secondary organic aerosol and brown carbon from the oxidation of indole
Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical composition and gas-to-particle phase partitioning
Assessment of the contribution of residential waste burning to ambient PM10 concentrations in Hungary and Romania
Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity
Chamber studies of OH + dimethyl sulfoxide and dimethyl disulfide: insights into the dimethyl sulfide oxidation mechanism
Low-temperature ice nucleation of sea spray and secondary marine aerosols under cirrus cloud conditions
Temperature-dependent aqueous OH kinetics of C2–C10 linear and terpenoid alcohols and diols: new rate coefficients, structure–activity relationship, and atmospheric lifetimes
A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides
Seasonal variations in photooxidant formation and light absorption in aqueous extracts of ambient particles
Variability in sediment particle size, mineralogy, and Fe mode of occurrence across dust-source inland drainage basins: the case of the lower Drâa Valley, Morocco
Gas–particle partitioning of toluene oxidation products: an experimental and modeling study
Chemically speciated air pollutant emissions from open burning of household solid waste from South Africa
Bulk and molecular-level composition of primary organic aerosol from wood, straw, cow dung, and plastic burning
Volatile oxidation products and secondary organosiloxane aerosol from D5 + OH at varying OH exposures
Molecular fingerprints and health risks of smoke from home-use incense burning
High enrichment of heavy metals in fine particulate matter through dust aerosol generation
Production of ice-nucleating particles (INPs) by fast-growing phytoplankton
Technical note: In situ measurements and modelling of the oxidation kinetics in films of a cooking aerosol proxy using a quartz crystal microbalance with dissipation monitoring (QCM-D)
Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism
Quantifying the seasonal variations in and regional transport of PM2.5 in the Yangtze River Delta region, China: characteristics, sources, and health risks
Opinion: Atmospheric multiphase chemistry – past, present, and future
Distinct photochemistry in glycine particles mixed with different atmospheric nitrate salts
Effects of storage conditions on the molecular-level composition of organic aerosol particles
Characterization of gas and particle emissions from open burning of household solid waste from South Africa
Chemically distinct particle-phase emissions from highly controlled pyrolysis of three wood types
Predicting photooxidant concentrations in aerosol liquid water based on laboratory extracts of ambient particles
Physicochemical characterization of free troposphere and marine boundary layer ice-nucleating particles collected by aircraft in the eastern North Atlantic
Large differences of highly oxygenated organic molecules (HOMs) and low-volatile species in secondary organic aerosols (SOAs) formed from ozonolysis of β-pinene and limonene
Si Zhang, Yining Gao, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 14177–14190, https://doi.org/10.5194/acp-24-14177-2024, https://doi.org/10.5194/acp-24-14177-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) from acetone photooxidation in the presence of various seeds were studied to illustrate SOA formation kinetics under ammonia-rich conditions. The oxidation mechanism of acetone was investigated using an observation-based model incorporating a Master Chemical Mechanism model. A higher SOA yield of acetone was observed compared to methylglyoxal due to an enhanced uptake of the small photooxidation products of acetone.
Adam Milsom, Adam M. Squires, Ben Laurence, Ben Wōden, Andrew J. Smith, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 24, 13571–13586, https://doi.org/10.5194/acp-24-13571-2024, https://doi.org/10.5194/acp-24-13571-2024, 2024
Short summary
Short summary
We followed nano-structural changes in mixtures found in urban organic aerosol emissions (oleic acid, sodium oleate and fructose) during humidity change and ozone exposure. We demonstrate that self-assembly of fatty acid nanostructures can impact water uptake and chemical reactivity, affecting atmospheric lifetimes, urban air quality (preventing harmful emissions from degradation and enabling their long-range transport) and climate (affecting cloud formation), with implications for human health.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Julia Pikmann, Frank Drewnick, Friederike Fachinger, and Stephan Borrmann
Atmos. Chem. Phys., 24, 12295–12321, https://doi.org/10.5194/acp-24-12295-2024, https://doi.org/10.5194/acp-24-12295-2024, 2024
Short summary
Short summary
Cooking activities can contribute substantially to indoor and ambient aerosol. We performed a comprehensive study with laboratory measurements cooking 19 different dishes and ambient measurements at two Christmas markets measuring various particle properties and trace gases of emissions in real time. Similar emission characteristics were observed for dishes with the same preparation method, mainly due to similar cooking temperature and use of oil, with barbecuing as an especially strong source.
Han Zang, Zekun Luo, Chenxi Li, Ziyue Li, Dandan Huang, and Yue Zhao
Atmos. Chem. Phys., 24, 11701–11716, https://doi.org/10.5194/acp-24-11701-2024, https://doi.org/10.5194/acp-24-11701-2024, 2024
Short summary
Short summary
Atmospheric organics are subject to synergistic oxidation by different oxidants, yet the mechanisms of such processes are poorly understood. Here, using direct measurements and kinetic modeling, we probe the nocturnal synergistic-oxidation mechanism of α-pinene by O3 and NO3 radicals and in particular the fate of peroxy radical intermediates of different origins, which will deepen our understanding of the monoterpene oxidation chemistry and its contribution to atmospheric particle formation.
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, and Yunhong Zhang
Atmos. Chem. Phys., 24, 11619–11635, https://doi.org/10.5194/acp-24-11619-2024, https://doi.org/10.5194/acp-24-11619-2024, 2024
Short summary
Short summary
Atmospheric secondary aerosols, composed of organic and inorganic components, undergo complex reactions that impact their phase state. Using molecular spectroscopy, we showed that ammonium-promoted aqueous replacement reaction, unique to these aerosols, is closely linked to phase behavior. The interplay between reactions and aerosol phase state can cause atypical phase transition and irreversible changes in aerosol composition during hygroscopic cycles, further impacting atmospheric processes.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2633, https://doi.org/10.5194/egusphere-2024-2633, 2024
Short summary
Short summary
This study provided laboratory evidence that the photosensitizers in biomass burning extracts can enhance the sulfate formation in NaCl particles, primarily by triggering the formation of secondary oxidants under light and air, with less contribution of direct photosensitization via triplets.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Rosalie Shepherd, Martin King, Andrew Ward, Edward Stuckey, Rebecca Welbourn, Neil Brough, Adam Milsom, Christian Pfrang, and Thomas Arnold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2367, https://doi.org/10.5194/egusphere-2024-2367, 2024
Short summary
Short summary
Thin film formation at the air-water interface from material extracted from atmospheric aerosol was demonstrated, supporting core-shell morphology. The film thicknesses were approximately 10 Å and 17 Å for urban and remote extracts. Exposure to gas-phase OH radicals showed fast reactions and short lifetimes of around 1 hour. The effect on the Earth's radiative balance indicated that removing half of the film could significantly increase the top of the atmosphere albedo for urban films.
Mohammed Jaoui, Klara Nestorowicz, Krzysztof Rudzinski, Michael Lewandowski, Tadeusz Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2032, https://doi.org/10.5194/egusphere-2024-2032, 2024
Short summary
Short summary
Recent research has established the contribution of 1,3-butadiene (13BD) to organic aerosol formation with negative implications to urban air quality. Health effects studies have focused on whole particulate matter but compounds responsible for adverse health effects remain uncertain. This study provides the effect of relative humidity and acidity on the chemical composition of aerosol formed from 13BD photooxidation.
