Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-15307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-15307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement Report: Determination of aerosol vertical features on different timescales over East Asia based on CATS aerosol products
Yueming Cheng
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
Nanjing University of Information Science and Technology, Nanjing, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid
Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
Nanjing University of Information Science and Technology, Nanjing, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid
Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Jiming Li
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of
Atmospheric Sciences, Lanzhou University, Lanzhou, China
Guangyu Shi
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,
Nanjing University of Information Science and Technology, Nanjing, China
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid
Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Related authors
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Tie Dai, Yueming Cheng, Daisuke Goto, Yingruo Li, Xiao Tang, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, https://doi.org/10.5194/acp-21-4357-2021, 2021
Short summary
Short summary
The anthropogenic emission of sulfur dioxide (SO2) over China has significantly declined as a consequence of the clean air actions. We have developed a new emission inversion system to dynamically update the SO2 emission grid by grid over China by assimilating ground-based SO2 observations. The inverted SO2 emission over China in November 2016 on average had declined by 49.4 % since 2010, which is well in agreement with the bottom-up estimation of 48.0 %.
Jianyu Lin, Tie Dai, Lifang Sheng, Weihang Zhang, Shangfei Hai, and Yawen Kong
Geosci. Model Dev., 18, 2231–2248, https://doi.org/10.5194/gmd-18-2231-2025, https://doi.org/10.5194/gmd-18-2231-2025, 2025
Short summary
Short summary
The effectiveness of this assimilation system and its sensitivity to the ensemble member size and length of the assimilation window are investigated. This study advances our understanding of the selection of basic parameters in the four-dimensional local ensemble transform Kalman filter assimilation system and the performance of ensemble simulation in a particulate-matter-polluted environment.
Jiayi Li, Yang Wang, Jiming Li, Weiyuan Zhang, Lijie Zhang, and Yuan Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3601, https://doi.org/10.5194/egusphere-2024-3601, 2024
Short summary
Short summary
A key challenge in climate projections is the uncertainty in cloud water response to anthropogenic aerosols, especially its time-dependence on diurnal microphysical-dynamic boundary layer feedback. Geostationary satellite shows neglecting the variations induces a compensation up to 45% of the initial cooling effect from increased cloud droplet concentration. The results provide new insights in aerosol-cloud interactions, verifying this is a significant yet often overlooked source of uncertainty.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Ruixue Li, Bida Jian, Jiming Li, Deyu Wen, Lijie Zhang, Yang Wang, and Yuan Wang
Atmos. Chem. Phys., 24, 9777–9803, https://doi.org/10.5194/acp-24-9777-2024, https://doi.org/10.5194/acp-24-9777-2024, 2024
Short summary
Short summary
Hemispheric or interannual averages of reflected solar radiation (RSR) can mask signals from seasonally active or region-specific mechanisms. We examine RSR characteristics from latitude and month perspectives, revealing decreased trends observed by CERES in both hemispheres driven by clear-sky atmospheric and cloud components at 30–50° N and cloud components at 0–50° S. AVHRR achieves symmetry criteria within uncertainty and is suitable for the long-term analysis of hemispheric RSR symmetry.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Honglin Pan, Jianping Huang, Jiming Li, Zhongwei Huang, Minzhong Wang, Ali Mamtimin, Wen Huo, Fan Yang, Tian Zhou, and Kanike Raghavendra Kumar
Earth Syst. Sci. Data, 16, 1185–1207, https://doi.org/10.5194/essd-16-1185-2024, https://doi.org/10.5194/essd-16-1185-2024, 2024
Short summary
Short summary
We applied several correction procedures and rigorously checked for data quality constraints during the long observation period spanning almost 14 years (2007–2020). Nevertheless, some uncertainties remain, mainly due to technical constraints and limited documentation of the measurements. Even though not completely accurate, this strategy is expected to at least reduce the inaccuracy of the computed characteristic value of aerosol optical parameters.
