Articles | Volume 21, issue 3
https://doi.org/10.5194/acp-21-1427-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-1427-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global analysis of diurnal variability in dust and dust mixture using CATS observations
Atmospheric and Oceanic Sciences Program, Princeton University,
Princeton, NJ, USA
Olga V. Kalashnikova
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Michael J. Garay
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Huikyo Lee
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Myungje Choi
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Gregory S. Okin
Department of Geography, University of California, Los Angeles, CA,
USA
John E. Yorks
NASA Goddard Space Flight Center, Greenbelt, MD, USA
James R. Campbell
Naval Research Laboratory, Monterey, CA, USA
Jared Marquis
Department of Atmospheric Sciences, University of North Dakota, Grand
Forks, ND, USA
Related authors
Yan Yu and Paul Ginoux
Atmos. Chem. Phys., 21, 8511–8530, https://doi.org/10.5194/acp-21-8511-2021, https://doi.org/10.5194/acp-21-8511-2021, 2021
Short summary
Short summary
Despite Australian dust’s critical role in the regional climate and surrounding marine ecosystems, the controlling factors of its spatiotemporal variations are not fully understood. This study establishes the connection between large-scale climate variability and regional dust emission, leading to a better understanding of the spatiotemporal variation in dust activity and improved prediction of dust's climate and ecological influences.
Claudia Di Biagio, Elisa Bru, Avila Orta, Servanne Chevaillier, Clarissa Baldo, Antonin Bergé, Mathieu Cazaunau, Sandra Lafon, Sophie Nowak, Edouard Pangui, Meinrat O. Andreae, Pavla Dagsson-Waldhauserova, Kebonyethata Dintwe, Konrad Kandler, James S. King, Amelie Chaput, Gregory S. Okin, Stuart Piketh, Thuraya Saeed, David Seibert, Zongbo Shi, Earle Williams, Pasquale Sellitto, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-3512, https://doi.org/10.5194/egusphere-2025-3512, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Spectroscopy measurements show that the absorbance of dust in the far-infrared up to 25 μm is comparable in intensity to that in the mid-infrared (3–15μm) suggesting its relevance for dust direct radiative effect. Data evidence different absorption signatures for high and low/mid latitude dust, due to differences in mineralogical composition. These differences could be used to characterise the mineralogy and differentiate the origin of airborne dust based on infrared remote sensing observations.
Jeewoo Lee, Jhoon Kim, Seoyoung Lee, Myungje Choi, Jaehwa Lee, Daniel J. Jacob, Su Keun Kuk, and Young-Je Park
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-281, https://doi.org/10.5194/essd-2025-281, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Atmospheric aerosols adversely affect human health, with East Asia recognized as one of the most impacted regions. This study presents a long-term (2011–2021), high spatiotemporal resolution aerosol optical depth dataset retrieved from a geostationary satellite over East Asia. The high-resolution data capture subtle aerosol gradients and land-ocean boundaries, providing valuable input for various fields such as aerosol-cloud interaction, climate change, ocean optics, and air quality studies.
Sina Hasheminassab, David M. Tratt, Olga V. Kalashnikova, Clement S. Chang, Morad Alvarez, Kerry N. Buckland, Michael J. Garay, Francesca M. Hopkins, Eric R. Keim, Le Kuai, Yaning Miao, Payam Pakbin, William C. Porter, and Mohammad H. Sowlat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1378, https://doi.org/10.5194/egusphere-2025-1378, 2025
Short summary
Short summary
Ammonia (NH3) is a key air pollutant linked to fine particle pollution, yet its sources remain poorly understood. Using airborne infrared imaging and ground sensors, we mapped NH3 emissions in California’s Salton Sea region with unprecedented detail. We found high emissions from farms, geothermal plants, and waste sites, including sources missing from inventories. These findings highlight the need for better NH3 monitoring to improve air quality models and guide pollution reduction strategies.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024, https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Sandra L. LeGrand, Theodore W. Letcher, Gregory S. Okin, Nicholas P. Webb, Alex R. Gallagher, Saroj Dhital, Taylor S. Hodgdon, Nancy P. Ziegler, and Michelle L. Michaels
Geosci. Model Dev., 16, 1009–1038, https://doi.org/10.5194/gmd-16-1009-2023, https://doi.org/10.5194/gmd-16-1009-2023, 2023
Short summary
Short summary
Ground cover affects dust emissions by reducing wind flow over the immediate soil surface. This study reviews a method for estimating ground cover effects on wind erosion from satellite-detected terrain shadows. We conducted a case study for a US dust event using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Adding the shadow-based method for ground cover effects markedly improved simulated results and may lead to better dust modeling outcomes in vegetated drylands.
