Articles | Volume 21, issue 16
https://doi.org/10.5194/acp-21-12463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-21-12463-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Tobias Wolf
Nansen Environmental and Remote Sensing Center, Jahnebakken 3, N-5007 Bergen, Norway
Lasse H. Pettersson
Nansen Environmental and Remote Sensing Center, Jahnebakken 3, N-5007 Bergen, Norway
Nansen Environmental and Remote Sensing Center, Jahnebakken 3, N-5007 Bergen, Norway
Related authors
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, Igor Esau, and Jaroslav Resler
Atmos. Chem. Phys., 25, 4477–4504, https://doi.org/10.5194/acp-25-4477-2025, https://doi.org/10.5194/acp-25-4477-2025, 2025
Short summary
Short summary
The study explored urban air quality in Prague using low-cost sensors and highlighted the multivariate adaptive regression splines (MARS) correction method's effectiveness in enhancing accuracy. Results showed traffic's impact on nitrogen dioxide levels and atmospheric dynamics on particulate matter. The research confirmed MARS-corrected sensors as cost-effective for monitoring, despite challenges like sensor ageing and data quality control.
Lihong Zhou and Igor Esau
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-25, https://doi.org/10.5194/wes-2025-25, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study tackles a key wind energy challenge: how much hourly wind data is needed for accurate resource assessment. One year of data recommended by guidelines is unable to capture year-to-year variations. The study finds basic stats stabilize quickly, but complex patterns need up to 88 years. Randomly sampled data can match continuous records, offering cost-effective solutions. These insights optimize data collection, balancing accuracy and costs, advancing renewable energy planning.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Igor Esau, Victoria Miles, Andrey Soromotin, Oleg Sizov, Mikhail Varentsov, and Pavel Konstantinov
Adv. Sci. Res., 18, 51–57, https://doi.org/10.5194/asr-18-51-2021, https://doi.org/10.5194/asr-18-51-2021, 2021
Short summary
Short summary
Persistent warm urban temperature anomalies – urban heat islands – significantly enhance already amplified climate warming in the Arctic. This study presents the surface urban heat islands in all circum-Arctic settlements with more than 3000 inhabitants. It reveals strong and persistent urban temperature anomalies during both summer and winter seasons that vary in different cities from 0.5 °C to more than 6.0 °C.
Cited articles
Bai, X.: Advance the ecosystem approach in cities, Nature, 559, 7,
https://doi.org/10.1038/d41586-018-05607-x, 2018.
Baklanov, A., Smith Korsholm, U., Nuterman, R., Mahura, A., Nielsen, K. P., Sass, B. H., Rasmussen, A., Zakey, A., Kaas, E., Kurganskiy, A., Sørensen, B., and González-Aparicio, I.: Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2), Geosci. Model Dev., 10, 2971–2999, https://doi.org/10.5194/gmd-10-2971-2017, 2017a.
Baklanov, A., Brunner, D., Carmichael, G., Flemming, J., Freitas, S., Gauss,
M., Hov, Ø., Mathur, R., Schlünzen, K. H., Seigneur, C., and Vogel,
B.: Key Issues for Seamless Integrated Chemistry–Meteorology Modeling,
B. Am. Meteorol. Soc., 98, 2285–2292, https://doi.org/10.1175/BAMS-D-15-00166.1,
2017b.
Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G.: Wood smoke as a
source of particle-phase organic compounds in residential areas, Atmos.
Environ., 43, 4722–4732, https://doi.org/10.1016/j.atmosenv.2008.09.006, 2009.
Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, L. M.: Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system – an integrated modelling approach, Atmos. Chem. Phys., 13, 7725–7746, https://doi.org/10.5194/acp-13-7725-2013, 2013.
Brötz, B., Eigenmann, R., Dörnbrack, A., Foken, T., and Wirth, V.:
Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under
Clear-Sky Conditions, Bound.-Lay. Meteorol., 152, 45–63,
https://doi.org/10.1007/s10546-014-9921-7, 2014.
Castillo, M. C. L., Kanda, M., and Letzel, M. O.: Heat ventilation efficiency
of urban surfaces using large-eddy simulation, Annu. J. Hydraul. Eng., 53,
175–180, 2009.
Cécé, R., Bernard, D., Brioude, J., and Zahibo, N.: Microscale
anthropogenic pollution modelling in a small tropical island during weak
trade winds: Lagrangian particle dispersion simulations using real nested
{LES} meteorological fields, Atmos. Environ.,
139, 98–112, https://doi.org/10.1016/j.atmosenv.2016.05.028, 2016.
