Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 14, issue 20
Atmos. Chem. Phys., 14, 10911–10930, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 10911–10930, 2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Oct 2014

Research article | 16 Oct 2014

Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study

T. K. V. Nguyen1, M. D. Petters2, S. R. Suda2, H. Guo3, R. J. Weber3, and A. G. Carlton1 T. K. V. Nguyen et al.
  • 1Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
  • 2Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
  • 3School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract. We present in situ measurements of particle-phase liquid water. Measurements were conducted from 3 June to 15 July 2013 during the Southern Oxidant and Aerosol Study (SOAS) in the southeastern US. The region is photochemically active, humid, dominated by biogenic emissions, impacted by anthropogenic pollution, and known to contain high concentrations of organic aerosol mass. Measurements characterized mobility number size distributions of ambient atmospheric aerosols in three states: unperturbed, dry, and dry-humidified. Unperturbed measurements describe the aerosol distribution at ambient temperature and relative humidity. For the dry state, the sample was routed through a cold trap upstream of the inlet then reheated, while for the dry-humidified state the sample was rehumidified after drying. The total volume of water and semi-volatile compounds lost during drying was quantified by differencing dry and unperturbed volumes from the integrated size spectra, while semi-volatile volumes lost during drying were quantified differencing unperturbed and dry-humidified volumes. Results indicate that particle-phase liquid water was always present. Throughout the SOAS campaign, median water mass concentrations at the relative humidity (RH) encountered in the instrument typically ranged from 1 to 5 μg m−3 but were as high as 73 μg m−3. On non-raining days, morning time (06:00–09:00) median mass concentrations exceeded 15 μg m−3. Hygroscopic growth factors followed a diel cycle and exceed 2 from 07:00 to 09:00 local time. The hygroscopicity parameter kappa ranged from 0.14 to 0.46 and hygroscopicity increased with increasing particle size. An observed diel cycle in kappa is consistent with changes in aerosol inorganic content and a dependency of the hygroscopicity parameter on water content. Unperturbed and dry-humidified aerosol volumes did not result in statistically discernible differences, demonstrating that drying did not lead to large losses in dry particle volume. We anticipate that our results will help improve the representation of aerosol water content and aqueous-phase-mediated partitioning of atmospheric water-soluble gases in photochemical models.

Publications Copernicus
Final-revised paper