Adrienne M. Wootten, Elias C. Massoud, Duane E. Waliser, and Huikyo Lee
Earth Syst. Dynam., 14, 121–145, https://doi.org/10.5194/esd-14-121-2023, https://doi.org/10.5194/esd-14-121-2023, 2023
Short summary
Short summary
Climate projections and multi-model ensemble weighting are increasingly used for climate assessments. This study examines the sensitivity of projections to multi-model ensemble weighting strategies in the south-central United States. Model weighting and ensemble means are sensitive to the domain and variable used. There are numerous findings regarding the improvement in skill with model weighting and the sensitivity associated with various strategies.
Samuel E. LeBlanc, Michal Segal-Rozenhaimer, Jens Redemann, Connor Flynn, Roy R. Johnson, Stephen E. Dunagan, Robert Dahlgren, Jhoon Kim, Myungje Choi, Arlindo da Silva, Patricia Castellanos, Qian Tan, Luke Ziemba, Kenneth Lee Thornhill, and Meloë Kacenelenbogen
Atmos. Chem. Phys., 22, 11275–11304, https://doi.org/10.5194/acp-22-11275-2022, https://doi.org/10.5194/acp-22-11275-2022, 2022
Short summary
Short summary
Airborne observations of atmospheric particles and pollution over Korea during a field campaign in May–June 2016 showed that the smallest atmospheric particles are present in the lowest 2 km of the atmosphere. The aerosol size is more spatially variable than optical thickness. We show this with remote sensing (4STAR), in situ (LARGE) observations, satellite measurements (GOCI), and modeled properties (MERRA-2), and it is contrary to the current understanding.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022, https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary
Short summary
This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Marcin L. Witek, Michael J. Garay, David J. Diner, Michael A. Bull, Felix C. Seidel, Abigail M. Nastan, and Earl G. Hansen
Atmos. Meas. Tech., 14, 5577–5591, https://doi.org/10.5194/amt-14-5577-2021, https://doi.org/10.5194/amt-14-5577-2021, 2021
Short summary
Short summary
This article documents the development and testing of a new near real-time (NRT) aerosol product from the MISR instrument on NASA’s Terra platform. The NRT product capitalizes on the unique attributes of the MISR retrieval approach, which leads to a high-quality and reliable aerosol data product. Several modifications are described that allow for rapid product generation within a 3 h window following acquisition. Implications for the product quality and consistency are discussed.
Hyunkwang Lim, Sujung Go, Jhoon Kim, Myungje Choi, Seoyoung Lee, Chang-Keun Song, and Yasuko Kasai
Atmos. Meas. Tech., 14, 4575–4592, https://doi.org/10.5194/amt-14-4575-2021, https://doi.org/10.5194/amt-14-4575-2021, 2021
Short summary
Short summary
Aerosol property observations by satellites from geostationary Earth orbit (GEO) in particular have advantages of frequent sampling better than 1 h in addition to broader spatial coverage. This study provides data fusion products of aerosol optical properties from four different algorithms for two different GEO satellites: GOCI and AHI. The fused aerosol products adopted ensemble-mean and maximum-likelihood estimation methods. The data fusion provides improved results with better accuracy.
Yan Yu and Paul Ginoux
Atmos. Chem. Phys., 21, 8511–8530, https://doi.org/10.5194/acp-21-8511-2021, https://doi.org/10.5194/acp-21-8511-2021, 2021
Short summary
Short summary
Despite Australian dust’s critical role in the regional climate and surrounding marine ecosystems, the controlling factors of its spatiotemporal variations are not fully understood. This study establishes the connection between large-scale climate variability and regional dust emission, leading to a better understanding of the spatiotemporal variation in dust activity and improved prediction of dust's climate and ecological influences.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Longlei Li, Natalie M. Mahowald, Ron L. Miller, Carlos Pérez García-Pando, Martina Klose, Douglas S. Hamilton, Maria Gonçalves Ageitos, Paul Ginoux, Yves Balkanski, Robert O. Green, Olga Kalashnikova, Jasper F. Kok, Vincenzo Obiso, David Paynter, and David R. Thompson
Atmos. Chem. Phys., 21, 3973–4005, https://doi.org/10.5194/acp-21-3973-2021, https://doi.org/10.5194/acp-21-3973-2021, 2021
Short summary
Short summary
For the first time, this study quantifies the range of the dust direct radiative effect due to uncertainty in the soil mineral abundance using all currently available information. We show that the majority of the estimated direct radiative effect range is due to uncertainty in the simulated mass fractions of iron oxides and thus their soil abundance, which is independent of the model employed. We therefore prove the necessity of considering mineralogy for understanding dust–climate interactions.
