Articles | Volume 21, issue 2
https://doi.org/10.5194/acp-21-1127-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-1127-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Toward closure between predicted and observed particle viscosity over a wide range of temperatures and relative humidity
Sabin Kasparoglu
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA
Department of Chemistry, University of California, Irvine, Irvine, CA 92625, USA
Manabu Shiraiwa
Department of Chemistry, University of California, Irvine, Irvine, CA 92625, USA
Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA
Related authors
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025, https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Short summary
This study examines the properties of dust in snow in Changchun, China, using advanced technology to analyze its size, shape, and light absorption. We found that dust composition affects how much heat is absorbed by snow, with certain minerals, such as hematite, making snowmelt faster. Our research highlights the importance of creating clear standards for classifying dust, which could improve climate models and field observations. This work helps better understand dust's role in climate change.
Sara L. Farrell, Quazi Z. Rasool, Havala O. T. Pye, Yue Zhang, Ying Li, Yuzhi Chen, Chi-Tsan Wang, Haofei Zhang, Ryan Schmedding, Manabu Shiraiwa, Jaime Greene, Sri H. Budisulistiorini, Jose L. Jimenez, Weiwei Hu, Jason D. Surratt, and William Vizuete
EGUsphere, https://doi.org/10.5194/egusphere-2025-2253, https://doi.org/10.5194/egusphere-2025-2253, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fine particulate matter (PM2.5) has become increasingly important to regulate and model. In this study, we parameterize non-ideal aerosol mixing and phase state into the Community Multiscale Air Quality (CMAQ) model and analyze its impact on the formation of a globally important source of PM2.5, isoprene epoxydiol (IEPOX)-derived PM2.5. Incorporating these features furthers model bias in IEPOX-derived PM2.5, however, this work provides potential phase state bounds for future PM2.5 modeling work.
Yu Li, Momei Qin, Weiwei Hu, Bin Zhao, Ying Li, Havala O. T. Pye, Jingyi Li, Linghan Zeng, Song Guo, Min Hu, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2879, https://doi.org/10.5194/egusphere-2025-2879, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We evaluated how well a widely used air quality model simulates key properties of organic particles in the atmosphere, such as volatility and oxygen content, which influence how particles age, spread, and affect both air quality and climate. Using observations from eastern China, we found the model underestimated particle mass and misrepresented their chemical makeup. Our results highlight the need for improved emissions and chemical treatments to better predict air quality and climate impacts.
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025, https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
Short summary
Hydrogen peroxide (HOOH) is an important oxidant that forms atmospheric sulfate. We demonstrate that the illumination of brown carbon can rapidly form HOOH within particles, even under the low-sunlight conditions of Fairbanks, Alaska, during winter. This in-particle formation of HOOH is fast enough that it forms sulfate at significant rates. In contrast, the formation of HOOH in the gas phase during the campaign is expected to be negligible because of high NOx levels.
Laura Marie Dahler Heinlein, Junwei He, Michael Oluwatoyin Sunday, Fangzhou Guo, James Campbell, Allison Moon, Sukriti Kapur, Ting Fang, Kasey Edwards, Meeta Cesler-Maloney, Alyssa J. Burns, Jack Dibb, William Simpson, Manabu Shiraiwa, Becky Alexander, Jingqiu Mao, James H. Flynn III, Jochen Stutz, and Cort Anastasio
EGUsphere, https://doi.org/10.5194/egusphere-2025-824, https://doi.org/10.5194/egusphere-2025-824, 2025
Short summary
Short summary
High-latitude cities like Fairbanks, Alaska, experience severe wintertime pollution episodes. While conventional wisdom holds that oxidation is slow under these conditions, field measurements find oxidized products in particles. To explore this, we measured oxidants in aqueous extracts of winter particles from Fairbanks. We find high concentrations of oxidants during illumination, indicating that particle photochemistry can be significant even in high latitudes during winter.