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
EGUsphere, https://doi.org/10.5194/egusphere-2024-1381, https://doi.org/10.5194/egusphere-2024-1381, 2024
Short summary
Short summary
A record of ammonium covering the years 1750 to 2008 was extracted from a 182-meter-long ice core drilled in 2009 at Mt. Elbrus in the Caucasus, Russia. Changes in ammonia emissions in southeastern Europe during the pre-industrial and industrial periods were investigated. The level of ammonium in 1750 indicates a significant contribution of natural sources to the ammonia budget, contrasting with present-day conditions, where agricultural emissions outweigh those from biogenic sources in Europe.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1880, https://doi.org/10.5194/egusphere-2024-1880, 2024
Short summary
Short summary
The metabolic capacity of atmospheric microorganisms after settling into habitats is poorly understood. We studied the molecular composition of exometabolites for cultured typical airborne microbes and traced their metabolic processes. Bacteria and fungi produce highly oxidized exometabolite and have significant variations in metabolism among different strains. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, and Chong Han
Atmos. Chem. Phys., 24, 6757–6768, https://doi.org/10.5194/acp-24-6757-2024, https://doi.org/10.5194/acp-24-6757-2024, 2024
Short summary
Short summary
We provide evidence that light enhances the conversion of SO2 to sulfates on non-photoactive mineral dust, where triplet states of SO2 (3SO2) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H2O, O2, and basicity of mineral dust. The SO2 photochemistry on non-photoactive mineral dust contributes to sulfates, highlighting previously unknown pathways to better explain the missing sources of atmospheric sulfates.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Wenli Liu, Longkun He, Yingjun Liu, Keren Liao, Qi Chen, and Mikinori Kuwata
Atmos. Chem. Phys., 24, 5625–5636, https://doi.org/10.5194/acp-24-5625-2024, https://doi.org/10.5194/acp-24-5625-2024, 2024
Short summary
Short summary
Cooking is a major source of particles in urban areas. Previous studies demonstrated that the chemical lifetimes of cooking organic aerosols (COAs) were much shorter (~minutes) than the values reported by field observations (~hours). We conducted laboratory experiments to resolve the discrepancy by considering suppressed reactivity under low temperature. The parameterized k2–T relationships and observed surface temperature data were used to estimate the chemical lifetimes of COA particles.
Stephanie Arciva, Lan Ma, Camille Mavis, Chrystal Guzman, and Cort Anastasio
Atmos. Chem. Phys., 24, 4473–4485, https://doi.org/10.5194/acp-24-4473-2024, https://doi.org/10.5194/acp-24-4473-2024, 2024
Short summary
Short summary
We measured changes in light absorption during the aqueous oxidation of six phenols with hydroxyl radical (●OH) or an organic triplet excited state (3C*). All the phenols formed light-absorbing secondary brown carbon (BrC), which then decayed with continued oxidation. Extrapolation to ambient conditions suggest ●OH is the dominant sink of secondary phenolic BrC in fog/cloud drops, while 3C* controls the lifetime of this light absorption in particle water.
Aaron Lieberman, Julietta Picco, Murat Onder, and Cort Anastasio
Atmos. Chem. Phys., 24, 4411–4419, https://doi.org/10.5194/acp-24-4411-2024, https://doi.org/10.5194/acp-24-4411-2024, 2024
Short summary
Short summary
We developed a method that uses aqueous S(IV) to quantitatively convert NO2 to NO2−, which allows both species to be quantified using the Griess method. As an example of the utility of the method, we quantified both photolysis channels of nitrate, with and without a scavenger for hydroxyl radical (·OH). The results show that without a scavenger, ·OH reacts with nitrite to form nitrogen dioxide, suppressing the apparent quantum yield of NO2− and enhancing that of NO2.
Xingjun Fan, Ao Cheng, Xufang Yu, Tao Cao, Dan Chen, Wenchao Ji, Yongbing Cai, Fande Meng, Jianzhong Song, and Ping'an Peng
Atmos. Chem. Phys., 24, 3769–3783, https://doi.org/10.5194/acp-24-3769-2024, https://doi.org/10.5194/acp-24-3769-2024, 2024
Short summary
Short summary
Molecular-level characteristics of high molecular weight (HMW) and low MW (LMW) humic-like substances (HULIS) were comprehensively investigated, where HMW HULIS had larger chromophores and larger molecular size than LMW HULIS and exhibited higher aromaticity and humification. Electrospray ionization high-resolution mass spectrometry revealed more aromatic molecules in HMW HULIS. HMW HULIS had more CHON compounds, while LMW HULIS had more CHO compounds.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Evangelia Kostenidou, Baptiste Marques, Brice Temime-Roussel, Yao Liu, Boris Vansevenant, Karine Sartelet, and Barbara D'Anna
Atmos. Chem. Phys., 24, 2705–2729, https://doi.org/10.5194/acp-24-2705-2024, https://doi.org/10.5194/acp-24-2705-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) from gasoline vehicles can be a significant source of particulate matter in urban areas. Here the chemical composition of secondary volatile organic compounds and SOA produced by photo-oxidation of Euro 5 gasoline vehicle emissions was studied. The volatility of the SOA formed was calculated. Except for the temperature and the concentration of the aerosol, additional parameters may play a role in the gas-to-particle partitioning.
András Hoffer, Aida Meiramova, Ádám Tóth, Beatrix Jancsek-Turóczi, Gyula Kiss, Ágnes Rostási, Erika Andrea Levei, Luminita Marmureanu, Attila Machon, and András Gelencsér
Atmos. Chem. Phys., 24, 1659–1671, https://doi.org/10.5194/acp-24-1659-2024, https://doi.org/10.5194/acp-24-1659-2024, 2024
Short summary
Short summary
Specific tracer compounds identified previously in controlled test burnings of different waste types in the laboratory were detected and quantified in ambient PM10 samples collected in five Hungarian and four Romanian settlements. Back-of-the-envelope calculations based on the relative emission factors of individual tracers suggested that the contribution of solid waste burning particulate emissions to ambient PM10 mass concentrations may be as high as a few percent.
Xiao-San Luo, Weijie Huang, Guofeng Shen, Yuting Pang, Mingwei Tang, Weijun Li, Zhen Zhao, Hanhan Li, Yaqian Wei, Longjiao Xie, and Tariq Mehmood
Atmos. Chem. Phys., 24, 1345–1360, https://doi.org/10.5194/acp-24-1345-2024, https://doi.org/10.5194/acp-24-1345-2024, 2024
Short summary
Short summary
PM2.5 are air pollutants threatening health globally, but they are a mixture of chemical compositions from many sources and result in unequal toxicity. Which composition from which source of PM2.5 as the most hazardous object is a question hindering effective pollution control policy-making. With chemical and toxicity experiments, we found automobile exhaust and coal combustion to be priority emissions with higher toxic compositions for precise air pollution control, ensuring public health.
Matthew B. Goss and Jesse H. Kroll
Atmos. Chem. Phys., 24, 1299–1314, https://doi.org/10.5194/acp-24-1299-2024, https://doi.org/10.5194/acp-24-1299-2024, 2024
Short summary
Short summary
The chemistry driving dimethyl sulfide (DMS) oxidation and subsequent sulfate particle formation in the atmosphere is poorly constrained. We oxidized two related compounds (dimethyl sulfoxide and dimethyl disulfide) in the laboratory under varied NOx conditions and measured the gas- and particle-phase products. These results demonstrate that both the OH addition and OH abstraction pathways for DMS oxidation contribute to particle formation via mechanisms that do not involve the SO2 intermediate.
Ryan J. Patnaude, Kathryn A. Moore, Russell J. Perkins, Thomas C. J. Hill, Paul J. DeMott, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 24, 911–928, https://doi.org/10.5194/acp-24-911-2024, https://doi.org/10.5194/acp-24-911-2024, 2024
Short summary
Short summary
In this study we examined the effect of atmospheric aging on sea spray aerosols (SSAs) to form ice and how newly formed secondary marine aerosols (SMAs) may freeze at cirrus temperatures (< −38 °C). Results show that SSAs freeze at different relative humidities (RHs) depending on the temperature and that the ice-nucleating ability of SSA was not hindered by atmospheric aging. SMAs are shown to freeze at high RHs and are likely inefficient at forming ice at cirrus temperatures.