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021, https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary
Short summary
A first-of-its-kind scheme has been developed for assimilating Ozone Monitoring Instrument (OMI) aerosol index (AI) measurements into the Naval Aerosol Analysis and Predictive System. Improvements in model simulations demonstrate the utility of OMI AI data assimilation for improving the accuracy of aerosol model analysis over cloudy regions and bright surfaces. This study can be considered one of the first attempts at direct radiance assimilation in the UV spectrum for aerosol analyses.
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020, https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary
Short summary
In this work, the authors describe a process to determine the thermodynamic cloud phase using the Micro Pulse Lidar Network volume depolarization ratio measurements and temperature profiles from the Global Modeling and Assimilation Office GEOS-5 model. A multi-year analysis and comparisons to supercooled liquid water fractions derived from CALIPSO satellite measurements are used to demonstrate the efficacy of the method.
Debbie O'Sullivan, Franco Marenco, Claire L. Ryder, Yaswant Pradhan, Zak Kipling, Ben Johnson, Angela Benedetti, Melissa Brooks, Matthew McGill, John Yorks, and Patrick Selmer
Atmos. Chem. Phys., 20, 12955–12982, https://doi.org/10.5194/acp-20-12955-2020, https://doi.org/10.5194/acp-20-12955-2020, 2020
Short summary
Short summary
Mineral dust is an important component of the climate system, and we assess how well it is predicted by two operational models. We flew an aircraft in the dust layers in the eastern Atlantic, and we also make use of satellites. We show that models predict the dust layer too low and that it predicts the particles to be too small. We believe that these discrepancies may be overcome if models can be constrained with operational observations of dust vertical and size-resolved distribution.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Cited articles
Al-Hurban, A. E. and Al-Ostad, A. N.: Textural characteristics of dust
fallout and potential effect on public health in Kuwait City and suburbs,
Environ. Earth Sci., 60, 169–181, https://doi.org/10.1007/s12665-009-0177-3, 2010.
Amiridis, V., Wandinger, U., Marinou, E., Giannakaki, E., Tsekeri, A., Basart, S., Kazadzis, S., Gkikas, A., Taylor, M., Baldasano, J., and Ansmann, A.: Optimizing CALIPSO Saharan dust retrievals, Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013, 2013.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 80, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and
Holmén, K.: Mesoscale variations of tropospheric aerosols, J. Atmos.
Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2, 2003.
Banerjee, P., Satheesh, S. K., Moorthy, K. K., Nanjundiah, R. S., and Nair,
V. S.: Long-range transport of mineral dust to the northeast Indian Ocean:
Regional versus remote sources and the implications, J. Clim., 32,
1525–1549, https://doi.org/10.1175/JCLI-D-18-0403.1, 2019.
Barreto, A., Román, R., Cuevas, E., Pérez-Ramírez, D.,
Berjón, A. J., Kouremeti, N., Kazadzis, S., Gröbner, J., Mazzola,
M., Toledano, C., Benavent-Oltra, J. A., Doppler, L., Juryšek, J.,
Almansa, A. F., Victori, S., Maupin, F., Guirado-Fuentes, C., González,
R., Vitale, V., Goloub, P., Blarel, L., Alados-Arboledas, L., Woolliams, E.,
Taylor, S., Antuña, J. C., and Yela, M.: Evaluation of night-time
aerosols measurements and lunar irradiance models in the frame of the first
multi-instrument nocturnal intercomparison campaign, Atmos. Environ.,
202, 190–211, https://doi.org/10.1016/j.atmosenv.2019.01.006, 2019.
Barreto, Á., Cuevas, E., Granados-Muñoz, M.-J., Alados-Arboledas, L., Romero, P. M., Gröbner, J., Kouremeti, N., Almansa, A. F., Stone, T., Toledano, C., Román, R., Sorokin, M., Holben, B., Canini, M., and Yela, M.: The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation, Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, 2016.
Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens, J.: Global evaluation of runoff from 10 state-of-the-art hydrological models, Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, 2017.
Bessho, K., Date, K., Masahiro, H., Ikeda, A., Imai, T., Inoue, H., Kumagai,
Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y.,
Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama,
H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9
– Japan's New-Generation Geostationary Meteorological Satellites, J.
Meteorol. Soc. Japan, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.
Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. A., Hostetler, C. A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T., Collins, J. E., Fenn, M. A., and Rogers, R. R.: Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 15, 13453–13473, https://doi.org/10.5194/acp-15-13453-2015, 2015.
Campbell, J. R., Tackett, J. L., Reid, J. S., Zhang, J., Curtis, C. A., Hyer, E. J., Sessions, W. R., Westphal, D. L., Prospero, J. M., Welton, E. J., Omar, A. H., Vaughan, M. A., and Winker, D. M.: Evaluating nighttime CALIOP 0.532 µm aerosol optical depth and extinction coefficient retrievals, Atmos. Meas. Tech., 5, 2143–2160, https://doi.org/10.5194/amt-5-2143-2012, 2012.
Chaboureau, J. P., Tulet, P., and Mari, C.: Diurnal cycle of dust and cirrus
over West Africa as seen from Meteosat Second Generation satellite and a
regional forecast model, Geophys. Res. Lett., 34, 2–6,
https://doi.org/10.1029/2006GL027771, 2007.
Choi, M., Kim, J., Lee, J., Kim, M., Park, Y.-J., Holben, B., Eck, T. F., Li, Z., and Song, C. H.: GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia, Atmos. Meas. Tech., 11, 385–408, https://doi.org/10.5194/amt-11-385-2018, 2018.
Cucchi, M., Weedon, G. P., Amici, A., Bellouin, N., Lange, S., Müller Schmied, H., Hersbach, H., and Buontempo, C.: WFDE5: bias-adjusted ERA5 reanalysis data for impact studies, Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, 2020.
DataCamp: R Documentation and Manuals, available at: https://www.rdocumentation.org/packages/car/versions/3.0-10/topics/Anova, last access: 1 February 2021.
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting
global atmospheric ice nuclei distributions and their impacts on climate,
P. Natl. Acad. Sci. USA, 107, 11217–11222, https://doi.org/10.1073/pnas.0910818107,
2010.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R. A., Martonchik, J. V, Ackerman, T. P., Davies, R., Gerstl, S. A.
W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty, B.,
and Verstraete, M. M.: Multi-angle Imaging SpectroRadiometer (MISR)
instrument description and experiment overview, IEEE T. Geosci. Remote, 36, 1072–1087, 1998.
Engelstaedter, S., Tegen, I., and Washington, R.: North African dust
emissions and transport, Earth-Sci. Rev., 79, 73–100,
https://doi.org/10.1016/j.earscirev.2006.06.004, 2006.
Fiedler, S., Schepanski, K., Heinold, B., Knippertz, P., and Tegen, I.:
Climatology of nocturnal low-level jets over North Africa and implications
for modeling mineral dust emission, J. Geophys. Res.-Atmos., 118,
6100–6121, https://doi.org/10.1002/jgrd.50394, 2013.
Fisher, R. A.: Statistical Methods for Research Workers, in Breakthroughs in
Statistics: Methodology and Distribution, edited by: Kotz, S. and Johnson, N. L., Springer New York, New York, 66–70, 1992.
Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M.,
Ansmann, A., Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G.,
Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner,
M.: Depolarization ratio profiling at several wavelengths in pure Saharan
dust during SAMUM 2006, Tellus B, 61, 165–179, https://doi.org/10.1111/j.1600-0889.2008.00396.x, 2009.
Furman, H. K. H.: Dust Storms in the Middle East: Sources of Origin and
Their Temporal Characteristics, Indoor Built Environ., 12, 419–426,
https://doi.org/10.1177/1420326x03037110, 2003.
Garay, M. J., Witek, M. L., Kahn, R. A., Seidel, F. C., Limbacher, J. A., Bull, M. A., Diner, D. J., Hansen, E. G., Kalashnikova, O. V., Lee, H., Nastan, A. M., and Yu, Y.: Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product, Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020, 2020.
