Articles | Volume 20, issue 8
Atmos. Chem. Phys., 20, 5035–5054, 2020
https://doi.org/10.5194/acp-20-5035-2020
Atmos. Chem. Phys., 20, 5035–5054, 2020
https://doi.org/10.5194/acp-20-5035-2020
Research article
28 Apr 2020
Research article | 28 Apr 2020

Supercooled drizzle development in response to semi-coherent vertical velocity fluctuations within an orographic-layer cloud

Adam Majewski and Jeffrey R. French

Related authors

In Situ Microphysics Observations of Intense Pyroconvection from a Large Wildfire
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-610,https://doi.org/10.5194/acp-2022-610, 2022
Revised manuscript under review for ACP
Short summary
Observations of the microphysical evolution of convective clouds in the southwest of the United Kingdom
Robert Jackson, Jeffrey R. French, David C. Leon, David M. Plummer, Sonia Lasher-Trapp, Alan M. Blyth, and Alexei Korolev
Atmos. Chem. Phys., 18, 15329–15344, https://doi.org/10.5194/acp-18-15329-2018,https://doi.org/10.5194/acp-18-15329-2018, 2018
Short summary
Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP)
Spencer Faber, Jeffrey R. French, and Robert Jackson
Atmos. Meas. Tech., 11, 3645–3659, https://doi.org/10.5194/amt-11-3645-2018,https://doi.org/10.5194/amt-11-3645-2018, 2018
Short summary
Characteristics of vertical air motion in isolated convective clouds
Jing Yang, Zhien Wang, Andrew J. Heymsfield, and Jeffrey R. French
Atmos. Chem. Phys., 16, 10159–10173, https://doi.org/10.5194/acp-16-10159-2016,https://doi.org/10.5194/acp-16-10159-2016, 2016
Short summary
Theoretical study of mixing in liquid clouds – Part 1: Classical concepts
Alexei Korolev, Alex Khain, Mark Pinsky, and Jeffrey French
Atmos. Chem. Phys., 16, 9235–9254, https://doi.org/10.5194/acp-16-9235-2016,https://doi.org/10.5194/acp-16-9235-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Snowfall in Northern Finland derives mostly from ice clouds
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022,https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Observation of secondary ice production in clouds at low temperatures
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022,https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary
In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Ian Chang, Lan Gao, Feng Xu, and Jens Redemann
Atmos. Chem. Phys., 22, 12923–12943, https://doi.org/10.5194/acp-22-12923-2022,https://doi.org/10.5194/acp-22-12923-2022, 2022
Short summary
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022,https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022,https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary

Cited articles

Aikins, J., Friedrich, K., Geerts, B., and Pokharel, B.: Role of a Cross-Barrier Jet and Turbulence on Winter Orographic Snowfall, Mon. Weather Rev., 144, 3277–3300, https://doi.org/10.1175/MWR-D-16-0025.1, 2016. 
Albrecht, B. A., Fairall, C. W., Thomson, D. W., White, A. B., Snider, J. B., and Schubert, W. H.: Surface-based remote sensing of the observed and the Adiabatic liquid water content of stratocumulus clouds, Geophys. Res. Lett., 17, 89–92, https://doi.org/10.1029/GL017i001p00089, 1990. 
Ashenden, R., Lindberg, W., Marwitz, J. D., and Hoxie, B.: Airfoil performance degradation by supercooled cloud, drizzle, and rain drop icing, J. Aircraft, 33, 1040–1046, https://doi.org/10.2514/3.47055, 1996. 
Bernstein, B. C., Wolff, C. A., and McDonough, F.: An Inferred Climatology of Icing Conditions Aloft, Including Supercooled Large Drops. Part I: Canada and the Continental United States, J. Appl. Meteorol. Clim., 46, 1857–1878, https://doi.org/10.1175/2007JAMC1607.1, 2007. 
Cober, S. G., Isaac, G. A., and Strapp, J. W.: Characterizations of Aircraft Icing Environments that Include Supercooled Large Drops, J. Appl. Meteorol., 40, 1984–2002, https://doi.org/10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2, 2001. 
Download
Short summary
The study reports formation of supercooled drizzle drops in response to repeating kilometer-wide updrafts and downdrafts within a mixed-phase, mountain-layer cloud containing very little ice despite cold cloud top temperatures (T ~ -30°C). The discrete, embedded hydrometeor growth layers and downwind transition to drizzle production at cloud top indicates the relative importance of kinematic mechanisms in determining the location of precipitation development in cloud.
Altmetrics
Final-revised paper
Preprint