Chandler, T. J.: Urban Climatology and its Relevance to Urban Design, WMO technical note no. 149, WMO, Geneva, Switzerland, 76 pp., 1976.
Cincinelli, A., Guerranti, C., Martellini, T., and Scodellini, R.:
Residential wood combustion and its impact on urban air quality in Europe,
Curr. Opin. Environ. Sci. Heal., 8, 10–14, https://doi.org/10.1016/j.coesh.2018.12.007,
2019.
Esau, I., Bobylev, L., Donchenko, V., Gnatiuk, N., Lappalainen, H. K.,
Konstantinov, P., Kulmala, M., Mahura, A., Makkonen, R., Manvelova, A.,
Miles, V., Petäjä, T., Poutanen, P., Fedorov, R., Varentsov, M.,
Wolf, T., Zilitinkevich, S. and Baklanov, A.: An enhanced integrated
approach to knowledgeable high-resolution environmental quality assessment,
Environ. Sci. Policy, 122, 1–13,
https://doi.org/10.1016/j.envsci.2021.03.020, 2021.
Felius, L. C., Thalfeldt, M., Georges, L., Hrynyszyn, B. D., Dessen, F., and
Hamdy, M.: Wood burning habits and its effect on the electrical energy
demand of a retrofitted Norwegian detached house, IOP Conf. Ser. Earth
Environ. Sci., 352, 012022, https://doi.org/10.1088/1755-1315/352/1/012022, 2019.
Fernando, H. J. S. S., Zajic, D., Di Sabatino, S., Dimitrova, R., Hedquist,
B., and Dallman, A.: Flow, turbulence, and pollutant dispersion in urban
atmospheresa), Phys. Fluids, 22, 051301, https://doi.org/10.1063/1.3407662, 2010.
Fröhlich, D. and Matzarakis, A.: Calculating human thermal comfort and thermal stress in the PALM model system 6.0, Geosci. Model Dev., 13, 3055–3065, https://doi.org/10.5194/gmd-13-3055-2020, 2020.
Gousseau, P., Blocken, B., Stathopoulos, T., and van Heijst, G. J. F.:
Near-field pollutant dispersion in an actual urban area: Analysis of the
mass transport mechanism by high-resolution Large Eddy Simulations, Comput.
Fluids, 114, 151–162, https://doi.org/10.1016/j.compfluid.2015.02.018, 2015.
Grange, S. K., Salmond, J. A., Trompetter, W. J., Davy, P. K., and Ancelet,
T.: Effect of atmospheric stability on the impact of domestic wood
combustion to air quality of a small urban township in winter, Atmos.
Environ., 70, 28–38, https://doi.org/10.1016/j.atmosenv.2012.12.047, 2013.
Grimmond, S., Bouchet, V., Molina, L. T., Baklanov, A., Tan, J.,
Schlünzen, K. H., Mills, G., Golding, B., Masson, V., Ren, C., Voogt,
J., Miao, S., Lean, H., Heusinkveld, B., Hovespyan, A., Teruggi, G.,
Parrish, P., and Joe, P.: Integrated urban hydrometeorological, climate and
environmental services: Concept, methodology and key messages, Urban Clim.,
33, 100623, https://doi.org/10.1016/j.uclim.2020.100623, 2020.
Gronemeier, T., Raasch, S., and Ng, E.: Effects of Unstable Stratification on
Ventilation in Hong Kong, Atmophere, 8, 168, https://doi.org/10.3390/atmos8090168, 2017.
Gronemeier, T., Surm, K., Harms, F., Leitl, B., Maronga, B., and Raasch, S.: Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments, Geosci. Model Dev., 14, 3317–3333, https://doi.org/10.5194/gmd-14-3317-2021, 2021.
Grythe, H. and Lopez-Aparicio, S.: MetVed v2.0 model and application, NILU tech. report 19/2020, 33 pp., Oslo, Norway, 2020.
Grythe, H., Lopez-Aparicio, S., Vogt, M., Vo Thanh, D., Hak, C., Halse, A. K., Hamer, P., and Sousa Santos, G.: The MetVed model: development and evaluation of emissions from residential wood combustion at high spatio-temporal resolution in Norway, Atmos. Chem. Phys., 19, 10217–10237, https://doi.org/10.5194/acp-19-10217-2019, 2019.
Hedberg, E., Johansson, C., Johansson, L., Swietlicki, E., and
Brorström-Lundén, E.: Is Levoglucosan a Suitable Quantitative Tracer
for Wood Burning? Comparison with Receptor Modeling on Trace Elements in
Lycksele, Sweden, J. Air Waste Manage. Assoc., 56, 1669–1678,
https://doi.org/10.1080/10473289.2006.10464572, 2006.