Bartłomiej Witkowski, Priyanka Jain, Beata Wileńska, and Tomasz Gierczak
Atmos. Chem. Phys., 24, 663–688, https://doi.org/10.5194/acp-24-663-2024, https://doi.org/10.5194/acp-24-663-2024, 2024
Short summary
Short summary
This article reports the results of the kinetic measurements for the aqueous oxidation of the 29 aliphatic alcohols by hydroxyl radical (OH) at different temperatures. The data acquired and the literature data were used to optimize a model for predicting the aqueous OH reactivity of alcohols and carboxylic acids and to estimate the atmospheric lifetimes of five terpenoic alcohols. The kinetic data provided new insights into the mechanism of aqueous oxidation of aliphatic molecules by the OH.
Junting Qiu, Xinlin Shen, Jiangyao Chen, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 155–166, https://doi.org/10.5194/acp-24-155-2024, https://doi.org/10.5194/acp-24-155-2024, 2024
Short summary
Short summary
We studied reactions of secondary ozonides (SOZs) with amines. SOZs formed from ozonolysis of β-caryophyllene and α-humulene are found to be reactive to ethylamine and methylamine. Products from SOZs with various conformations reacting with the same amine had different functional groups. Our findings indicate that interaction of SOZs with amines in the atmosphere is very complicated, which is potentially a hitherto unrecognized source of N-containing compound formation.
Lan Ma, Reed Worland, Laura Heinlein, Chrystal Guzman, Wenqing Jiang, Christopher Niedek, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 24, 1–21, https://doi.org/10.5194/acp-24-1-2024, https://doi.org/10.5194/acp-24-1-2024, 2024
Short summary
Short summary
We measured concentrations of three photooxidants – the hydroxyl radical, triplet excited states of organic carbon, and singlet molecular oxygen – in fine particles collected over a year. Concentrations are highest in extracts of fresh biomass burning particles, largely because they have the highest particle concentrations and highest light absorption. When normalized by light absorption, rates of formation for each oxidant are generally similar for the four particle types we observed.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Steven Sai Hang Ho, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 15375–15393, https://doi.org/10.5194/acp-23-15375-2023, https://doi.org/10.5194/acp-23-15375-2023, 2023
Short summary
Short summary
Open burning of municipal solid waste emits chemicals that are harmful to the environment. This paper reports source profiles and emission factors for PM2.5 species and acidic/alkali gases from laboratory combustion of 10 waste categories (including plastics and biomass) that represent open burning in South Africa. Results will be useful for health and climate impact assessments, speciated emission inventories, source-oriented dispersion models, and receptor-based source apportionment.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Hyun Gu Kang, Yanfang Chen, Yoojin Park, Thomas Berkemeier, and Hwajin Kim
Atmos. Chem. Phys., 23, 14307–14323, https://doi.org/10.5194/acp-23-14307-2023, https://doi.org/10.5194/acp-23-14307-2023, 2023
Short summary
Short summary
D5 is an emerging anthropogenic pollutant that is ubiquitous in indoor and urban environments, and the OH oxidation of D5 forms secondary organosiloxane aerosol (SOSiA). Application of a kinetic box model that uses a volatility basis set (VBS) showed that consideration of oxidative aging (aging-VBS) predicts SOSiA formation much better than using a standard-VBS model. Ageing-dependent parameterization is needed to accurately model SOSiA to assess the implications of siloxanes for air quality.
Kai Song, Rongzhi Tang, Jingshun Zhang, Zichao Wan, Yuan Zhang, Kun Hu, Yuanzheng Gong, Daqi Lv, Sihua Lu, Yu Tan, Ruifeng Zhang, Ang Li, Shuyuan Yan, Shichao Yan, Baoming Fan, Wenfei Zhu, Chak K. Chan, Maosheng Yao, and Song Guo
Atmos. Chem. Phys., 23, 13585–13595, https://doi.org/10.5194/acp-23-13585-2023, https://doi.org/10.5194/acp-23-13585-2023, 2023
Short summary
Short summary
Incense burning is common in Asia, posing threats to human health and air quality. However, less is known about its emissions and health risks. Full-volatility organic species from incense-burning smoke are detected and quantified. Intermediate-volatility volatile organic compounds (IVOCs) are crucial organics accounting for 19.2 % of the total emission factors (EFs) and 40.0 % of the secondary organic aerosol (SOA) estimation, highlighting the importance of incorporating IVOCs into SOA models.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Daniel C. O. Thornton, Sarah D. Brooks, Elise K. Wilbourn, Jessica Mirrielees, Alyssa N. Alsante, Gerardo Gold-Bouchot, Andrew Whitesell, and Kiana McFadden
Atmos. Chem. Phys., 23, 12707–12729, https://doi.org/10.5194/acp-23-12707-2023, https://doi.org/10.5194/acp-23-12707-2023, 2023
Short summary
Short summary
A major uncertainty in our understanding of clouds and climate is the sources and properties of the aerosol on which clouds grow. We found that aerosol containing organic matter from fast-growing marine phytoplankton was a source of ice-nucleating particles (INPs). INPs facilitate freezing of ice crystals at warmer temperatures than otherwise possible and therefore change cloud formation and properties. Our results show that ecosystem processes and the properties of sea spray aerosol are linked.
Adam Milsom, Shaojun Qi, Ashmi Mishra, Thomas Berkemeier, Zhenyu Zhang, and Christian Pfrang
Atmos. Chem. Phys., 23, 10835–10843, https://doi.org/10.5194/acp-23-10835-2023, https://doi.org/10.5194/acp-23-10835-2023, 2023
Short summary
Short summary
Aerosols and films are found indoors and outdoors. Our study measures and models reactions of a cooking aerosol proxy with the atmospheric oxidant ozone relying on a low-cost but sensitive technique based on mass changes and film rigidity. We found that film morphology changed and film rigidity increased with evidence of surface crust formation during ozone exposure. Our modelling results demonstrate clear potential to take this robust method to the field for reaction monitoring.
Shan Zhang, Lin Du, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, and Kun Li
Atmos. Chem. Phys., 23, 10809–10822, https://doi.org/10.5194/acp-23-10809-2023, https://doi.org/10.5194/acp-23-10809-2023, 2023
Short summary
Short summary
In this study, we have investigated the distinct impacts of humidity on the ozonolysis of two structurally different monoterpenes (limonene and Δ3-carene). We found that the molecular structure of precursors can largely influence the SOA formation under high RH by impacting the multi-generation reactions. Our results could advance knowledge on the roles of water content in aerosol formation and inform ongoing research on particle environmental effects and applications in models.
Yangzhihao Zhan, Min Xie, Wei Zhao, Tijian Wang, Da Gao, Pulong Chen, Jun Tian, Kuanguang Zhu, Shu Li, Bingliang Zhuang, Mengmeng Li, Yi Luo, and Runqi Zhao
Atmos. Chem. Phys., 23, 9837–9852, https://doi.org/10.5194/acp-23-9837-2023, https://doi.org/10.5194/acp-23-9837-2023, 2023
Short summary
Short summary
Although the main source contribution of pollution is secondary inorganic aerosols in Nanjing, health risks mainly come from industry sources and vehicle emissions. Therefore, the development of megacities should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes. This study provides new insight into assessing the relationship between source apportionment and health risks and can provide valuable insight into air pollution strategies.