Gasteiger, J., Groß, S., Sauer, D., Haarig, M., Ansmann, A., and Weinzierl, B.: Particle settling and vertical mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in situ perspective, Atmos. Chem. Phys., 17, 297–311, https://doi.org/10.5194/acp-17-297-2017, 2017.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O.,
and Lin, S.-J.: Sources and distributions of dust aerosols simulated with
the GOCART model, J. Geophys. Res., 106, 20255–20273, 2001.
Ginoux, P., Garbuzov, D., and Hsu, N. C.: Identification of anthropogenic and
natural dust sources using moderate resolution imaging spectroradiometer
(MODIS) deep blue level 2 data, J. Geophys. Res., 115, D05204,
https://doi.org/10.1029/2009JD012398, 2010.
Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.:
Global-scale attribution of anthropogenic and natural dust sources and their
emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50,
RG3005, https://doi.org/10.1029/2012RG000388, 2012.
Graham, B., Guyon, P., Maenhaut, W., Taylor, P. E., Ebert, M.,
Matthias-Maser, S., Mayol-Bracero, O. L., Godoi, R. H. M., Artaxo, P.,
Meixner, F. X., Moura, M. A. L., Rocha, C. H. E. D., Grieken, R. Van,
Glovsky, M. M., Flagan, R. C., and Andreae, M. O.: Composition and diurnal
variability of the natural Amazonian aerosol, J. Geophys. Res., 108,
4765, https://doi.org/10.1029/2003jd004049, 2003.
Haarig, M., Ansmann, A., Althausen, D., Klepel, A., Groß, S., Freudenthaler, V., Toledano, C., Mamouri, R.-E., Farrell, D. A., Prescod, D. A., Marinou, E., Burton, S. P., Gasteiger, J., Engelmann, R., and Baars, H.: Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014, Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, 2017.
Heinold, B., Knippertz, P., Marsham, J. H., Fiedler, S., Dixon, N. S.,
Schepanski, K., Laurent, B., and Tegen, I.: The role of deep convection and
nocturnal low-level jets for dust emission in summertime West Africa:
Estimates from convection-permitting simulations, J. Geophys. Res.-Atmos.,
118, 4385–4400, https://doi.org/10.1002/jgrd.50402, 2013.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET, A Federated
Instrument Network and Data Archive for Aerosol Characterization, Remote
Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Kalashnikova, O. V., Kahn, R., Sokolik, I. N., and Li, W.-H.: Ability of
multiangle remote sensing observations to identify and distinguish mineral
dust types: Optical models and retrievals of optically thick plumes, J.
Geophys. Res., 110, D18S14, https://doi.org/10.1029/2004jd004550, 2005.
Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., and Fan,
S.: Dust transport and deposition observed from the Terra-Moderate
Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic
Ocean, J. Geophys. Res., 110, D10S12, https://doi.org/10.1029/2003JD004436, 2005.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Knippertz, P. and Stuut, J.-B. W.: Mineral Dust, Springer Dordrecht
Heidelberg, New York, London, 2014.
Kocha, C., Tulet, P., Lafore, J. P., and Flamant, C.: The importance of the
diurnal cycle of Aerosol Optical Depth in West Africa, Geophys. Res. Lett.,
40, 785–790, https://doi.org/10.1002/grl.50143, 2013.
Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins,
J. V., and Rosenfeld, D.: The Bodélé depression: A single spot in the
Sahara that provides most of the mineral dust to the Amazon forest, Environ.
Res. Lett., 1, 014005, https://doi.org/10.1088/1748-9326/1/1/014005, 2006.
Lee, L., Zhang, J., Reid, J. S., and Yorks, J. E.: Investigation of CATS aerosol products and application toward global diurnal variation of aerosols, Atmos. Chem. Phys., 19, 12687–12707, https://doi.org/10.5194/acp-19-12687-2019, 2019.
Luo, C., Mahowald, N., and Jones, C.: Temporal variability of dust
mobilization and concentration in source regions, J. Geophys. Res., 109,
D20202, https://doi.org/10.1029/2004JD004861, 2004.
Mahowald, N., Ward, D. S., Kloster, S., Flanner, M. G., Heald, C. L.,
Heavens, N. G., Hess, P. G., Lamarque, J.-F., and Chuang, P. Y.: Aerosol
Impacts on Climate and Biogeochemistry, Annu. Rev. Environ. Resour., 36,
45–74, https://doi.org/10.1146/annurev-environ-042009-094507, 2011.