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025, https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Short summary
The Fifth International Ice Nucleation Workshop Phase 3 (FIN-03) compared the ambient atmospheric performance of ice-nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, INP concentrations agreed within 5–10 factors. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Mega Octaviani, Benjamin A. Musa Bandowe, Qing Mu, Jake Wilson, Holger Tost, Hang Su, Yafang Cheng, Manabu Shiraiwa, Ulrich Pöschl, Thomas Berkemeier, and Gerhard Lammel
EGUsphere, https://doi.org/10.5194/egusphere-2025-186, https://doi.org/10.5194/egusphere-2025-186, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This research explores the atmospheric concentration of benzo(a)pyrene (BaP), a harmful air pollutant linked to lung cancer. Using advanced Earth system modeling, the study examines how BaP's degradation varies with temperature and humidity, affecting its global distribution and associated lung cancer risks. The findings reveal that BaP persists longer in colder, less humid regions, leading to higher lung cancer risks in parts of Europe and Asia.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
Geosci. Model Dev., 17, 8885–8907, https://doi.org/10.5194/gmd-17-8885-2024, https://doi.org/10.5194/gmd-17-8885-2024, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can reproduce PAH distribution well. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change in BaP is lower than that in PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although the Action Plan has been implemented.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Daniel A. Knopf, Markus Ammann, Thomas Berkemeier, Ulrich Pöschl, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 3445–3528, https://doi.org/10.5194/acp-24-3445-2024, https://doi.org/10.5194/acp-24-3445-2024, 2024
Short summary
Short summary
The initial step of interfacial and multiphase chemical processes involves adsorption and desorption of gas species. This study demonstrates the role of desorption energy governing the residence time of the gas species at the environmental interface. A parameterization is formulated that enables the prediction of desorption energy based on the molecular weight, polarizability, and oxygen-to-carbon ratio of the desorbing chemical species. Its application to gas–particle interactions is discussed.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Meredith Schervish and Manabu Shiraiwa
Atmos. Chem. Phys., 23, 221–233, https://doi.org/10.5194/acp-23-221-2023, https://doi.org/10.5194/acp-23-221-2023, 2023
Short summary
Short summary
Secondary organic aerosols (SOAs) can exhibit complex non-ideal behavior and adopt an amorphous semisolid state. We simulate condensation of semi-volatile compounds into a phase-separated particle to investigate the effect of non-ideality and particle phase state on the equilibration timescale of SOA partitioning. Our results provide useful insights into the interpretation of experimental observations and the description and treatment of SOA in aerosol models.
Sabin Kasparoglu, Mohammad Maksimul Islam, Nicholas Meskhidze, and Markus D. Petters
Atmos. Meas. Tech., 15, 5007–5018, https://doi.org/10.5194/amt-15-5007-2022, https://doi.org/10.5194/amt-15-5007-2022, 2022
Short summary
Short summary
A modified version of a Handix Scientific printed optical particle spectrometer is introduced. The paper presents characterization experiments, including concentration, size, and time responses. Integration of an external multichannel analyzer card removes counting limitations of the original instrument. It is shown that the high-resolution light-scattering amplitude data can be used to sense particle-phase transitions.
Markus D. Petters
Atmos. Meas. Tech., 14, 7909–7928, https://doi.org/10.5194/amt-14-7909-2021, https://doi.org/10.5194/amt-14-7909-2021, 2021
Short summary
Short summary
Inverse methods infer physical properties from a measured instrument response. Measurement noise often interferes with the inversion. This work presents a general, domain-independent, accessible, and computationally efficient software implementation of a common class of statistical inversion methods. In addition, a new method to invert data from humidified tandem differential mobility analyzers is introduced. Results show that the approach is suitable for inversion of large-scale datasets.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Tommaso Galeazzo, Richard Valorso, Ying Li, Marie Camredon, Bernard Aumont, and Manabu Shiraiwa
Atmos. Chem. Phys., 21, 10199–10213, https://doi.org/10.5194/acp-21-10199-2021, https://doi.org/10.5194/acp-21-10199-2021, 2021
Short summary
Short summary
We simulate SOA viscosity with explicit modeling of gas-phase oxidation of isoprene and α-pinene. While the viscosity dependence on relative humidity and mass loadings is captured well by simulations, the model underestimates measured viscosity, indicating missing processes. Kinetic limitations and reduction in mass accommodation may cause an increase in viscosity. The developed model is powerful for investigation of the interplay among gas reactions, chemical composition and phase state.