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
Zhancong Liang, Zhihao Cheng, Ruifeng Zhang, Yiming Qin, and Chak K. Chan
Atmos. Chem. Phys., 23, 9585–9595, https://doi.org/10.5194/acp-23-9585-2023, https://doi.org/10.5194/acp-23-9585-2023, 2023
Short summary
Short summary
In this study, we found that the photolysis of sodium nitrate leads to a much quicker decay of free amino acids (FAAs, with glycine as an example) in the particle phase than ammonium nitrate photolysis, which is likely due to the molecular interactions between FAAs and different nitrate salts. Since sodium nitrate likely co-exists with FAAs in the coarse-mode particles, particulate nitrate photolysis can possibly contribute to a rapid decay of FAAs and affect atmospheric nitrogen cycling.
Julian Resch, Kate Wolfer, Alexandre Barth, and Markus Kalberer
Atmos. Chem. Phys., 23, 9161–9171, https://doi.org/10.5194/acp-23-9161-2023, https://doi.org/10.5194/acp-23-9161-2023, 2023
Short summary
Short summary
Detailed chemical analysis of organic aerosols is necessary to better understand their effects on climate and health. Aerosol samples are often stored for days to months before analysis. We examined the effects of storage conditions (i.e., time, temperature, and aerosol storage on filters or as solvent extracts) on composition and found significant changes in the concentration of individual compounds, indicating that sample storage can strongly affect the detailed chemical particle composition.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 8921–8937, https://doi.org/10.5194/acp-23-8921-2023, https://doi.org/10.5194/acp-23-8921-2023, 2023
Short summary
Short summary
Open burning of household and municipal solid waste is a common practice in developing countries and is a significant source of air pollution. However, few studies have measured emissions from open burning of waste. This study determined gas and particulate emissions from open burning of 10 types of household solid-waste materials. These results can improve emission inventories, air quality management, and assessment of the health and climate effects of open burning of household waste.
Anita M. Avery, Mariam Fawaz, Leah R. Williams, Tami Bond, and Timothy B. Onasch
Atmos. Chem. Phys., 23, 8837–8854, https://doi.org/10.5194/acp-23-8837-2023, https://doi.org/10.5194/acp-23-8837-2023, 2023
Short summary
Short summary
Pyrolysis is the thermal decomposition of fuels like wood which occurs during combustion or as an isolated process. During combustion, some pyrolysis products are emitted directly, while others are oxidized in the combustion process. This work describes the chemical composition of particle-phase pyrolysis products in order to investigate both the uncombusted emissions from wildfires and the fuel that participates in combustion.
Lan Ma, Reed Worland, Wenqing Jiang, Christopher Niedek, Chrystal Guzman, Keith J. Bein, Qi Zhang, and Cort Anastasio
Atmos. Chem. Phys., 23, 8805–8821, https://doi.org/10.5194/acp-23-8805-2023, https://doi.org/10.5194/acp-23-8805-2023, 2023
Short summary
Short summary
Although photooxidants are important in airborne particles, little is known of their concentrations. By measuring oxidants in a series of particle dilutions, we predict their concentrations in aerosol liquid water (ALW). We find •OH concentrations in ALW are on the order of 10−15 M, similar to their cloud/fog values, while oxidizing triplet excited states and singlet molecular oxygen have ALW values of ca. 10−13 M and 10−12 M, respectively, roughly 10–100 times higher than in cloud/fog drops.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Dandan Liu, Yun Zhang, Shujun Zhong, Shuang Chen, Qiaorong Xie, Donghuan Zhang, Qiang Zhang, Wei Hu, Junjun Deng, Libin Wu, Chao Ma, Haijie Tong, and Pingqing Fu
Atmos. Chem. Phys., 23, 8383–8402, https://doi.org/10.5194/acp-23-8383-2023, https://doi.org/10.5194/acp-23-8383-2023, 2023
Short summary
Short summary
Based on ultra-high-resolution mass spectrometry analysis, we found that β-pinene oxidation-derived highly oxygenated organic molecules (HOMs) exhibit higher yield at high ozone concentration, while limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentration. The distinct molecular response of HOMs and low-volatile species in different biogenic secondary organic aerosols to ozone concentrations provides a new clue for more accurate air quality prediction and management.
Cited articles
Ahern, A. T., Robinson, E. S., Tkacik, D. S., Saleh, R., Hatch, L. E.,
Barsanti, K. C., Stockwell, C. E., Yokelson, R. J., Presto, A. A., Robinson,
A. L., Sullivan, R. C., and Donahue, N. M.: Production of Secondary Organic
Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its
Relationship to VOC Precursors, J. Geophys. Res.-Atmos., 124, 3583–3606, https://doi.org/10.1029/2018jd029068, 2019.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Akherati, A., He, Y., Coggon, M. M., Koss, A. R., Hodshire, A. L., Sekimoto,
K., Warneke, C., de Gouw, J., Yee, L., Seinfeld, J. H., Onasch, T. B.,
Herndon, S. C., Knighton, W. B., Cappa, C. D., Kleeman, M. J., Lim, C. Y.,
Kroll, J. H., Pierce, J. R., and Jathar, S. H.: Oxygenated Aromatic
Compounds are Important Precursors of Secondary Organic Aerosol in
Biomass-Burning Emissions, Environ. Sci. Technol., 54,
8568–8579, https://doi.org/10.1021/acs.est.0c01345, 2020.
Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.
Barboni, T., Cannac, M., Pasqualini, V., Simeoni, A., Leoni, E., and
Chiaramonti, N.: Volatile and semi-volatile organic compounds in smoke
exposure of firefighters during prescribed burning in the Mediterranean
region, Int. J. Wildland Fire, 19, 606–612, https://doi.org/10.1071/WF08121, 2010.
Bhargava, A., Khanna, R. N., Bhargava, S. K., and Kumar, S.: Exposure risk
to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking
in rural India, Atmos. Environ., 38, 4761–4767, https://doi.org/10.1016/j.atmosenv.2004.05.012, 2004.
Brunekreef, B. and Holgate, S. T.: Air pollution and health, Lancet,
360, 1233–1242, https://doi.org/10.1016/S0140-6736(02)11274-8,
2002.
Bruns, E. A., El Haddad, I., Slowik, J. G., Kilic, D., Klein, F.,
Baltensperger, U., and Prévôt, A. S. H.: Identification of
significant precursor gases of secondary organic aerosols from residential
wood combustion, Sci. Rep., 6, 27881, https://doi.org/10.1038/srep27881, 2016.
Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J., Veres, P., Roberts, J. M., Warneke, C., Urbanski, S. P., Reardon, J., Weise, D. R., Hao, W. M., and de Gouw, J.: Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States, Atmos. Chem. Phys., 10, 11115–11130, https://doi.org/10.5194/acp-10-11115-2010, 2010.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S.,
Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L.,
Thai, P., Lam, Y. F., Pereira, G., Ding, A., Huang, X., and Dumka, U. C.: A
review of biomass burning: Emissions and impacts on air quality, health and
climate in China, Sci. Total Environ., 579, 1000–1034,
https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017.
Coggon, M. M., Lim, C. Y., Koss, A. R., Sekimoto, K., Yuan, B., Gilman, J. B., Hagan, D. H., Selimovic, V., Zarzana, K. J., Brown, S. S., Roberts, J. M., Müller, M., Yokelson, R., Wisthaler, A., Krechmer, J. E., Jimenez, J. L., Cappa, C., Kroll, J. H., de Gouw, J., and Warneke, C.: OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation, Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, 2019.
Cohen, A. J., Ross Anderson, H., Ostro, B., Pandey, K. D., Krzyzanowski, M.,
Künzli, N., Gutschmidt, K., Pope, A., Romieu, I., Samet, J. M., and
Smith, K.: The Global Burden of Disease Due to Outdoor Air Pollution,
J. Toxicol. Env. Health, 68, 1301–1307,
https://doi.org/10.1080/15287390590936166, 2005.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
Decker, Z. C. J., Zarzana, K. J., Coggon, M., Min, K.-E., Pollack, I.,
Ryerson, T. B., Peischl, J., Edwards, P., Dubé, W. P., Markovic, M. Z.,
Roberts, J. M., Veres, P. R., Graus, M., Warneke, C., de Gouw, J., Hatch, L.