Heinze, R., Moseley, C., Böske, L. N., Muppa, S. K., Maurer, V., Raasch, S., and Stevens, B.: Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign, Atmos. Chem. Phys., 17, 7083–7109, https://doi.org/10.5194/acp-17-7083-2017, 2017.
Heldens, W., Burmeister, C., Kanani-Sühring, F., Maronga, B., Pavlik, D., Sühring, M., Zeidler, J., and Esch, T.: Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing, Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, 2020.
Hellén, H., Hakola, H., Haaparanta, S., Pietarila, H., and Kauhaniemi,
M.: Influence of residential wood combustion on local air quality, Sci.
Total Environ., 393, 283–290, https://doi.org/10.1016/j.scitotenv.2008.01.019,
2008.
Hiskar, B. A. K., Sundvor, I., Johnsrud, M., Haug, T. W., and Nr, N. P.: Tiltaksutredning for lokal luftkvalitet i Bergen, NILU tech. report, 15/2017, 122 pp., Oslo, Norway, 2017.
Im, U., Christensen, J. H., Nielsen, O.-K., Sand, M., Makkonen, R., Geels, C., Anderson, C., Kukkonen, J., Lopez-Aparicio, S., and Brandt, J.: Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic, Atmos. Chem. Phys., 19, 12975–12992, https://doi.org/10.5194/acp-19-12975-2019, 2019.
Jonassen, M. O., Ólafsson, H., Valved, A. S., Reuder, J., and Olseth, J.
A.: Simulations of the Bergen orographic wind shelter, Tellus A, 65, 19206, https://doi.org/10.3402/tellusa.v65i0.19206, 2013.
Keck, M., Raasch, S., Letzel, M. O., and Ng, E.: First Results of High
Resolution Large-Eddy Simulations of the Atmospheric Boundary Layer, J. Heat
Isl. Inst. Int., 9, 39–43, 2014.
Køltzow, M., Casati, B., Bazile, E., Haiden, T., and Valkonen, T.: An NWP
Model Intercomparison of Surface Weather Parameters in the European Arctic
during the Year of Polar Prediction Special Observing Period Northern
Hemisphere 1, Weather Forecast., 34, 959–983,
https://doi.org/10.1175/WAF-D-19-0003.1, 2019.
Krecl, P., Hedberg Larsson, E., Ström, J., and Johansson, C.: Contribution of residential wood combustion and other sources to hourly winter aerosol in Northern Sweden determined by positive matrix factorization, Atmos. Chem. Phys., 8, 3639–3653, https://doi.org/10.5194/acp-8-3639-2008, 2008.
Kukkonen, J., Kangas, L., Kauhaniemi, M., Sofiev, M., Aarnio, M., Jaakkola, J. J. K., Kousa, A., and Karppinen, A.: Modelling of the urban concentrations of PM2.5 on a high resolution for a period of 35 years, for the assessment of lifetime exposure and health effects, Atmos. Chem. Phys., 18, 8041–8064, https://doi.org/10.5194/acp-18-8041-2018, 2018.
Kukkonen, J., López-Aparicio, S., Segersson, D., Geels, C., Kangas, L., Kauhaniemi, M., Maragkidou, A., Jensen, A., Assmuth, T., Karppinen, A., Sofiev, M., Hellén, H., Riikonen, K., Nikmo, J., Kousa, A., Niemi, J. V., Karvosenoja, N., Santos, G. S., Sundvor, I., Im, U., Christensen, J. H., Nielsen, O.-K., Plejdrup, M. S., Nøjgaard, J. K., Omstedt, G., Andersson, C., Forsberg, B., and Brandt, J.: The influence of residential wood combustion on the concentrations of PM2.5 in four Nordic cities, Atmos. Chem. Phys., 20, 4333–4365, https://doi.org/10.5194/acp-20-4333-2020, 2020.
Kurppa, M., Hellsten, A., Auvinen, M., Raasch, S., Vesala, T., and Järvi,
L.: Ventilation and Air Quality in City Blocks Using Large-Eddy
Simulation – Urban Planning Perspective, Atmosphere, 9, 65,
https://doi.org/10.3390/atmos9020065, 2018.
Lareau, N. P., Crosman, E., Whiteman, C. D., Horel, J. D., Hoch, S. W.,
Brown, W. O. J., and Horst, T. W.: The Persistent Cold-Air Pool Study, B.
Am. Meteorol. Soc., 94, 51–63, https://doi.org/10.1175/BAMS-D-11-00255.1, 2013.