Jake Wilson, Ulrich Pöschl, Manabu Shiraiwa, and Thomas Berkemeier
Atmos. Chem. Phys., 21, 6175–6198, https://doi.org/10.5194/acp-21-6175-2021, https://doi.org/10.5194/acp-21-6175-2021, 2021
Short summary
Short summary
This work explores the gas–particle partitioning of PAHs on soot with a kinetic model. We show that the equilibration timescale depends on PAH molecular structure, temperature, and particle number concentration. We explore scenarios in which the particulate fraction is perturbed from equilibrium by chemical loss and discuss implications for chemical transport models that assume instantaneous equilibration at each model time step.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Manabu Shiraiwa and Ulrich Pöschl
Atmos. Chem. Phys., 21, 1565–1580, https://doi.org/10.5194/acp-21-1565-2021, https://doi.org/10.5194/acp-21-1565-2021, 2021
Short summary
Short summary
Mass accommodation is a crucial process in secondary organic aerosol partitioning that depends on volatility, diffusivity, reactivity, and particle penetration depth of the chemical species involved. For efficient kinetic modeling, we introduce an effective mass accommodation coefficient that accounts for the above influencing factors, can be applied in the common Fuchs–Sutugin approximation, and helps to resolve inconsistencies and shortcomings of earlier experimental and model investigations.
Cited articles
Angell, C. A.: Formation of Glasses from Liquids and Biopolymers,
Science, 267, 1924, https://doi.org/10.1126/science.267.5206.1924, 1995. a
Berkemeier, T., Shiraiwa, M., Pöschl, U., and Koop, T.: Competition between water uptake and ice nucleation by glassy organic aerosol particles, Atmos. Chem. Phys., 14, 12513–12531, https://doi.org/10.5194/acp-14-12513-2014, 2014. a, b, c
Champion, W. M., Rothfuss, N. E., Petters, M. D., and Grieshop, A. P.:
Volatility and Viscosity Are Correlated in Terpene Secondary Organic
Aerosol Formed in a Flow Reactor, Environ. Sci. Tech. Lett., 6, 513–519, https://doi.org/10.1021/acs.estlett.9b00412, 2019. a, b
Chu, B., Wang, K., Takekawa, H., Li, J., Zhou, W., Jiang, J., Ma, Q., He, H.,
and Hao, J.: Hygroscopicity of Particles Generated from Photooxidation of
α-Pinene under Different Oxidation Conditions in the Presence of
Sulfate Seed Aerosols, J. Environ. Sci.-China, 26, 129–139,
https://doi.org/10.1016/S1001-0742(13)60402-7, 2014. a
Debenedetti, P. G. and Stillinger, F. H.: Supercooled Liquids and the Glass
Transition, Nature, 410, 259–267, https://doi.org/10.1038/35065704, 2001. a
DeRieux, W.-S. W., Li, Y., Lin, P., Laskin, J., Laskin, A., Bertram, A. K., Nizkorodov, S. A., and Shiraiwa, M.: Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition, Atmos. Chem. Phys., 18, 63316351, https://doi.org/10.5194/acp-18-6331-2018, 2018. a, b, c, d
Dette, H. P., Qi, M., Schröder, D. C., Godt, A., and Koop, T.:
Glass-Forming Properties of 3-Methylbutane-1,2,3-Tricarboxylic Acid and Its Mixtures with Water and Pinonic Acid, J. Phys. Chem. A, 118, 7024–7033, https://doi.org/10.1021/jp505910w,
2014. a
Elamin, A. A., Sebhatu, T., and Ahlneck, C.: The Use of Amorphous Model
Substances to Study Mechanically Activated Materials in the Solid State,
Int. J. Pharmaceut., 119, 25–36,
https://doi.org/10.1016/0378-5173(94)00364-B, 1995. a, b
Först, P., Werner, F., and Delgado, A.: On the Pressure Dependence of the
Viscosity of Aqueous Sugar Solutions, Rheol. Acta, 41, 369–374,
https://doi.org/10.1007/s00397-002-0238-y, 2002. a, b
Fulcher, G. S.: Analysis of Recent Measurements of the Viscosity of Glasses,
J. Am. Ceram. Soc., 8, 339–355,
https://doi.org/10.1111/j.1151-2916.1925.tb16731.x, 1925. a, b
Gervasi, N. R., Topping, D. O., and Zuend, A.: A predictive group-contribution
model for the viscosity of aqueous organic aerosol, Atmos. Chem. Phys., 20,
2987–3008, https://doi.org/10.5194/acp-20-2987-2020, 2020. a, b
Good, N., Topping, D. O., Duplissy, J., Gysel, M., Meyer, N. K., Metzger, A., Turner, S. F., Baltensperger, U., Ristovski, Z., Weingartner, E., Coe, H., and McFiggans, G.: Widening the gap between measurement and modelling of secondary organic aerosol properties?, Atmos. Chem. Phys., 10, 2577–2593, https://doi.org/10.5194/acp-10-2577-2010, 2010. a
Gordon, M. and Taylor, J. S.: Ideal Copolymers and the Second-Order Transitions
of Synthetic Rubbers. i. Non-Crystalline Copolymers, J. Appl.