Min Zhao, Tie Dai, Daisuke Goto, Hao Wang, and Guangyu Shi
Atmos. Chem. Phys., 24, 235–258, https://doi.org/10.5194/acp-24-235-2024, https://doi.org/10.5194/acp-24-235-2024, 2024
Short summary
Short summary
During a springtime pollution input from South Asia to the Tibetan Plateau, we combined atmospheric chemistry modeling and data assimilation methods to assimilate and forecast aerosols from South Asia and the Tibetan Plateau. Assimilation of observations over a whole time window leads to a more reasonable distribution of daily variations in the aerosol forecast field. We also find that aerosol assimilation can improve the surface solar energy forecast in the Tibetan Plateau region.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Qiuyan Wang, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Bing Xie, Yuying Wang, Guangyu Shi, and Martin Wild
Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022, https://doi.org/10.5194/acp-22-15867-2022, 2022
Short summary
Short summary
The present-day land energy balance over East Asia is estimated for the first time. Results indicate that high aerosol loadings, clouds, and the Tibet Plateau (TP) over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. This study provides a perspective to understand fully how the potential factors influence the diversifying regional energy budget assessments.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Tie Dai, Yueming Cheng, Daisuke Goto, Yingruo Li, Xiao Tang, Guangyu Shi, and Teruyuki Nakajima
Atmos. Chem. Phys., 21, 4357–4379, https://doi.org/10.5194/acp-21-4357-2021, https://doi.org/10.5194/acp-21-4357-2021, 2021
Short summary
Short summary
The anthropogenic emission of sulfur dioxide (SO2) over China has significantly declined as a consequence of the clean air actions. We have developed a new emission inversion system to dynamically update the SO2 emission grid by grid over China by assimilating ground-based SO2 observations. The inverted SO2 emission over China in November 2016 on average had declined by 49.4 % since 2010, which is well in agreement with the bottom-up estimation of 48.0 %.
Cited articles
Callewaert, S., Vandenbussche, S., Kumps, N., Kylling, A., Shang, X., Komppula, M.,
Goloub, P., and De Mazière, M.: The Mineral Aerosol Profiling from Infrared Radiances (MAPIR)
algorithm: version 4.1 description and evaluation, Atmos. Meas. Tech., 12, 3673–3698,
https://doi.org/10.5194/amt-12-3673-2019, 2019.
Cheng, Y., Dai, T., Goto, D., Schutgens, N. A. J., Shi, G., and Nakajima, T.:
Investigating the assimilation of CALIPSO global aerosol vertical observations using a
four-dimensional ensemble Kalman filter, Atmos. Chem. Phys., 19, 13445–13467,
https://doi.org/10.5194/acp-19-13445-2019, 2019.
Christian, K., Wang, J., Ge, C., Peterson, D., Hyer, E., Yorks, J., and McGill, M.:
Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling
Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46,
10061–10071, https://doi.org/10.1029/2019GL082360, 2019.
Dai, T., Cheng, Y., Zhang, P., Shi, G., Sekiguchi, M., Suzuki, K., Goto, D., and
Nakajima, T.: Impacts of meteorological nudging on the global dust cycle simulated by NICAM
coupled with an aerosol model, Atmos. Env., 190, 99–115, https://doi.org/10.1016/j.atmosenv.2018.07.016,
2018.
Henriksson, S. V., Laaksonen, A., Kerminen, V.-M., Räisänen, P., Järvinen,
H., Sundström, A.-M., and de Leeuw, G.: Spatial distributions and seasonal cycles of aerosols
in India and China seen in global climate-aerosol model, Atmos. Chem. Phys., 11, 7975–7990,
https://doi.org/10.5194/acp-11-7975-2011, 2011.
Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., Liu, Z., Ayers, K., Trepte,
C., and Winker, D.: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau,
Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007GL029938, 2007.
Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., and Ayers, J. K.:
Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements
during PACDEX, J. Geophys. Res., 113, D23212, https://doi.org/10.1029/2008JD010620, 2008.
Huang, J., Fu, Q., Su, J., Tang, Q., Minnis, P., Hu, Y., Yi, Y., and Zhao, Q.: Taklimakan
dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model
with CERES constraints, Atmos. Chem. Phys., 9, 4011–4021, https://doi.org/10.5194/acp-9-4011-2009, 2009.
Huang, J., Minnis, P., Yan, H., Yi, Y., Chen, B., Zhang, L., and Ayers, J. K.: Dust
aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite
measurements, Atmos. Chem. Phys., 10, 6863–6872, https://doi.org/10.5194/acp-10-6863-2010, 2010.
Huang, J. P., Liu, J. J., Chen, B., and Nasiri, S. L.: Detection of anthropogenic dust
using CALIPSO lidar measurements, Atmos. Chem. Phys., 15, 11653–11665,
https://doi.org/10.5194/acp-15-11653-2015, 2015.