Leiren, M. D. and Jacobsen, J. K. S.: Silos as barriers to public sector
climate adaptation and preparedness: insights from road closures in Norway,
Local Gov. Stud., 44, 492–511, https://doi.org/10.1080/03003930.2018.1465933, 2018.
Letzel, M. O., Krane, M., and Raasch, S.: High resolution urban large-eddy
simulation studies from street canyon to neighbourhood scale, Atmos.
Environ., 42, 8770–8784, https://doi.org/10.1016/j.atmosenv.2008.08.001, 2008.
Lopez-Aparicio, S. and Grythe, H.: Evaluating the effectiveness of a stove
exchange programme on PM2.5 emission reduction, Atmos. Environ., 231, 117529, https://doi.org/10.1016/j.atmosenv.2020.117529, 2020.
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M. O., Sühring, M., and Raasch, S.: The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives, Geosci. Model Dev., 8, 2515–2551, https://doi.org/10.5194/gmd-8-2515-2015, 2015.
Maronga, B., Knigge, C., and Raasch, S.: An Improved Surface Boundary
Condition for Large-Eddy Simulations Based on Monin–Obukhov Similarity
Theory: Evaluation and Consequences for Grid Convergence in Neutral and
Stable Conditions, Bound.-Lay. Meteor., 174, 297–325,
https://doi.org/10.1007/s10546-019-00485-w, 2019a.
Maronga, B., Gross, G., Raasch, S., Banzhaf, S., Forkel, R., Heldens, W.,
Kanani-Sühring, F., Matzarakis, A., Mauder, M., Pavlik, D., Pfafferott,
J., Schubert, S., Seckmeyer, G., Sieker, H., and Winderlich, K.: Development
of a new urban climate model based on the model PALM – Project overview,
planned work, and first achievements, Meteorol. Z., 28,
105–119, https://doi.org/10.1127/metz/2019/0909, 2019b.
Masson, V., Heldens, W., Bocher, E., Bonhomme, M., Bucher, B., Burmeister,
C., de Munck, C., Esch, T., Hidalgo, J., Kanani-Sühring, F., Kwok, Y.
T., Lemonsu, A., Lévy, J. P., Maronga, B., Pavlik, D., Petit, G., See,
L., Schoetter, R., Tornay, N., Votsis, A., and Zeidler, J.: City-descriptive
input data for urban climate models: Model requirements, data sources and
challenges, Urban Clim., 31, 100536, https://doi.org/10.1016/j.uclim.2019.100536,
2020.
Mazzeo, A., Huneeus, N., Ordoñez, C., Orfanoz-Cheuquelaf, A., Menut, L.,
Mailler, S., Valari, M., Denier van der Gon, H., Gallardo, L., Muñoz,
R., Donoso, R., Galleguillos, M., Osses, M., and Tolvett, S.: Impact of
residential combustion and transport emissions on air pollution in Santiago
during winter, Atmos. Environ., 190, 195–208,
https://doi.org/10.1016/j.atmosenv.2018.06.043, 2018.
Park, S.-B., Baik, J.-J., and Han, B.-S.: Large-eddy simulation of turbulent
flow in a densely built-up urban area, Environ. Fluid Mech., 15,
235–250, https://doi.org/10.1007/s10652-013-9306-3, 2015.
Resler, J., Krč, P., Belda, M., Juruš, P., Benešová, N., Lopata, J., Vlček, O., Damašková, D., Eben, K., Derbek, P., Maronga, B., and Kanani-Sühring, F.: PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model, Geosci. Model Dev., 10, 3635–3659, https://doi.org/10.5194/gmd-10-3635-2017, 2017.
Ronda, R. J., Steeneveld, G. J., Heusinkveld, B. G., Attema, J. J., and
Holtslag, A. A. M.: Urban Finescale Forecasting Reveals Weather Conditions
with Unprecedented Detail, B. Am. Meteorol. Soc., 98, 2675–2688,
https://doi.org/10.1175/BAMS-D-16-0297.1, 2017.
Savolahti, M., Lehtomäki, H., Karvosenoja, N., Ville-Veikko, P.,
Korhonen, A., Kukkonen, J., Kupiainen, K., Kangas, L., Karppinen, A. and
Hänninen, O.: Residential wood combustion in Finland: PM2.5 emissions
and health impacts with and without abatement measures, Int. J. Environ.
Res. Pub. He., 16, 2920, https://doi.org/10.3390/ijerph16162920, 2019.
Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., and
Bartonova, A.: Mapping urban air quality in near real-time using
observations from low-cost sensors and model information, Environ. Int.,
106, 234–247, https://doi.org/10.1016/j.envint.2017.05.005, 2017.