Chem., 2, 493–500, https://doi.org/10.1002/jctb.5010020901, 1952. a, b
Ignatius, K., Kristensen, T. B., Järvinen, E., Nichman, L., Fuchs, C., Gordon, H., Herenz, P., Hoyle, C. R., Duplissy, J., Garimella, S., Dias, A., Frege, C., Höppel, N., Tröstl, J., Wagner, R., Yan, C., Amorim, A., Baltensperger, U., Curtius, J., Donahue, N. M., Gallagher, M. W., Kirkby, J., Kulmala, M., Möhler, O., Saathoff, H., Schnaiter, M., Tomé, A., Virtanen, A., Worsnop, D., and Stratmann, F.: Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene, Atmos. Chem. Phys., 16, 6495–6509, https://doi.org/10.5194/acp-16-6495-2016, 2016. a
Jansson, H., Bergman, R., and Swenson, J.: Dynamics of Sugar Solutions as
Studied by Dielectric Spectroscopy, J. Non-Cryst. Solids, 351,
2858–2863, https://doi.org/10.1016/j.jnoncrysol.2005.04.086, 2005. a, b
Järvinen, E., Ignatius, K., Nichman, L., Kristensen, T. B., Fuchs, C., Hoyle, C. R., Höppel, N., Corbin, J. C., Craven, J., Duplissy, J., Ehrhart, S., El Haddad, I., Frege, C., Gordon, H., Jokinen, T., Kallinger, P., Kirkby, J., Kiselev, A., Naumann, K.-H., Petäjä, T., Pinterich, T., Prevot, A. S. H., Saathoff, H., Schiebel, T., Sengupta, K., Simon, M., Slowik, J. G., Tröstl, J., Virtanen, A., Vochezer, P., Vogt, S., Wagner, A. C., Wagner, R., Williamson, C., Winkler, P. M., Yan, C., Baltensperger, U., Donahue, N. M., Flagan, R. C., Gallagher, M., Hansel, A., Kulmala, M., Stratmann, F., Worsnop, D. R., Möhler, O., Leisner, T., and Schnaiter, M.: Observation of viscosity transition in α-pinene secondary organic aerosol, Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, 2016. a
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., E., Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S.,
Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M.,
Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C.,
Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of Organic
Aerosols in the Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009. a
Jurányi, Z., Gysel, M., Duplissy, J., Weingartner, E., Tritscher, T.,
Dommen, J., Henning, S., Ziese, M., Kiselev, A., Stratmann, F., George, I.,
and Baltensperger, U.: Influence of Gas-to-Particle Partitioning on the
Hygroscopic and Droplet Activation Behaviour of Alpha-Pinene Secondary
Organic Aerosol, Phys. Chem. Chem. Phys., 11, 8091–8097,
https://doi.org/10.1039/b904162a, 2009. a
Kasparoglu, S., Li, Y., Shiraiwa, M., and Petters, M.: Dataset for “Toward closure between predicted and observed particle viscosity over a wide range temperature and relative humidity”, Zenodo,
https://doi.org/10.5281/zenodo.4287484, 2020. a
Kelly, F. J. and Fussell, J. C.: Air Pollution and Airway Disease: Air
Pollution and Airway Disease, Clin. Exp. Allergy, 41,
1059–1071, https://doi.org/10.1111/j.1365-2222.2011.03776.x, 2011. a
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass Transition and
Phase State of Organic Compounds: Dependency on Molecular Properties and