Huang, Z., Huang, J., Bi, J., Wang, G., Wang, W., Fu, Q., Li, Z., Tsay, S.-C., and Shi,
J.: Dust aerosol vertical structure measurements using three MPL lidars during 2008
China-U.S. joint dust field experiment, J. Geophys. Res., 115, D00K15, https://doi.org/10.1029/2009JD013273,
2010.
Hughes, E. J., Yorks, J., Krotkov, N. A., da Silva, A. M., and McGill, M.: Using CATS
near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2)
forecasts: CATS Observations of Volcanic SO2, Geophys. Res. Lett., 43, 11089–11097,
https://doi.org/10.1002/2016GL070119, 2016.
Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., Bauer, S., Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Fillmore, D., Ghan, S., Ginoux, P., Grini, A., Horowitz, L., Koch, D., Krol, M. C., Landing, W., Liu, X., Mahowald, N., Miller, R., Morcrette, J.-J., Myhre, G., Penner, J., Perlwitz, J., Stier, P., Takemura, T., and Zender, C. S.: Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11, 7781–7816, https://doi.org/10.5194/acp-11-7781-2011, 2011.
Jia, R., Liu, Y., Hua, S., Zhu, Q., and Shao, T.: Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product, J. Meteorol. Res., 32, 707–722, https://doi.org/10.1007/s13351-018-8060-3, 2018.
Lau, K. M., Kim, M. K., and Kim, K. M.: Asian summer monsoon anomalies induced by
aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dynam., 26, 855–864,
https://doi.org/10.1007/s00382-006-0114-z, 2006.
Lee, L., Zhang, J., Reid, J. S., and Yorks, J. E.: Investigation of CATS aerosol
products and application toward global diurnal variation of aerosols, Atmos. Chem. Phys., 19,
12687–12707, https://doi.org/10.5194/acp-19-12687-2019, 2019.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and
Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6,
2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Li, J., Lv, Q., Zhang, M., Wang, T., Kawamoto, K., Chen, S., and Zhang, B.: Effects of
atmospheric dynamics and aerosols on the fraction of supercooled water clouds, Atmos. Chem. Phys.,
17, 1847–1863, https://doi.org/10.5194/acp-17-1847-2017, 2017.
Li, Z., Lau, W. K. -M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian,
Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X.,
Lee, S. -S., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y.,
Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929, https://doi.org/10.1002/2015RG000500,
2016.
Liu, D., Wang, Z., Liu, Z., Winker, D., and Trepte, C.: A height resolved global view of
dust aerosols from the first year CALIPSO lidar measurements, J. Geophys. Res., 113, D16214,
https://doi.org/10.1029/2007JD009776, 2008.
Liu, Y., Huang, J., Shi, G., Takamura, T., Khatri, P., Bi, J., Shi, J., Wang, T., Wang,
X., and Zhang, B.: Aerosol optical properties and radiative effect determined from sky-radiometer
over Loess Plateau of Northwest China, Atmos. Chem. Phys., 11, 11455–11463,
https://doi.org/10.5194/acp-11-11455-2011, 2011.
Liu, Y., Jia, R., Dai, T., Xie, Y., and Shi, G.: A review of aerosol optical properties
and radiative effects, J. Meteorol. Res., 28, 1003–1028, https://doi.org/10.1007/s13351-014-4045-z, 2014.
Liu, Y., Hua, S., Jia, R., and Huang, J.: Effect of Aerosols on the Ice Cloud Properties
Over the Tibetan Plateau, J. Geophys. Res.-Atmos., 124,
2019JD030463, https://doi.org/10.1029/2019JD030463, 2019a.
Liu, Y., Zhu, Q., Huang, J., Hua, S., and Jia, R.: Impact of dust-polluted convective
clouds over the Tibetan Plateau on downstream precipitation, Atmos. Env., 209, 67–77,
https://doi.org/10.1016/j.atmosenv.2019.04.001, 2019b.
Liu, Y., Zhu, Q., Hua, S., Alam, K., Dai, T., and Cheng, Y.: Tibetan Plateau driven
impact of Taklimakan dust on northern rainfall, Atmos. Env., 234, 117583,
https://doi.org/10.1016/j.atmosenv.2020.117583, 2020.