E., Barsanti, K. C., and Brown, S. S.: Nighttime Chemical Transformation in
Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft
Observations, Environ. Sci. Technol., 53, 2529–2538,
https://doi.org/10.1021/acs.est.8b05359, 2019.
EPA: Estimation Programs Interface Suite™ for
Microsoft® Windows v 4.11, available at:
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (last access: 4 March 2020),
2012.
Farren, N. J., Ramírez, N., Lee, J. D., Finessi, E., Lewis, A. C., and
Hamilton, J. F.: Estimated Exposure Risks from Carcinogenic Nitrosamines in
Urban Airborne Particulate Matter, Environ. Sci. Technol.,
49, 9648–9656, https://doi.org/10.1021/acs.est.5b01620, 2015.
Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical Characterization of Fine Particle Emissions from Fireplace Combustion of Woods Grown in the Northeastern United States, Environ. Sci. Technol., 35, 2665–2675, https://doi.org/10.1021/es001466k, 2001.
Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and
Quantification of 4-Nitrocatechol Formed from OH and NO3
Radical-Initiated Reactions of Catechol in Air in the Presence of NOx:
Implications for Secondary Organic Aerosol Formation from Biomass Burning,
Environ. Sci. Technol., 52, 1981–1989,
https://doi.org/10.1021/acs.est.7b05864, 2018.
Gadi, R., Singh, D. P., Saud, T., Mandal, T. K., and Saxena, M.: Emission
Estimates of Particulate PAHs from Biomass Fuels Used in Delhi, India, Hum. Ecol. Risk Assess., 18, 871–887, https://doi.org/10.1080/10807039.2012.688714,
2012.
Geng, C., Chen, J., Yang, X., Ren, L., Yin, B., Liu, X., and Bai, Z.:
Emission factors of polycyclic aromatic hydrocarbons from domestic coal
combustion in China, J. Environ. Sci., 26, 160–166,
https://doi.org/10.1016/S1001-0742(13)60393-9, 2014.
Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw, J. A., Burling, I. R., and Yokelson, R. J.: Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US, Atmos. Chem. Phys., 15, 13915–13938, https://doi.org/10.5194/acp-15-13915-2015, 2015.
Goldstein, A. H., and Galbally, I. E.: Known and Unexplored Organic
Constituents in the Earth's Atmosphere, Environ. Sci.
Technol., 41, 1514–1521, https://doi.org/10.1021/es072476p, 2007.
Gómez Alvarez, E., Borrás, E., Viidanoja, J., and Hjorth, J.:
Unsaturated dicarbonyl products from the OH-initiated photo-oxidation of
furan, 2-methylfuran and 3-methylfuran, Atmos. Environ., 43,
1603–1612, https://doi.org/10.1016/j.atmosenv.2008.12.019,
2009.
Gordon, T., Balakrishnan, K., Dey, S., Rajagopalan, S., Thornburg, J.,
Thurston, G., Agrawal, A., Collman, G., Guleria, R., Limaye, S., Salvi, S.,
Kilaru, V., and Nadadur, S.: Air pollution health research priorities for
India: Perspectives of the Indo-US Communities of Researchers, Environ.
Int., 119, 100–108, https://doi.org/10.1016/j.envint.2018.06.013, 2018.
Gulyurtlu, I., Karunaratne, D. G. G. P., and Cabrita, I.: The study of the
effect of operating parameters on the PAH formation during the combustion of
coconut shell in a fluidised bed, Fuel, 82, 215–223,
https://doi.org/10.1016/S0016-2361(02)00224-7, 2003.
Hamilton, J. F., Webb, P. J., Lewis, A. C., Hopkins, J. R., Smith, S., and Davy, P.: Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS, Atmos. Chem. Phys., 4, 1279–1290, https://doi.org/10.5194/acp-4-1279-2004, 2004.
Hartikainen, A., Yli-Pirilä, P., Tiitta, P., Leskinen, A., Kortelainen,
M., Orasche, J., Schnelle-Kreis, J., Lehtinen, K. E. J., Zimmermann, R.,
Jokiniemi, J., and Sippula, O.: Volatile Organic Compounds from Logwood
Combustion: Emissions and Transformation under Dark and Photochemical Aging
Conditions in a Smog Chamber, Environ. Sci. Technol., 52,
4979–4988, https://doi.org/10.1021/acs.est.7b06269, 2018.
Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E., and Barsanti, K. C.: Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 1865–1899, https://doi.org/10.5194/acp-15-1865-2015, 2015.
Hatch, L. E., Rivas-Ubach, A., Jen, C. N., Lipton, M., Goldstein, A. H., and Barsanti, K. C.: Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks and two-dimensional gas chromatography, Atmos. Chem. Phys., 18, 17801–17817, https://doi.org/10.5194/acp-18-17801-2018, 2018.
Hodzic, A., Kasibhatla, P. S., Jo, D. S., Cappa, C. D., Jimenez, J. L., Madronich, S., and Park, R. J.: Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016, 2016.
Holzinger, R.: PTRwid: A new widget tool for processing PTR-TOF-MS data, Atmos. Meas. Tech., 8, 3903–3922, https://doi.org/10.5194/amt-8-3903-2015, 2015.
Hosseini, S., Urbanski, S. P., Dixit, P., Qi, L., Burling, I. R., Yokelson,
R. J., Johnson, T. J., Shrivastava, M., Jung, H. S., Weise, D. R., Miller,
J. W., and Cocker Iii, D. R.: Laboratory characterization of PM emissions
from combustion of wildland biomass fuels, J. Geophys. Res.-Atmos., 118, 9914–9929, https://doi.org/10.1002/jgrd.50481, 2013.
IARC: Polynuclear aromatic compounds, part 1: chemical, environmental, and
experimental data, Monographs on the Evaluation of the Carcinogenic Risk of
Chemicals to Humans, International Agency for Research on Cancer, Lyon,
France, 1983.
IARC: Polynuclear aromatic compounds, part 2: carbon blacks, mineral oils,
and some nitroarenes, Monographs on the Evaluation of the Carcinogenic Risk
of Chemicals to Humans, International Agency for Research on Cancer, Lyon,
France, 1984.
Jain, N., Bhatia, A., and Pathak, H.: Emission of Air Pollutants from Crop
Residue Burning in India, Aerosol Air Qual. Res., 14, 422–430,
https://doi.org/10.4209/aaqr.2013.01.0031, 2014.
Jathar, S. H., Woody, M., Pye, H. O. T., Baker, K. R., and Robinson, A. L.: Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions, Atmos. Chem. Phys., 17, 4305–4318, https://doi.org/10.5194/acp-17-4305-2017, 2017.
Jayarathne, T., Stockwell, C. E., Bhave, P. V., Praveen, P. S., Rathnayake, C. M., Islam, Md. R., Panday, A. K., Adhikari, S., Maharjan, R., Goetz, J. D., DeCarlo, P. F., Saikawa, E., Yokelson, R. J., and Stone, E. A.: Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources, Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, 2018.
Jen, C. N., Hatch, L. E., Selimovic, V., Yokelson, R. J., Weber, R., Fernandez, A. E., Kreisberg, N. M., Barsanti, K. C., and Goldstein, A. H.: Speciated and total emission factors of particulate organics from burning western US wildland fuels and their dependence on combustion efficiency, Atmos. Chem. Phys., 19, 1013–1026, https://doi.org/10.5194/acp-19-1013-2019, 2019.