Implications for Secondary Organic Aerosols in the Atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/C1CP22617G, 2011. a, b, c, d
Kreidenweis, S. M., Petters, M. D., and DeMott, P. J.: Single-Parameter
Estimates of Aerosol Water Content, Environ. Res. Lett., 3,
035002, https://doi.org/10.1088/1748-9326/3/3/035002, 2008. a
Laguerie, C., Aubry, M., and Couderc, J. P.: Some Physicochemical Data on
Monohydrate Citric Acid Solutions in Water: Solubility, Density, Viscosity,
Diffusivity, pH of Standard Solution, and Refractive Index, J. Chem. Eng. Data, 21, 85–87, https://doi.org/10.1021/je60068a031, 1976. a, b, c, d
Li, Y. and Shiraiwa, M.: Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities, Atmos. Chem. Phys., 19, 5959–5971, https://doi.org/10.5194/acp-19-5959-2019, 2019. a, b
Li, Y., Day, D. A., Stark, H., Jimenez, J. L., and Shiraiwa, M.: Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions, Atmos. Chem. Phys., 20, 8103–8122, https://doi.org/10.5194/acp-20-8103-2020, 2020. a
Lienhard, D. M., Bones, D. L., Zuend, A., Krieger, U. K., Reid, J. P., and
Peter, T.: Measurements of Thermodynamic and Optical Properties of Selected Aqueous Organic and Organic–Inorganic Mixtures
of Atmospheric Relevance, J. Phys. Chem. A, 116,
9954–9968, https://doi.org/10.1021/jp3055872, 2012. a, b, c, d
Lienhard, D. M., Huisman, A. J., Krieger, U. K., Rudich, Y., Marcolli, C., Luo, B. P., Bones, D. L., Reid, J. P., Lambe, A. T., Canagaratna, M. R., Davidovits, P., Onasch, T. B., Worsnop, D. R., Steimer, S. S., Koop, T., and Peter, T.: Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?, Atmos. Chem. Phys., 15, 13599–13613, https://doi.org/10.5194/acp-15-13599-2015, 2015. a
Longinotti, M. P. and Corti, H. R.: Viscosity of Concentrated Sucrose and
Trehalose Aqueous Solutions Including the Supercooled Regime, J. Phys. Chem. Ref. Data, 37, 1503–1515,
https://doi.org/10.1063/1.2932114, 2008. a, b, c
Lu, Q. and Zografi, G.: Properties of Citric Acid at the Glass Transition,
J. Pharm. Sci., 86, 1374–1378, https://doi.org/10.1021/js970157y,
1997. a, b
Luyet, B. and Rasmussen, D.: Study by Differential Thermal Analysis of the
Temperatures of Instability of Rapidly Cooled Solutions of Glycerol, Ethylene
Glycol, Sucrose and Glucose, Biodynamica, 10, 167–191, 1968. a
Maltini, E. and Anese, M.: Evaluation of Viscosities of Amorphous Phases in
Partially Frozen Systems by WLF Kinetics and Glass Transition
Temperatures, Food Res. Int., 28, 367–372,
https://doi.org/10.1016/0963-9969(95)00006-8, 1995. a, b, c
Mar, T. F., Norris, G. A., Koenig, J. Q., and Larson, T. V.: Associations
between Air Pollution and Mortality in Phoenix, 1995–1997, Environ.
Health Persp., 108, 347–353, https://doi.org/10.1289/ehp.00108347, 2000. a
Marsh, A., Petters, S. S., Rothfuss, N. E., Rovelli, G., Song, Y. C., Reid, J. P., and Petters, M. D.: Amorphous Phase State Diagrams and Viscosity of
Ternary Aqueous Organic/Organic and Inorganic/Organic Mixtures, Phys. Chem.