McGill, M. J., Yorks, J. E., Scott, V. S., Kupchock, A. W., and Selmer, P. A.: The
Cloud-Aerosol Transport System (CATS): a technology demonstration on the International Space
Station, edited by: Singh, U. N., p. 96120A, San Diego, CA, 2015.
Murayama, T., Sugimoto, N., Uno, I., Kinoshita, K., Aoki, K., Hagiwara, N., Liu, Z.,
Matsui, I., Sakai, T., Shibata, T., Arao, K., Sohn, B.-J., Won, J.-G., Yoon, S.-C., Li, T., Zhou,
J., Hu, H., Abo, M., Iokibe, K., Koga, R., and Iwasaka, Y.: Ground-based network observation of
Asian dust events of April 1998 in east Asia, J. Geophys. Res., 106, 18345–18359,
https://doi.org/10.1029/2000JD900554, 2001.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian,
H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D.,
Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G.,
Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier,
P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang,
K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II
simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
NOAA/NCEP: NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from
July 1999 (Updated Daily). National Center for Atmospheric Research Computational and Information
Systems Laboratory Research Data Archive, available at:
https://rda.ucar.edu/datasets/ds083.2/ (last access: 15 June 2020), 2000.
Oikawa, E., Nakajima, T., Inoue, T., and Winker, D.: A study of the shortwave direct
aerosol forcing using ESSP/CALIPSO observation and GCM simulation, J. Geophys. Res.-Atmos., 118,
3687–3708, https://doi.org/10.1002/jgrd.50227, 2013.
Oikawa, E., Nakajima, T., and Winker, D.: An Evaluation of the Shortwave Direct Aerosol
Radiative Forcing Using CALIOP and MODIS Observations, J. Geophys. Res.-Atmos., 123, 1211–1233,
https://doi.org/10.1002/2017JD027247, 2018.
Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z., Hu, Y., Trepte, C. R., Rogers, R. R., Ferrare, R. A., Lee, K.-P., Kuehn, R. E., and Hostetler, C. A.: The CALIPSO Automated
Aerosol Classification and Lidar Ratio Selection Algorithm, J. Atmos. Oceanic Technol., 26,
1994–2014, 2009.
Proestakis, E., Amiridis, V., Marinou, E., Binietoglou, I., Ansmann, A., Wandinger, U.,
Hofer, J., Yorks, J., Nowottnick, E., Makhmudov, A., Papayannis, A., Pietruczuk, A., Gialitaki,
A., Apituley, A., Szkop, A., Muñoz Porcar, C., Bortoli, D., Dionisi, D., Althausen, D.,
Mamali, D., Balis, D., Nicolae, D., Tetoni, E., Liberti, G. L., Baars, H., Mattis, I.,
Stachlewska, I. S., Voudouri, K. A., Mona, L., Mylonaki, M., Perrone, M. R., Costa, M. J., Sicard,
M., Papagiannopoulos, N., Siomos, N., Burlizzi, P., Pauly, R., Engelmann, R., Abdullaev, S., and
Pappalardo, G.: EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product,
Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, 2019.
Qiu, Y., Zhang, L., and Chen, Y.: Statistical Comparison of Regional-Scale Tropospheric
Aerosol Extinction Coefficient across China Based on CALIPSO Data, Aerosol Air Qual. Res., 18,
1351–1359, https://doi.org/10.4209/aaqr.2017.10.0385, 2018.
Rajapakshe, C., Zhang, Z., Yorks, J. E., Yu, H., Tan, Q., Meyer, K., Platnick, S., and
Winker, D. M.: Seasonally transported aerosol layers over southeast Atlantic are closer to
underlying clouds than previously reported: Smoke to Cloud Distance in SE Atlantic,
Geophys. Res. Lett., 44, 5818–5825, https://doi.org/10.1002/2017GL073559, 2017.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and
Rosenfeld, D.: Aerosols, Climate, and the Hydrological Cycle, Science, 294,
2119–2124, https://doi.org/10.1126/science.1064034, 2001.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V.,
Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.:
The MODIS Aerosol Algorithm, Products, and Validation, J. Atmos. Sci, 62, 947–973,
https://doi.org/10.1175/JAS3385.1, 2005.
Sato, Y. and Suzuki, K.: How do aerosols affect cloudiness?, Science, 363, 580–581,
https://doi.org/10.1126/science.aaw3720, 2019.
Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and Nakajima,
T.: Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system
resolving model, Nat. Commun., 9, 985, https://doi.org/10.1038/s41467-018-03379-6, 2018.
Sekiyama, T. T., Tanaka, T. Y., Shimizu, A., and Miyoshi, T.: Data assimilation of
CALIPSO aerosol observations, Atmos. Chem. Phys., 10, 39–49, https://doi.org/10.5194/acp-10-39-2010, 2010.
Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., Mikami,
M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: An emerging core theme in Earth system
science, Aeolian Res., 2, 181–204, https://doi.org/10.1016/j.aeolia.2011.02.001, 2011.
Sugimoto, N. and Huang, Z.: Lidar methods for observing mineral dust,
J. Meteorol. Res., 28, 173–184, https://doi.org/10.1007/s13351-014-3068-9, 2014.
Tsunematsu, N., Sato, T., Kimura, F., Kai, K., Kurosaki, Y., Nagai, T., Zhou, H., and Mikami, M.: Extensive dust outbreaks following the morning inversion breakup in the Taklimakan Desert, J. Geophys. Res., 110, D21207, https://doi.org/10.1029/2005JD005994, 2005.
Wang, T., Chen, Y., Gan, Z., Han, Y., Li, J., and Huang, J.: Assessment of dominating
aerosol properties and their long-term trend in the Pan-Third Pole region: A study with 10-year
multi-sensor measurements, Atmos. Env., 239, 117738, https://doi.org/10.1016/j.atmosenv.2020.117738, 2020a.
Wang, T., Han, Y., Huang, J., Sun, M., Jian, B., Huang, Z., and Yan, H.: Climatology of
dust-forced radiative heating over the Tibetan Plateau and its surroundings,
J. Geophys. Res.-Atmos., 125, e2020JD032942, https://doi.org/10.1029/2020JD032942, 2020b.
Wang, T., Sun, M., and Huang, J.: Research review on dust and pollution using spaceborne
lidar in China, Trans. Atmos. Sci., 43, 144–158, https://doi.org/10.13878/j.cnki.dqkxxb.20191120007, 2020c
[in Chinese].
Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance assessment of CALIOP,
Geophys. Res. Lett., 34, L19803,
https://doi.org/10.1029/2007GL030135, 2007.
Wu, G., Li, Z., Fu, C., Zhang, X., Zhang, R., Zhang, R., Zhou, T., Li, J., Li, J.,
Zhou, D., Wu, L., Zhou, L., He, B., and Huang, R.: Advances in studying interactions between
aerosols and monsoon in China, Sci. China Earth Sci., 59, 1–16, https://doi.org/10.1007/s11430-015-5198-z,
2016.
Yan, H., and T. Wang.: Ten years of aerosol effects on single-layer overcast clouds
over the US Southern Great Plains and the China Loess Plateau, Adv. Meteorol., 2020, 6719160, https://doi.org/10.1155/2020/6719160, 2020.
Yorks, J. E., McGill, M. J., Palm, S. P., Hlavka, D. L., Selmer, P. A., Nowottnick,
E. P., Vaughan, M. A., Rodier, S. D., and Hart, W. D.: An overview of the CATS level 1 processing
algorithms and data products: CATS Data Products and Algorithms, Geophys. Res. Lett., 43,
4632–4639, https://doi.org/10.1002/2016GL068006, 2016.
Yu, H., Chin, M., Winker, D. M., Omar, A. H., Liu, Z., Kittaka, C., and Diehl, T.:
Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART
simulations: Regional and seasonal variations, J. Geophys. Res., 115, D00H30, https://doi.org/10.1029/2009JD013364, 2010.
Yumimoto, K., Uno, I., Sugimoto, N., Shimizu, A., Liu, Z., and Winker, D. M.: Adjoint
inversion modeling of Asian dust emission using lidar observations, Atmos. Chem. Phys., 8,
2869–2884, https://doi.org/10.5194/acp-8-2869-2008, 2008.
Short summary
In this paper we present the analysis of the aerosol vertical features observed by CATS collected from 2015 to 2017 over three selected regions (North China, the Tibetan Plateau, and the Tarim Basin) over different timescales. This comprehensive information provides insights into the seasonal variations and diurnal cycles of the aerosol vertical features across East Asia.
In this paper we present the analysis of the aerosol vertical features observed by CATS...
Altmetrics
Final-revised paper
Preprint