Articles | Volume 20, issue 15
Atmos. Chem. Phys., 20, 9331–9350, 2020
https://doi.org/10.5194/acp-20-9331-2020

Special issue: The SPARC Reanalysis Intercomparison Project (S-RIP) (ACP/ESSD...

Atmos. Chem. Phys., 20, 9331–9350, 2020
https://doi.org/10.5194/acp-20-9331-2020

Research article 10 Aug 2020

Research article | 10 Aug 2020

Lagrangian gravity wave spectra in the lower stratosphere of current (re)analyses

Aurélien Podglajen et al.

Related authors

Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1201,https://doi.org/10.5194/acp-2020-1201, 2020
Revised manuscript accepted for ACP
Short summary
Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1153,https://doi.org/10.5194/acp-2020-1153, 2020
Revised manuscript accepted for ACP
Short summary
Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modeling
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1010,https://doi.org/10.5194/acp-2020-1010, 2020
Preprint under review for ACP
Short summary
The efficiency of transport into the stratosphere via the Asian and North American summer monsoon circulations
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019,https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Quantification of water vapour transport from the Asian monsoon to the stratosphere
Matthias Nützel, Aurélien Podglajen, Hella Garny, and Felix Ploeger
Atmos. Chem. Phys., 19, 8947–8966, https://doi.org/10.5194/acp-19-8947-2019,https://doi.org/10.5194/acp-19-8947-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021,https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021,https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Reappraising the appropriate calculation of a common meteorological quantity: potential temperature
Manuel Baumgartner, Ralf Weigel, Allan H. Harvey, Felix Plöger, Ulrich Achatz, and Peter Spichtinger
Atmos. Chem. Phys., 20, 15585–15616, https://doi.org/10.5194/acp-20-15585-2020,https://doi.org/10.5194/acp-20-15585-2020, 2020
Short summary
Impact of Lagrangian transport on lower-stratospheric transport timescales in a climate model
Edward J. Charlesworth, Ann-Kristin Dugstad, Frauke Fritsch, Patrick Jöckel, and Felix Plöger
Atmos. Chem. Phys., 20, 15227–15245, https://doi.org/10.5194/acp-20-15227-2020,https://doi.org/10.5194/acp-20-15227-2020, 2020
Short summary
Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption
Min-Jee Kang, Hye-Yeong Chun, and Rolando R. Garcia
Atmos. Chem. Phys., 20, 14669–14693, https://doi.org/10.5194/acp-20-14669-2020,https://doi.org/10.5194/acp-20-14669-2020, 2020
Short summary

Cited articles

Andrews, D., Holton, J., and Leovy, C.: Middle Atmosphere Dynamics, International geophysics series, Academic Press, available at: https://books.google.fr/books?id=N1oNurYZefAC (last access: 5 August 1010), 1987. a
Bacmeister, J. T., Eckermann, S. D., Tsias, A., Carslaw, K. S., and Peter, T.: Mesoscale Temperature Fluctuations Induced by a Spectrum of Gravity Waves: A Comparison of Parameterizations and Their Impact on Stratospheric Microphysics, J. Atmos. Sci., 56, 1913–1924, https://doi.org/10.1175/1520-0469(1999)056<1913:MTFIBA>2.0.CO;2, 1999. a
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The quasi-biennial oscillation, Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001. a
Boccara, G., Hertzog, A., Basdevant, C., and Vial, F.: Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005, J. Geophys. Res., 113, D20115, https://doi.org/10.1029/2008JD010116, 2008. a, b, c, d
Bowman, K. P., Lin, J. C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., and Brunner, D.: Input Data Requirements for Lagrangian Trajectory Models, B. Am. Meteorol. Soc., 94, 1051–1058, https://doi.org/10.1175/BAMS-D-12-00076.1, 2013. a, b, c, d
Download
Short summary
Thanks to the increase in resolution, numerical weather prediction models resolve a growing fraction of the gravity wave (GW) spectrum. Here, we assess the representation of Lagrangian GW fluctuations by comparing trajectories in the models to long-duration balloon observations. Most characteristics of the observed GW spectrum, such as near-inertial oscillations, are qualitatively present. However, the variability remains underestimated, emphasizing the continuous need for GW parameterizations.
Altmetrics
Final-revised paper
Preprint