Chem. Phys., 20, 15086–15097, https://doi.org/10.1039/C8CP00760H, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M., Mikkilä, J., Canagaratna, M. R., Brune, W. H., Onasch, T. B., Jayne, J. T.,
Petäjä, T., Kulmala, M., Laaksonen, A., Kolb, C. E., Davidovits, P.,
and Worsnop, D. R.: Relationship between Aerosol Oxidation Level and
Hygroscopic Properties of Laboratory Generated Secondary Organic Aerosol
(SOA) Particles, Geophys. Res. Lett., 37, L24801, https://doi.org/10.1029/2010GL045258, 2010. a
Mazurkiewicz, J., Tomasik, P., and Zapłotny, J.: Relationships between Water
Activity and Viscosity of Solutions, Food Hydrocolloid., 15, 43–46,
https://doi.org/10.1016/S0268-005X(00)00048-5, 2001. a
McCormick, R. A. and Ludwig, J. H.: Climate Modification by Atmospheric
Aerosols, Science, 156, 1358–1359, 1967. a
Mikhailov, E., Vlasenko, S., Rose, D., and Pöschl, U.: Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake, Atmos. Chem. Phys., 13, 717–740, https://doi.org/10.5194/acp-13-717-2013, 2013. a
Murray, B. J.: Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets, Atmos. Chem. Phys., 8, 5423–5433, https://doi.org/10.5194/acp-8-5423-2008, 2008. a
Omran, M. M., Kiani, F., Saraei, A. G.-H., Koohyar, F., and Rostami, A. M.:
Determination and Study on Refractive Indices and Viscosities of Aqueous
Solutions of Citric Acid, (Citric Acid + Glycerol), and (Citric Acid +
d-Sorbitol) at T=293.15 K–323.15 K and Atmospheric
Pressure, Food Chem., 289, 436–442,
https://doi.org/10.1016/j.foodchem.2019.03.075, 2019. a, b, c, d
Pajunoja, A., Lambe, A. T., Hakala, J., Rastak, N., Cummings, M. J., Brogan, J. F., Hao, L., Paramonov, M., Hong, J., Prisle, N. L., Malila, J.,
Romakkaniemi, S., Lehtinen, K. E. J., Laaksonen, A., Kulmala, M., Massoli, P., Onasch, T. B., Donahue, N. M., Riipinen, I., Davidovits, P., Worsnop, D. R., Petäjä, T., and Virtanen, A.: Adsorptive Uptake of Water by
Semisolid Secondary Organic Aerosols, Geophys. Res. Lett., 42,
3063–3068, https://doi.org/10.1002/2015GL063142, 2015. a
Petters, M. and Kasparoglu, S.: Predicting the Influence of Particle Size on
the Glass Transition Temperature and Viscosity of Secondary Organic Material,
Sci. Rep.-UK, 10, 15170, https://doi.org/10.1038/s41598-020-71490-0, 2020. a
Petters, M. D.: A Language to Simplify Computation of Differential Mobility
Analyzer Response Functions, Aerosol Sci. Tech., 52, 1437–1451,
https://doi.org/10.1080/02786826.2018.1530724, 2018. a
Petters, M. D., Wex, H., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol Part 2: Theoretical approaches, Atmos. Chem. Phys., 9, 3999–4009, https://doi.org/10.5194/acp-9-3999-2009, 2009. a
Petters, S. S. and Petters, M. D.: Surfactant Effect on Cloud Condensation
Nuclei for Two-Component Internally Mixed Aerosols, J. Geophys.
Res.-Atmos., 121, 1878–1895, https://doi.org/10.1002/2015JD024090, 2016. a
Pokluda, O., Bellehumeur, C. T., and Vlachopoulos, J.: Modification of Frenkel's Model for Sintering, AIChE J., 43, 3253–3256,
https://doi.org/10.1002/aic.690431213, 1997. a
Pope, C. A., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E.,
Krewski, D., and Godleski, J. J.: Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease, Circulation, 109, 71–77,
https://doi.org/10.1161/01.CIR.0000108927.80044.7F, 2004. a
Quintas, M., Brandão, T., Silva, C., and Cunha, R.: Rheology of
Supersaturated Sucrose Solutions, J. Food Eng., 77, 844–852,
https://doi.org/10.1016/j.jfoodeng.2005.08.011, 2006. a, b
Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M., Murray, B. J., Shilling, J. E., Martin, S. T., and Bertram, A. K.: Viscosity
of α-Pinene Secondary Organic Material and Implications for Particle
Growth and Reactivity, P. Natl. Acad. Sci. USA, 110,
8014–8019, https://doi.org/10.1073/pnas.1219548110, 2013. a
Renzetti, S., van den Hoek, I. A., and van der Sman, R. G.: Amino Acids,
Polyols and Soluble Fibres as Sugar Replacers in Bakery Applications: Egg
White Proteins Denaturation Controlled by Hydrogen Bond Density of Solutions,