Jenkins, B. M., Jones, A. D., Turn, S. Q., and Williams, R. B.: Emission
Factors for Polycyclic Aromatic Hydrocarbons from Biomass Burning,
Environ. Sci. Technol., 30, 2462–2469, https://doi.org/10.1021/es950699m,
1996.
Jia, Y. L., Stone, D., Wang, W. T., Schrlau, J., Tao, S., and Simonich, S.
L. M.: Estimated Reduction in Cancer Risk due to PAH Exposures If Source
Control Measures during the 2008 Beijing Olympics Were Sustained,
Environ. Health Persp., 119, 815–820, https://doi.org/10.1289/ehp.1003100, 2011.
Johansson, K. O., Dillstrom, T., Monti, M., El Gabaly, F., Campbell, M. F.,
Schrader, P. E., Popolan-Vaida, D. M., Richards-Henderson, N. K., Wilson, K.
R., Violi, A., and Michelsen, H. A.: Formation and emission of large furans
and oxygenated hydrocarbons from flames, P. Natl. Acad.
Sci., 113, 8374–8379, https://doi.org/10.1073/pnas.1604772113, 2016.
Joo, T., Rivera-Rios, J. C., Takeuchi, M., Alvarado, M. J., and Ng, N. L.:
Secondary Organic Aerosol Formation from Reaction of 3-Methylfuran with
Nitrate Radicals, ACS Earth and Space Chemistry, 3, 922–934,
https://doi.org/10.1021/acsearthspacechem.9b00068, 2019.
Kakareka, S. V., Kukharchyk, T. I., and Khomich, V. S.: Study of PAH
emission from the solid fuels combustion in residential furnaces,
Environ. Pollut., 133, 383–387, https://doi.org/10.1016/j.envpol.2004.01.009, 2005.
Karasek, F. W. and Tong, H. Y.: Semi-preparative high-performance liquid
chromatographic analysis of complex organic mixtures, J. Chromatogr., 332, 169–179, https://doi.org/10.1016/S0021-9673(01)83294-5, 1985.
Kerminen, V.-M., Lihavainen, H., Komppula, M., Viisanen, Y., and Kulmala,
M.: Direct observational evidence linking atmospheric aerosol formation and
cloud droplet activation, Geophys. Res. Lett., 32, L14803,
https://doi.org/10.1029/2005gl023130, 2005.
Kiely, L., Spracklen, D. V., Wiedinmyer, C., Conibear, L., Reddington, C. L., Archer-Nicholls, S., Lowe, D., Arnold, S. R., Knote, C., Khan, M. F., Latif, M. T., Kuwata, M., Budisulistiorini, S. H., and Syaufina, L.: New estimate of particulate emissions from Indonesian peat fires in 2015, Atmos. Chem. Phys., 19, 11105–11121, https://doi.org/10.5194/acp-19-11105-2019, 2019.
Kim Oanh, N. T., Bætz Reutergårdh, L., and Dung, N. T.: Emission of
Polycyclic Aromatic Hydrocarbons and Particulate Matter from Domestic
Combustion of Selected Fuels, Environ. Sci. Technol., 33,
2703–2709, https://doi.org/10.1021/es980853f, 1999.
Kim Oanh, N. T., Nghiem, L. H., and Phyu, Y. L.: Emission of Polycyclic
Aromatic Hydrocarbons, Toxicity, and Mutagenicity from Domestic Cooking
Using Sawdust Briquettes, Wood, and Kerosene, Environ. Sci.
Technol., 36, 833–839, https://doi.org/10.1021/es011060n, 2002.
Kim Oanh, N. T., Albina, D. O., Ping, L., and Wang, X.: Emission of
particulate matter and polycyclic aromatic hydrocarbons from select
cookstove-fuel systems in Asia, Biomass Bioenerg., 28, 579–590,
https://doi.org/10.1016/j.biombioe.2005.01.003, 2005.
Kim Oanh, N. T., Tipayarom, A., Bich, T. L., Tipayarom, D., Simpson, C. D.,
Hardie, D., and Sally Liu, L. J.: Characterization of gaseous and
semi-volatile organic compounds emitted from field burning of rice straw,
Atmos. Environ., 119, 182–191, https://doi.org/10.1016/j.atmosenv.2015.08.005, 2015.
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagne, S., Ickes, L., Kurten, A., Kupc, A., Metzger, A.,
Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D.,
Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Downard,
A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud, W.,
Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima,
J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkila, J., Minginette, P.,
Mogo, S., Nieminen, T., Onnela, A., Pereira, P., Petaja, T., Schnitzhofer,
R., Seinfeld, J. H., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A.,
Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H.,
Weingartner, E., Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R.,
Baltensperger, U., and Kulmala, M.: Role of sulphuric acid, ammonia and
galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476,
429–477, https://doi.org/10.1038/nature10343, 2011.
Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., and de Gouw, J.: Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, 2018.
Laaksonen, A., Hamed, A., Joutsensaari, J., Hiltunen, L., Cavalli, F.,
Junkermann, W., Asmi, A., Fuzzi, S., and Facchini, M. C.: Cloud condensation
nucleus production from nucleation events at a highly polluted region,
Geophys. Res. Lett., 32, L06812, https://doi.org/10.1029/2004gl022092, 2005.
Lauraguais, A., Coeur, C., Cassez, A., Deboudt, K., Fourmentin, M., and
Choël, M.: Atmospheric reactivity of hydroxyl radicals with guaiacol
(2-methoxyphenol), a biomass burning emitted compound: Secondary organic
aerosol formation and gas-phase oxidation products, Atmos. Environ.,
86, 155–163, https://doi.org/10.1016/j.atmosenv.2013.11.074, 2014.
Lee, R. G. M., Coleman, P., Jones, J. L., Jones, K. C., and Lohmann, R.:
Emission Factors and Importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from
the Domestic Burning of Coal and Wood in the UK, Environ. Sci.
Technol., 39, 1436–1447, https://doi.org/10.1021/es048745i, 2005.
Leco: ChromaTOF 5.0, available at: https://www.leco.com/product/chromatof-software (last access: 10 August 2020), 2019.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367, https://doi.org/10.1038/nature15371, 2015.
Leppalahti, J. and Koljonen, T.: Nitrogen evolution from coal, peat and
wood during gasification – literature review, Fuel Process. Technol.,
43, 1–45, https://doi.org/10.1016/0378-3820(94)00123-b, 1995.
Lewis, A. C., Carslaw, N., Marriott, P. J., Kinghorn, R. M., Morrison, P.,
Lee, A. L., Bartle, K. D., and Pilling, M. J.: A larger pool of
ozone-forming carbon compounds in urban atmospheres, Nature, 405, 778–781,
https://doi.org/10.1038/35015540, 2000.
Lewtas, J.: Air pollution combustion emissions: Characterization of
causative agents and mechanisms associated with cancer, reproductive, and
cardiovascular effects, Mutat. Res., 636,
95–133, https://doi.org/10.1016/j.mrrev.2007.08.003, 2007.
Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., de Gouw, J., Warneke, C., Cappa, C. D., and Kroll, J. H.: Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions, Atmos. Chem. Phys., 19, 12797–12809, https://doi.org/10.5194/acp-19-12797-2019, 2019.
Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J.,
Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A., Diskin,
G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W., King, L. E.,
Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T. B., Palm, B. B.,
Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse, G. W., Sedlacek, A. J.,
Shilling, J. E., Springston, S., St. Clair, J. M., Tanner, D. J., Teng, A.
P., Wennberg, P. O., Wisthaler, A., and Wolfe, G. M.: Airborne measurements
of western US wildfire emissions: Comparison with prescribed burning and
air quality implications, J. Geophys. Res.-Atmos., 122,
6108–6129, https://doi.org/10.1002/2016jd026315, 2017.