Mahowald, N. M., Artaxo, P., Baker, A. R., Jickells, T. D., Okin, G. S.,
Randerson, J. T., and Townsend, A. R.: Impacts of biomass burning emissions
and land use change on Amazonian atmospheric phosphorus cycling and
deposition, Glob. Biogeochem. Cy., 19, GB4030, https://doi.org/10.1029/2005GB002541,
2005.
Mamouri, R. E. and Ansmann, A.: Fine and coarse dust separation with polarization lidar, Atmos. Meas. Tech., 7, 3717–3735, https://doi.org/10.5194/amt-7-3717-2014, 2014.
Marsham, J. H., Knippertz, P., Dixon, N. S., Parker, D. J., and Lister, G. M.
S.: The importance of the representation of deep convection for modeled
dust-generating winds over West Africa during summer, Geophys. Res. Lett.,
38, 2–7, https://doi.org/10.1029/2011GL048368, 2011.
McGill, M. J., Yorks, J. E., Scott, V. S., Kupchock, A. W., and Selmer, P.
A.: The Cloud-Aerosol Transport System (CATS): a technology demonstration on
the International Space Station, Proc. Spie.,
9612, 96120A, https://doi.org/10.1117/12.2190841, 2015.
Miller, R. L., Perlwitz, J., and Tegen, I.: Feedback upon dust emission by
dust radiative forcing through the planetary boundary layer, J. Geophys.
Res.-Atmos., 109, D24209, https://doi.org/10.1029/2004JD004912, 2004.
NASA Goddard: AERONET, https://aeronet.gsfc.nasa.gov/, last access: 1 February 2021.
N'Tchayi Mbourou, G., Bertrand, J. J., and Nicholson, S. E.: The Diurnal and
Seasonal Cycles of Wind-Borne Dust over Africa North of the Equator, J.
Appl. Meteorol., 36, 868–882, https://doi.org/10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2, 1997.
Noel, V., Chepfer, H., Chiriaco, M., and Yorks, J.: The diurnal cycle of cloud profiles over land and ocean between 51∘ S and 51∘ N, seen by the CATS spaceborne lidar from the International Space Station, Atmos. Chem. Phys., 18, 9457–9473, https://doi.org/10.5194/acp-18-9457-2018, 2018.
Okin, G. S., Mahowald, N., Chadwick, O. A., and Artaxo, P.: Impact of desert
dust on the biogeochemistry of phosphorus in terrestrial ecosystems, Glob.
Biogeochem. Cy., 18, GB2005, https://doi.org/10.1029/2003GB002145, 2004.
Omar, A. H., Winker, D. M., Tackett, J. L., Giles, D. M., Kar, J., Liu, Z.,
Vaughan, M. A., Powell, K. A., and Trepte, C. R.: CALIOP and AERONET aerosol
optical depth comparisons: One size fits none, J. Geophys. Res.-Atmos.,
118, 4748–4766, https://doi.org/10.1002/jgrd.50330, 2013.
Osipov, S., Stenchikov, G., Brindley, H., and Banks, J.: Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula, Atmos. Chem. Phys., 15, 9537–9553, https://doi.org/10.5194/acp-15-9537-2015, 2015.
Pauly, R. M., Yorks, J. E., Hlavka, D. L., McGill, M. J., Amiridis, V., Palm, S. P., Rodier, S. D., Vaughan, M. A., Selmer, P. A., Kupchock, A. W., Baars, H., and Gialitaki, A.: Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation, Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019, 2019.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:
Environmental characterization of global sources of atmospheric soil dust
identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS)
absorbing aerosol product, Rev. Geophys., 40, 1002,
https://doi.org/10.1029/2000rg000095, 2002.
Schepanski, K., Tegen, I., Laurent, B., Heinold, B., and Macke, A.: A new
Saharan dust source activation frequency map derived from MSG-SEVIRI
IR-channels, Geophys. Res. Lett., 34, L18803, https://doi.org/10.1029/2007GL030168,
2007.
Schepanski, K., Tegen, I., Todd, M. C., Heinold, B., Bönisch, G.,
Laurent, B., and Macke, A.: Meteorological processes forcing Saharan dust
emission inferred from MSG-SEVIRI observations of subdaily dust source
activation and numerical models, J. Geophys. Res., 114, D10201,
https://doi.org/10.1029/2008JD010325, 2009.