Food Hydrocolloid., 108, 106034, https://doi.org/10.1016/j.foodhyd.2020.106034, 2020. a
Rothfuss, N. E. and Petters, M. D.: Coalescence-Based Assessment of Aerosol
Phase State Using Dimers Prepared through a Dual-Differential Mobility
Analyzer Technique, Aerosol Sci. Tech., 50, 1294–1305,
https://doi.org/10.1080/02786826.2016.1221050, 2016. a, b, c, d
Rothfuss, N. E., Petters, S. S., Champion, W. M., Grieshop, A. P., and Petters, M. D.: Characterization of a Dimer Preparation Method for Nanoscale
Organic Aerosol, Aerosol Sci. Tech., 39, 998–1011, https://doi.org/10.1080/02786826.2019.1623379, 2019. a, b, c, d
Saleki-Gerhardt, A. and Zografi, G.: Non-Isothermal and Isothermal
Crystallization of Sucrose from the Amorphous State, Pharmaceut. Res., 11, 1166–1173, https://doi.org/10.1023/A:1018945117471, 1994. a, b
Sastri, S. and Rao, K.: A New Group Contribution Method for Predicting
Viscosity of Organic Liquids, Chem Eng. J., 50, 9–25,
https://doi.org/10.1016/0300-9467(92)80002-R, 1992. a
Saukko, E., Lambe, A. T., Massoli, P., Koop, T., Wright, J. P., Croasdale, D. R., Pedernera, D. A., Onasch, T. B., Laaksonen, A., Davidovits, P., Worsnop, D. R., and Virtanen, A.: Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors, Atmos. Chem. Phys., 12, 7517–7529, https://doi.org/10.5194/acp-12-7517-2012, 2012. a
Shiraiwa, M. and Seinfeld, J. H.: Equilibration Timescale of Atmospheric
Secondary Organic Aerosol Partitioning, Geophys. Res. Lett., 39,
2012GL054008, https://doi.org/10.1029/2012GL054008, 2012. a
Shiraiwa, M., Pfrang, C., Koop, T., and Pöschl, U.: Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water, Atmos. Chem. Phys., 12, 2777–2794, https://doi.org/10.5194/acp-12-2777-2012, 2012. a, b
Shiraiwa, M., Li, Y., Tsimpidi, A. P., Karydis, V. A., Berkemeier, T., Pandis, S. N., Lelieveld, J., Koop, T., and Pöschl, U.: Global Distribution of
Particle Phase State in Atmospheric Secondary Organic Aerosols, Nat. Commun., 8, 15002, https://doi.org/10.1038/ncomms15002, 2017. a, b, c
Shrivastava, M., Lou, S., Zelenyuk, A., Easter, R. C., Corley, R. A., Thrall, B. D., Rasch, P. J., Fast, J. D., Massey Simonich, S. L., Shen, H., and Tao, S.: Global Long-Range Transport and Lung Cancer Risk from Polycyclic Aromatic
Hydrocarbons Shielded by Coatings of Organic Aerosol, P.
Natl. Acad. Sci. USA, 114, 1246–1251, https://doi.org/10.1073/pnas.1618475114,
2017. a
Šimkovic, I., Šurina, I., and Vričan, M.: Primary Reactions of
Sucrose Thermal Degradation, J. Anal. Appl. Pyrol., 70,
493–504, https://doi.org/10.1016/S0165-2370(03)00007-X, 2003. a
Song, M., Liu, P. F., Hanna, S. J., Li, Y. J., Martin, S. T., and Bertram, A. K.: Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests, Atmos. Chem. Phys., 15, 5145–5159, https://doi.org/10.5194/acp-15-5145-2015, 2015. a
Summers, M. and Enever, R.: Glass Transition Temperature of Citric Acid,
J. Pharm. Sci., 69, 612–613,
https://doi.org/10.1002/jps.2600690542, 1980. a, b, c
Swindells, J., Snyder, C., Hardy, R., Golden, P., and of Standards, U. S. N. B.: Viscosities of Sucrose Solutions at Various Temperatures: Tables
of Recalculated Values, National Bureau of Standards Circular, US Department of Commerce, National Bureau of Standards, U.S. Government Printing Office, Washington DC, available at: https://nvlpubs.nist.gov/nistpubs/Legacy/circ/nbscircular440sup.pdf (last access: 22 January 2021), 1958. a, b
Tandon, A., Rothfuss, N. E., and Petters, M. D.: The effect of hydrophobic glassy organic material on the cloud condensation nuclei activity of particles with different morphologies, Atmos. Chem. Phys., 19, 3325–3339, https://doi.org/10.5194/acp-19-3325-2019, 2019. a, b, c
Telis, V., Telis-Romero, J., Mazzotti, H., and Gabas, A.: Viscosity of Aqueous Carbohydrate Solutions at Different Temperatures and Concentrations, Int. J. Food Prop., 10, 185–195,
https://doi.org/10.1080/10942910600673636, 2007. a, b
Thomas, L. H., Meatyard, R., Smith, H., and Davies, G. H.: Viscosity Behavior
of Associated Liquids at Lower Temperatures and Vapor Pressures, J.