Lu, H., Zhu, L., and Zhu, N.: Polycyclic aromatic hydrocarbon emission from
straw burning and the influence of combustion parameters, Atmos.
Environ., 43, 978–983, https://doi.org/10.1016/j.atmosenv.2008.10.022,
2009.
Lu, Q., Zhao, Y., and Robinson, A. L.: Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions, Atmos. Chem. Phys., 18, 17637–17654, https://doi.org/10.5194/acp-18-17637-2018, 2018.
Lyu, R., Shi, Z., Alam, M. S., Wu, X., Liu, D., Vu, T. V., Stark, C., Xu,
R., Fu, P., Feng, Y., and Harrison, R. M.: Alkanes and aliphatic carbonyl
compounds in wintertime PM2.5 in Beijing, China, Atmos.
Environ., 202, 244–255, https://doi.org/10.1016/j.atmosenv.2019.01.023, 2019.
Monien, B. H., Herrmann, K., Florian, S., and Glatt, H.: Metabolic
activation of furfuryl alcohol: formation of 2-methylfuranyl DNA adducts in
Salmonella typhimurium strains expressing human sulfotransferase 1A1 and in
FVB/N mice, Carcinogenesis, 32, 1533–1539, https://doi.org/10.1093/carcin/bgr126, 2011.
Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S., Ng, N. L., Russell, L. M., Setyan, A., Xu, L., Young, J., Zaveri, R. A., Zhang, Q., and Pye, H. O. T.: Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning, Atmos. Chem. Phys., 17, 11107–11133, https://doi.org/10.5194/acp-17-11107-2017, 2017.
Nisbet, I. C. T. and LaGoy, P. K.: Toxic equivalency factors (TEFs) for
polycyclic aromatic hydrocarbons (PAHs), Regul. Toxicol.
Pharm., 16, 290–300, https://doi.org/10.1016/0273-2300(92)90009-X, 1992.
Ots, R., Young, D. E., Vieno, M., Xu, L., Dunmore, R. E., Allan, J. D., Coe, H., Williams, L. R., Herndon, S. C., Ng, N. L., Hamilton, J. F., Bergström, R., Di Marco, C., Nemitz, E., Mackenzie, I. A., Kuenen, J. J. P., Green, D. C., Reis, S., and Heal, M. R.: Simulating secondary organic aerosol from missing diesel-related intermediate-volatility organic compound emissions during the Clean Air for London (ClearfLo) campaign, Atmos. Chem. Phys., 16, 6453–6473, https://doi.org/10.5194/acp-16-6453-2016, 2016.
Pagonis, D., Krechmer, J. E., de Gouw, J., Jimenez, J. L., and Ziemann, P. J.: Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds, Atmos. Meas. Tech., 10, 4687–4696, https://doi.org/10.5194/amt-10-4687-2017, 2017.
Peterson, L. A.: Electrophilic Intermediates Produced by Bioactivation of
Furan, Drug Metab. Rev., 38, 615–626, https://doi.org/10.1080/03602530600959417,
2006.
Ramírez, N., Özel, M. Z., Lewis, A. C., Marcé, R. M., Borrull,
F., and Hamilton, J. F.: Exposure to nitrosamines in thirdhand tobacco smoke
increases cancer risk in non-smokers, Environ. Int., 71,
139–147, https://doi.org/10.1016/j.envint.2014.06.012, 2014.
Ravindranath, V., Boyd, M. R., and Burka, L. T.: Reactive metabolites from
the bioactivation of toxic methylfurans, Science, 224, 884–886,
https://doi.org/10.1126/science.6719117, 1984.
Ren, Q. Q. and Zhao, C. S.: Evolution of fuel-N in gas phase during biomass
pyrolysis, Renew. Sust. Energ. Rev., 50, 408–418,
https://doi.org/10.1016/j.rser.2015.05.043, 2015.
Sahu, L. K. and Saxena, P.: High time and mass resolved PTR-TOF-MS
measurements of VOCs at an urban site of India during winter: Role of
anthropogenic, biomass burning, biogenic and photochemical sources,
Atmos. Res., 164/165, 84–94, https://doi.org/10.1016/j.atmosres.2015.04.021, 2015.
Sahu, L. K., Yadav, R., and Pal, D.: Source identification of VOCs at an
urban site of western India: Effect of marathon events and anthropogenic
emissions, J. Geophys. Res,-Atmos., 121, 2416–2433,
https://doi.org/10.1002/2015jd024454, 2016.
Saud, T., Mandal, T. K., Gadi, R., Singh, D. P., Sharma, S. K., Saxena, M.,
and Mukherjee, A.: Emission estimates of particulate matter (PM) and trace
gases (SO2, NO and NO2) from biomass fuels used in rural sector of
Indo-Gangetic Plain, India, Atmos. Environ., 45, 5913–5923,
https://doi.org/10.1016/j.atmosenv.2011.06.031, 2011.
Saud, T., Gautam, R., Mandal, T. K., Gadi, R., Singh, D. P., Sharma, S. K.,
Dahiya, M., and Saxena, M.: Emission estimates of organic and elemental
carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP),
India, Atmos. Environ., 61, 212–220,
https://doi.org/10.1016/j.atmosenv.2012.07.030, 2012.
Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M., and de Gouw, J.: High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels, Atmos. Chem. Phys., 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, 2018.
Sengupta, D., Samburova, V., Bhattarai, C., Watts, A. C., Moosmüller, H., and Khlystov, A. Y.: Polar semivolatile organic compounds in biomass-burning emissions and their chemical transformations during aging in an oxidation flow reactor, Atmos. Chem. Phys., 20, 8227–8250, https://doi.org/10.5194/acp-20-8227-2020, 2020.
Shafizadeh, F.: Introduction to pyrolysis of biomass, J. Anal.
Appl. Pyrol., 3, 283–305, https://doi.org/10.1016/0165-2370(82)80017-X, 1982.
Sheesley, R. J., Schauer, J. J., Chowdhury, Z., Cass, G. R., and Simoneit,
B. R. T.: Characterization of organic aerosols emitted from the combustion
of biomass indigenous to South Asia, J. Geophys. Res.-Atmos., 108, 4285, https://doi.org/10.1029/2002jd002981, 2003.
Simoneit, B. R. T.: Biomass burning – a review of organic tracers for
smoke from incomplete combustion, Appl. Geochem., 17, 129–162,
https://doi.org/10.1016/S0883-2927(01)00061-0, 2002.
Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J.,
Hildemann, L. M., and Cass, G. R.: Lignin pyrolysis products, lignans, and
resin acids as specific tracers of plant classes in emissions from biomass
combustion, Environ. Sci. Technol., 27, 2533–2541,
https://doi.org/10.1021/es00048a034, 1993.
Singh, D. P., Gadi, R., Mandal, T. K., Saud, T., Saxena, M., and Sharma, S.
K.: Emissions estimates of PAH from biomass fuels used in rural sector of
Indo-Gangetic Plains of India, Atmos. Environ., 68, 120–126,
https://doi.org/10.1016/j.atmosenv.2012.11.042, 2013.
Sjöström, E.: Wood Chemistry: Fundamentals and Applications, 2nd
edition, Academic Press, San Diego, USA, 1993.
Smith, J. N., Dunn, M. J., VanReken, T. M., Iida, K., Stolzenburg, M. R.,
McMurry, P. H., and Huey, L. G.: Chemical composition of atmospheric
nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an
important role for organic species in nanoparticle growth, Geophys.
Res. Lett., 35, L04808, https://doi.org/10.1029/2007gl032523, 2008.