Schepanski, K., Heinold, B., and Tegen, I.: Harmattan, Saharan heat low, and West African monsoon circulation: modulations on the Saharan dust outflow towards the North Atlantic, Atmos. Chem. Phys., 17, 10223–10243, https://doi.org/10.5194/acp-17-10223-2017, 2017.
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J.,
and Lebair, W. J.: A closer look at the ABI on the GOES-R series, B. Am.
Meteorol. Soc., 98, 681–698, https://doi.org/10.1175/BAMS-D-15-00230.1, 2017.
Stout, J. E.: Diurnal patterns of blowing dust on the Llano Estacado, J.
Arid Environ., 122, 85–92, https://doi.org/10.1016/j.jaridenv.2015.06.013, 2015.
Tackett, J. L., Winker, D. M., Getzewich, B. J., Vaughan, M. A., Young, S. A., and Kar, J.: CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design, Atmos. Meas. Tech., 11, 4129–4152, https://doi.org/10.5194/amt-11-4129-2018, 2018.
Tegen, I. and Lacis, A. A.: Modeling of particle size distribution and its
influence on the radiative properties of mineral dust aerosol, J. Geophys.
Res., 101, 19237–19244, https://doi.org/10.1029/95jd03610, 1996.
Tesche, M., Ansmann, A., Müller, D., Althausen, D., Engelmann, R.,
Freudenthaler, V., and Groß, S.: Vertically resolved separation of dust
and smoke over Cape Verde using multiwavelength Raman and polarization
lidars during Saharan Mineral Dust Experiment 2008, J. Geophys. Res.-Atmos.,
114, D13202, https://doi.org/10.1029/2009JD011862, 2009.
Thomsen, G. L., Reeder, M. J., and Smith, R. K.: The diurnal evolution of
cold fronts in the Australian subtropics, Q. J. Roy. Meteorol. Soc., 146,
2332–2346, https://doi.org/10.1002/qj.387, 2008.
Todd, M. C., Bou Karam, D., Cavazos, C., Bouet, C., Heinold, B., Baldasano,
J. M., Cautenet, G., Koren, I., Perez, C., Solmon, F., Tegen, I., Tulet, P.,
Washington, R., and Zakey, A.: Quantifying uncertainty in estimates of
mineral dust flux: An intercomparison of model performance over the
Bodélé depression, northern Chad, J. Geophys. Res., 113, D24107,
https://doi.org/10.1029/2008JD010476, 2008.
Toth, T. D., Campbell, J. R., Reid, J. S., Tackett, J. L., Vaughan, M. A., Zhang, J., and Marquis, J. W.: Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products, Atmos. Meas. Tech., 11, 499–514, https://doi.org/10.5194/amt-11-499-2018, 2018.
Vaughan, M. A., Powell, K. A., Kuehn, R. E., Young, S. A., Winker, D. M.,
Hostetler, C. A., Hunt, W. H., Liu, Z., Mcgill, M. J., and Getzewich, B. J.:
Fully automated detection of cloud and aerosol layers in the CALIPSO lidar
measurements, J. Atmos. Ocean. Tech., 26, 2034–2050,
https://doi.org/10.1175/2009JTECHA1228.1, 2009.
Wagenbrenner, N. S.: A large source of dust missing in Particulate Matter
emission inventories? Wind erosion of post-fire landscapes, Elem. Sci. Anth.,
5, 2, https://doi.org/10.1525/elementa.185, 2017.
Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Robichaud, P. R., and
Foltz, R. B.: Wind erosion from a sagebrush steppe burned by wildfire:
Measurements of PM10 and total horizontal sediment flux, Aeolian Res.,
10, 25–36, https://doi.org/10.1016/j.aeolia.2012.10.003, 2013.
Wagner, R., Schepanski, K., Heinold, B., and Tegen, I.: Interannual
variability in the Saharan dust source activation – Towards understanding
the differences between 2007 and 2008, J. Geophys. Res.-Atmos., 121, 4538–4562, https://doi.org/10.1002/2015JD024302, 2016.
Wang, J., Xia, X., Wang, P., and Christopher, S. A.: Diurnal variability of
dust aerosol optical thickness and Angström exponent over dust source
regions in China, Geophys. Res. Lett., 31, 2–5,
https://doi.org/10.1029/2004GL019580, 2004.