Seljeskog, M., Goile, F., and Skreiberg, Ø.: Recommended Revisions of
Norwegian Emission Factors for Wood Stoves, Enrgy. Proced., 105,
1022–1028, https://doi.org/10.1016/j.egypro.2017.03.447, 2017.
Simpson, W., Law, K., Schmale, J., Pratt, K., Arnold, S., and Mao, J.: Alaskan Layered Pollution And Chemical Analysis (ALPACA)
White Paper, the International Global Atmospheric Chemistry (IGAC) Project, Boulder, CO, 2018.
Solli, C., Reenaas, M., Strømman, A. H., and Hertwich, E. G.: Life cycle
assessment of wood-based heating in Norway, Int. J. Life Cycle Assess.,
14, 517–528, https://doi.org/10.1007/s11367-009-0086-4, 2009.
Statens Kartverk: Hydedata, available at: https://hoydedata.no/LaserInnsyn/ (last access 17 August 2021), 2018.
Stoll, R., Gibbs, J. A., Salesky, S. T., Anderson, W., and Calaf, M.:
Large-Eddy Simulation of the Atmospheric Boundary Layer, Bound.-Lay.
Meteorol., 177, 541–581, https://doi.org/10.1007/s10546-020-00556-3, 2020.
Venter, Z. S., Brousse, O., Esau, I., and Meier, F.: Hyperlocal mapping of
urban air temperature using remote sensing and crowdsourced weather data,
Remote Sens. Environ., 242, 111791, https://doi.org/10.1016/j.rse.2020.111791,
2020.
Wolf, T. and Esau, I.: A proxy for air quality hazards under present and
future climate conditions in Bergen, Norway, Urban Clim., 10, 801–814,
https://doi.org/10.1016/j.uclim.2014.10.006, 2014.
Wolf, T., Esau, I., and Reuder, J.: Analysis of the vertical temperature
structure in the Bergen valley, Norway, and its connection to pollution
episodes, J. Geophys. Res.-Atmos., 119, 10645–10662,
https://doi.org/10.1002/2014JD022085, 2014.
Wolf, T., Pettersson, L. H., and Esau, I.: A very high-resolution assessment and modelling of urban air quality, Atmos. Chem. Phys., 20, 625–647, https://doi.org/10.5194/acp-20-625-2020, 2020.
Wolf, T., Pettersson, L. H., and Esau, I.: Scripts for data analysis and
visualization, modeling results and processed data for “Dispersion of particulate matter (PM2.5) from wood combustion for
residential heating: optimization of mitigation actions based on large-eddy
simulations”, Nansen Center FTP [code and data set], available at: ftp://ftp.nersc.no/igor/, last access: 17 August 2021.
Wolf-Grosse, T., Esau, I., and Reuder, J.: Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study, Atmos. Chem. Phys., 17, 7261–7276, https://doi.org/10.5194/acp-17-7261-2017, 2017a.
Wolf-Grosse, T., Esau, I., and Reuder, J.: The large-scale circulation during
air quality hazards in Bergen, Norway, Tellus A,
69, 1406265, https://doi.org/10.1080/16000870.2017.1406265, 2017b.
Wyss, A. B., Jones, A. C., Bølling, A. K., Kissling, G. E., Chartier, R.,
Dahlman, H. J., Rodes, C. E., Archer, J., Thornburg, J., Schwarze, P. E., and
London, S. J.: Particulate Matter 2.5 Exposure and Self-Reported Use of Wood
Stoves and Other Indoor Combustion Sources in Urban Nonsmoking Homes in
Norway, PLoS One, 11, e0166440,
https://doi.org/10.1371/journal.pone.0166440, 2016.
Zhang, Y., Ye, X., Wang, S., He, X., Dong, L., Zhang, N., Wang, H., Wang, Z., Ma, Y., Wang, L., Chi, X., Ding, A., Yao, M., Li, Y., Li, Q., Zhang, L., and Xiao, Y.: Large-eddy simulation of traffic-related air pollution at a very high resolution in a mega-city: evaluation against mobile sensors and insights for influencing factors, Atmos. Chem. Phys., 21, 2917–2929, https://doi.org/10.5194/acp-21-2917-2021, 2021.
Zhong, J., Cai, X. M., and Bloss, W. J.: Coupling dynamics and chemistry in
the air pollution modelling of street canyons: A review, Environ. Pollut.,
214, 690–704, https://doi.org/10.1016/j.envpol.2016.04.052, 2016.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(22320 KB) - Full-text XML
- Corrigendum
-
Supplement
(489 KB) - BibTeX
- EndNote
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway....
Special issue
Altmetrics
Final-revised paper
Preprint