Sotiropoulou, R. E. P., Tagaris, E., Pilinis, C., Anttila, T., and Kulmala,
M.: Modeling New Particle Formation During Air Pollution Episodes: Impacts
on Aerosol and Cloud Condensation Nuclei, Aerosol Sci. Tech.,
40, 557–572, https://doi.org/10.1080/02786820600714346, 2006.
Stein, S. E.: National Institute and Standards and Technology (NIST), Mass
Spectral Search Program, Version 2.0g, available at: https://www.nist.gov/system/files/documents/srd/Ver20Man.pdf (last access: 16 Febuary 2021), 2011.
Stewart, G. J.: Non-methane volatile organic compound measurements from domestic biomass burning by PTR-TOF-MS, TIB AV-Portal, https://doi.org/10.5446/50203, 2020.
Stewart, G. J., Nelson, B. S., Drysdale, W. S., Acton, W. J. F., Vaughan, A.
R., Hopkins, J. R., Dunmore, R. E., Hewitt, C. N., Nemitz, E. G., Mullinger,
N., Langford, B., Shivani Villegas, E. R., Gadi, R., Rickard, A. R., Lee,
J. D., and Hamilton, J. F.: Sources of non-methane hydrocarbons in surface
air in Delhi, India, Faraday Discuss., https://doi.org/10.1039/D0FD00087F, online first, 2021a.
Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Hopkins, J. R., Yunus, S. S. M., Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R., Rickard, A. R., Lee, J. D., Mandal, T. K., and Hamilton, J. F.: Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India, Environ. Sci.: Atmos., https://doi.org/10.1039/D0EA00009D, online first, 2021b.
Stewart, G. J., Acton, W. J. F., Nelson, B. S., Vaughan, A. R., Hopkins, J. R., Arya, R., Mondal, A., Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Dunmore, R. E., Yunus, S. S. M., Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D., Mandal, T. K., and Hamilton, J. F.: Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India, India, Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, 2021c.
Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.: Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-845-2015, 2015.
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q.,
He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H.,
and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in
Asia in the year 2000, J. Geophys. Res.-Atmos., 108, 8809,
https://doi.org/10.1029/2002JD003093, 2003.
Strollo, C. M. and Ziemann, P. J.: Products and mechanism of secondary
organic aerosol formation from the reaction of 3-methylfuran with OH
radicals in the presence of NOx, Atmos. Environ., 77, 534–543,
https://doi.org/10.1016/j.atmosenv.2013.05.033, 2013.
Taipale, R., Ruuskanen, T. M., Rinne, J., Kajos, M. K., Hakola, H., Pohja, T., and Kulmala, M.: Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods, Atmos. Chem. Phys., 8, 6681–6698, https://doi.org/10.5194/acp-8-6681-2008, 2008.
Tong, H. Y., Shore, D. L., Karasek, F. W., Helland, P., and Jellum, E.:
Identification of organic compounds obtained from incineration of municipal
waste by high-performance liquid chromatographic fractionation and gas
chromatography-mass spectrometry, J. Chromatogr., 285, 423–441,
https://doi.org/10.1016/S0021-9673(01)87784-0, 1984.
Venkataraman, C., Negi, G., Brata Sardar, S., and Rastogi, R.: Size
distributions of polycyclic aromatic hydrocarbons in aerosol emissions from
biofuel combustion, J. Aerosol Sci., 33, 503–518,
https://doi.org/10.1016/S0021-8502(01)00185-9, 2002.
Venkataraman, C., Habib, G., Eiguren-Fernandez, A., Miguel, A. H., and
Friedlander, S. K.: Residential biofuels in south Asia: Carbonaceous aerosol
emissions and climate impacts, Science, 307, 1454–1456,
https://doi.org/10.1126/science.1104359, 2005.
Vineis, P. and Husgafvel-Pursiainen, K.: Air pollution and cancer:
biomarker studies in human populations, Carcinogenesis, 26, 1846–1855,
https://doi.org/10.1093/carcin/bgi216, 2005.
Wei, S. Y., Shen, G. F., Zhang, Y. Y., Xue, M., Xie, H., Lin, P. C., Chen,
Y. C., Wang, X. L., and Tao, S.: Field measurement on the emissions of PM,
OC, EC and PAHs from indoor crop straw burning in rural China, Environ.
Pollut., 184, 18–24, https://doi.org/10.1016/j.envpol.2013.07.036, 2014.
WHO: IARC monographs on the evaluation of carcinogenic risks to humans,
Internal report 14/002, World Health Organization, Lyon, France, 2016.
WHO: Household air pollution and health, available at: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health
(last access: 5 August 2020), 2018.
Wiedinmyer, C., Yokelson, R. J., and Gullett, B. K.: Global Emissions of
Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open
Burning of Domestic Waste, Environ. Sci. Technol., 48,
9523–9530, https://doi.org/10.1021/es502250z, 2014.
Wiriya, W., Chantara, S., Sillapapiromsuk, S., and Lin, N. H.: Emission
Profiles of PM10-Bound Polycyclic Aromatic Hydrocarbons from Biomass Burning
Determined in Chamber for Assessment of Air Pollutants from Open Burning,
Aerosol Air Qual. Res., 16, 2716–2727, https://doi.org/10.4209/aaqr.2015.04.0278, 2016.
Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye, H. O. T.: Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS, Atmos. Chem. Phys., 16, 4081–4100, https://doi.org/10.5194/acp-16-4081-2016, 2016.
Worton, D. R., Decker, M., Isaacman-VanWertz, G., Chan, A. W. H., Wilson, K.
R., and Goldstein, A. H.: Improved molecular level identification of organic
compounds using comprehensive two-dimensional chromatography, dual
ionization energies and high resolution mass spectrometry, Analyst, 142,
2395–2403, https://doi.org/10.1039/c7an00625j, 2017.
Xue, W. L. and Warshawsky, D.: Metabolic activation of polycyclic and
heterocyclic aromatic hydrocarbons and DNA damage: A review, Toxicol.
Appl. Pharm., 206, 73–93, https://doi.org/10.1016/j.taap.2004.11.006, 2005.
Yee, L. D., Kautzman, K. E., Loza, C. L., Schilling, K. A., Coggon, M. M., Chhabra, P. S., Chan, M. N., Chan, A. W. H., Hersey, S. P., Crounse, J. D., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols, Atmos. Chem. Phys., 13, 8019–8043, https://doi.org/10.5194/acp-13-8019-2013, 2013.
Young Koo, Y. K., Kim, W., and Jo, Y. M.: Release of Harmful Air Pollutants
from Open Burning of Domestic Municipal Solid Wastes in a Metropolitan Area
of Korea, Aerosol Air Qual. Res., 13, 1365–1372, https://doi.org/10.4209/aaqr.2012.10.0272,
2013.
Yu, F. and Luo, G.: Modeling of gaseous methylamines in the global atmosphere: impacts of oxidation and aerosol uptake, Atmos. Chem. Phys., 14, 12455–12464, https://doi.org/10.5194/acp-14-12455-2014, 2014.
Zhang, Y. and Tao, S.: Global atmospheric emission inventory of polycyclic
aromatic hydrocarbons (PAHs) for 2004, Atmos. Environ., 43, 812–819,
https://doi.org/10.1016/j.atmosenv.2008.10.050, 2009.
Short summary
Biomass burning releases many lower-molecular-weight organic species which are difficult to analyse but important for the formation of organic aerosol. This study examined a new high-resolution technique to better characterise these difficult-to-analyse organic components. Some burning sources analysed in this study, such as cow dung cake and municipal solid waste, released extremely complex mixtures containing many thousands of different lower-volatility organic compounds.
Biomass burning releases many lower-molecular-weight organic species which are difficult to...
Altmetrics
Final-revised paper
Preprint