Articles | Volume 20, issue 3
https://doi.org/10.5194/acp-20-1641-2020
https://doi.org/10.5194/acp-20-1641-2020
Research article
 | 
10 Feb 2020
Research article |  | 10 Feb 2020

FLEXPART v10.1 simulation of source contributions to Arctic black carbon

Chunmao Zhu, Yugo Kanaya, Masayuki Takigawa, Kohei Ikeda, Hiroshi Tanimoto, Fumikazu Taketani, Takuma Miyakawa, Hideki Kobayashi, and Ignacio Pisso

Related authors

Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025,https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
Trace elements in PM2.5 aerosols in East Asian outflow in the spring of 2018: emission, transport, and source apportionment
Takuma Miyakawa, Akinori Ito, Chunmao Zhu, Atsushi Shimizu, Erika Matsumoto, Yusuke Mizuno, and Yugo Kanaya
Atmos. Chem. Phys., 23, 14609–14626, https://doi.org/10.5194/acp-23-14609-2023,https://doi.org/10.5194/acp-23-14609-2023, 2023
Short summary
Investigation of the wet removal rate of black carbon in East Asia: validation of a below- and in-cloud wet removal scheme in FLEXible PARTicle (FLEXPART) model v10.4
Yongjoo Choi, Yugo Kanaya, Masayuki Takigawa, Chunmao Zhu, Seung-Myung Park, Atsushi Matsuki, Yasuhiro Sadanaga, Sang-Woo Kim, Xiaole Pan, and Ignacio Pisso
Atmos. Chem. Phys., 20, 13655–13670, https://doi.org/10.5194/acp-20-13655-2020,https://doi.org/10.5194/acp-20-13655-2020, 2020
Rapid reduction in black carbon emissions from China: evidence from 2009–2019 observations on Fukue Island, Japan
Yugo Kanaya, Kazuyo Yamaji, Takuma Miyakawa, Fumikazu Taketani, Chunmao Zhu, Yongjoo Choi, Yuichi Komazaki, Kohei Ikeda, Yutaka Kondo, and Zbigniew Klimont
Atmos. Chem. Phys., 20, 6339–6356, https://doi.org/10.5194/acp-20-6339-2020,https://doi.org/10.5194/acp-20-6339-2020, 2020
Short summary
Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution
Xiaoyan Liu, Yan-Lin Zhang, Yiran Peng, Lulu Xu, Chunmao Zhu, Fang Cao, Xiaoyao Zhai, M. Mozammel Haque, Chi Yang, Yunhua Chang, Tong Huang, Zufei Xu, Mengying Bao, Wenqi Zhang, Meiyi Fan, and Xuhui Lee
Atmos. Chem. Phys., 19, 11213–11233, https://doi.org/10.5194/acp-19-11213-2019,https://doi.org/10.5194/acp-19-11213-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Regional variability of aerosol impacts on clouds and radiation in global kilometer-scale simulations
Ross J. Herbert, Andrew I. L. Williams, Philipp Weiss, Duncan Watson-Parris, Elisabeth Dingley, Daniel Klocke, and Philip Stier
Atmos. Chem. Phys., 25, 7789–7814, https://doi.org/10.5194/acp-25-7789-2025,https://doi.org/10.5194/acp-25-7789-2025, 2025
Short summary
A novel method to quantify the uncertainty contribution of aerosol–radiation interaction factors
Bishuo He and Chunsheng Zhao
Atmos. Chem. Phys., 25, 7765–7776, https://doi.org/10.5194/acp-25-7765-2025,https://doi.org/10.5194/acp-25-7765-2025, 2025
Short summary
Exploring the aerosol activation properties in coastal shallow convection using cloud- and particle-resolving models
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
Atmos. Chem. Phys., 25, 7527–7542, https://doi.org/10.5194/acp-25-7527-2025,https://doi.org/10.5194/acp-25-7527-2025, 2025
Short summary
Machine-learning-assisted inference of the particle charge fraction and the ion-induced nucleation rates during new particle formation events
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
Atmos. Chem. Phys., 25, 7431–7446, https://doi.org/10.5194/acp-25-7431-2025,https://doi.org/10.5194/acp-25-7431-2025, 2025
Short summary
Modeling CMAQ dry deposition treatment over the western Pacific: a distinct characteristic of mineral dust and anthropogenic aerosols
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
Atmos. Chem. Phys., 25, 7245–7268, https://doi.org/10.5194/acp-25-7245-2025,https://doi.org/10.5194/acp-25-7245-2025, 2025
Short summary

Cited articles

AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2015. 
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095, https://doi.org/10.1029/2001jd000807, 2001. 
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J. H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004. 
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emis- sions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, Gb2018, https://doi.org/10.1029/2006GB002840, 2007. 
Bourgeois, Q. and Bey, I.: Pollution transport efficiency toward the Arctic: sensitivity to aerosol scavenging and source regions, J. Geophys. Res., 116, D08213, https://doi.org/10.1029/2010JD015096, 2011. 
Download
Short summary
Black carbon is believed to be one of the causes of the rapid warming and glacier melting in the Arctic. The results of our study show that processes associated with the petroleum industry, such as gas flaring in Russia, are the main BC source at the Arctic surface. Emissions in East Asia are the main BC sources at high altitudes in the Arctic. Wildfires in Siberia, Alaska, and Canada are another important Arctic BC source in summer.
Share
Altmetrics
Final-revised paper
Preprint