Washington, R. and Todd, M. C.: Atmospheric controls on mineral dust
emission from the Bodélé Depression, Chad: The role of the low level
jet, Geophys. Res. Lett., 32, 1–5, https://doi.org/10.1029/2005GL023597, 2005.
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z.,
Hunt, W. H., and Young, S. A.: Overview of the CALIPSO mission and CALIOP
data processing algorithms, J. Atmos. Ocean. Techn., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009.
Yorks, J. E., Mcgill, M. J., Palm, S. P., Hlavka, D. L., Selmer, P. A.,
Nowottnick, E. P., Vaughan, M. A., and Rodier, S. D.: An Overview of the CATS
level 1 Processing Algorithms and Data Products, Geophys. Res. Lett., 43,
4632–4639, https://doi.org/10.1002/2016GL068006, 2016.
Yu, H., Chin, M., Yuan, T., Bian, H., Remer, L. A., Prospero, J. M., Omar,
A., Winker, D., Yang, Y., Zhang, Y., Zhang, Z., and Zhao, C.: The fertilizing
role of African dust in the Amazon rainforest: A first multiyear assessment
based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations, Geophys. Res. Lett., 42, 1984–1991, https://doi.org/10.1002/2015GL063040,
2015a.
Yu, Y., Notaro, M., Liu, Z., Kalashnikova, O., Alkolibi, F., Fadda, E.. and
Bakhrjy, F.: Assessing temporal and spatial variations in atmospheric dust
over Saudi Arabia through satellite, radiometric, and station data, J.
Geophys. Res.-Atmos., 118, 13253–13264, https://doi.org/10.1002/2013JD020677, 2013.
Yu, Y., Notaro, M., Liu, Z., Wang, F., Alkolibi, F., Fadda, E., and Bakhrjy,
F.: Climatic controls on the interannual to decadal variability in Saudi
Arabian dust activity: Toward the development of a seasonal dust prediction
model, J. Geophys. Res.-Ocean., 120, 1739–1758, https://doi.org/10.1002/2015JC010768,
2015b.
Yu, Y., Notaro, M., Kalashnikova, O. V., and Garay, M. J.: Climatology of
summer Shamal wind in the Middle East, J. Geophys. Res.-Atmos., 121, 289–305, https://doi.org/10.1002/2015JD024063, 2016.
Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., and Notaro, M.:
Identification and Characterization of Dust Source Regions Across North
Africa and the Middle East Using MISR Satellite Observations, Geophys. Res.
Lett., 45, 6690–6701, https://doi.org/10.1029/2018GL078324, 2018.
Yu, Y., Kalashnikova, O. V., Garay, M. J., and Notaro, M.: Climatology of Asian dust activation and transport potential based on MISR satellite observations and trajectory analysis, Atmos. Chem. Phys., 19, 363–378, https://doi.org/10.5194/acp-19-363-2019, 2019.
Yu, Y., Kalashnikova, O. V, Garay, M. J., Lee, H., Notaro, M., Campbell, J.
R., Marquis, J., Ginoux, P., and Okin, G. S.: Disproving the Bodélé
Depression as the Primary Source of Dust Fertilizing the Amazon Rainforest,
Geophys. Res. Lett., 47, e2020GL088020, https://doi.org/10.1029/2020GL088020, 2020a.
Yu, Y., Mao, J., Thornton, P. E., Notaro, M., Wullschleger, S. D., Shi, X.,
Hoffman, F. M., and Wang, Y.: Quantifying the drivers and predictability of
seasonal changes in African fire, Nat. Commun., 11, 2893, https://doi.org/10.1038/s41467-020-16692-w, 2020b.
Yue, X., Wang, H., Wang, Z., and Fan, K.: Simulation of dust aerosol
radiative feedback using the Global Transport Model of Dust: 1. Dust cycle
and validation, J. Geophys. Res., 114, D10202, https://doi.org/10.1029/2008JD010995,
2009.
Short summary
Given the current uncertainties in the simulated diurnal variability of global dust mobilization and concentration, observational characterization of the variations in dust mobilization and concentration will provide a valuable benchmark for evaluating and constraining such model simulations. The current study investigates the diurnal cycle of dust loading across the global tropics, subtropics, and mid-latitudes by analyzing aerosol observations from the International Space Station.
Given the current uncertainties in the simulated diurnal variability of global dust mobilization...
Altmetrics
Final-revised paper
Preprint