Chem. Eng. Data, 24, 161–164, https://doi.org/10.1021/je60082a011, 1979. a
Ullmann, D. A., Hinks, M. L., Maclean, A. M., Butenhoff, C. L., Grayson, J. W., Barsanti, K., Jimenez, J. L., Nizkorodov, S. A., Kamal, S., and Bertram, A. K.: Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the StokesEinstein equation, Atmos. Chem. Phys., 19, 1491–1503, https://doi.org/10.5194/acp-19-1491-2019, 2019. a
van der Sman, R., van den Hoek, I., and Renzetti, S.: Sugar Replacement with Zwitterionic Plasticizers like Amino Acids, Food Hydrocolloid., 109,
106113, https://doi.org/10.1016/j.foodhyd.2020.106113, 2020. a
Vander Wall, A. C., Perraud, V., Wingen, L. M., and Finlayson-Pitts, B. J.:
Evidence for a Kinetically Controlled Burying Mechanism for Growth of High
Viscosity Secondary Organic Aerosol, Environ. Sci.-Proc. Imp., 22, 66–83, https://doi.org/10.1039/C9EM00379G, 2020.
a
Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 2367–2388, https://doi.org/10.5194/acp-6-2367-2006, 2006. a
Wright, T. P., Song, C., Sears, S., and Petters, M. D.: Thermodynamic and
Kinetic Behavior of Glycerol Aerosol, Aerosol Sci. Tech., 50,
1385–1396, https://doi.org/10.1080/02786826.2016.1245405, 2016. a
Zaveri, R. A., Shilling, J. E., Zelenyuk, A., Liu, J., Bell, D. M., D'Ambro, E. L., Gaston, C. J., Thornton, J. A., Laskin, A., Lin, P., Wilson, J.,
Easter, R. C., Wang, J., Bertram, A. K., Martin, S. T., Seinfeld, J. H., and
Worsnop, D. R.: Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol, Environ. Sci. Technol.,
52, 1191–1199, https://doi.org/10.1021/acs.est.7b04623, 2018. a
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K.,
Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y.,
Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K.,
Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
Dominance of Oxygenated Species in Organic Aerosols in
Anthropogenically-Influenced Northern Hemisphere Midlatitudes,
Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007. a
Zhang, Y., Nichman, L., Spencer, P., Jung, J. I., Lee, A., Heffernan, B. K.,
Gold, A., Zhang, Z., Chen, Y., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., Onasch, T. B., Surratt, J. D., Chandler, D., Davidovits, P., and Kolb, C. E.: The Cooling Rate- and Volatility-Dependent Glass-Forming
Properties of Organic Aerosols Measured by Broadband Dielectric
Spectroscopy, Environ. Sci. Technol.,
https://doi.org/10.1021/acs.est.9b03317, 2019. a
Zobrist, B., Marcolli, C., Pedernera, D. A., and Koop, T.: Do atmospheric aerosols form glasses?, Atmos. Chem. Phys., 8, 5221–5244, https://doi.org/10.5194/acp-8-5221-2008, 2008. a, b, c, d
Zobrist, B., Soonsin, V., Luo, B. P., Krieger, U. K., Marcolli, C., Peter, T.,
and Koop, T.: Ultra-Slow Water Diffusion in Aqueous Sucrose Glasses, Phys.
Chem. Chem. Phys., 13, 3514–3526, https://doi.org/10.1039/C0CP01273D, 2011. a, b
Short summary
Viscosity is important because it determines the lifetime, impact, and fate of particulate matter. We collected new data to rigorously test a framework that is used to constrain the phase state in global simulations. We find that the framework is accurate as long as appropriate compound specific inputs are available.
Viscosity is important because it determines the lifetime, impact, and fate of particulate...
Altmetrics
Final-revised paper
Preprint