Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-15207-2020
https://doi.org/10.5194/acp-20-15207-2020
Research article
 | 
08 Dec 2020
Research article |  | 08 Dec 2020

Source backtracking for dust storm emission inversion using an adjoint method: case study of Northeast China

Jianbing Jin, Arjo Segers, Hong Liao, Arnold Heemink, Richard Kranenburg, and Hai Xiang Lin

Related authors

EnKF-based fusion of site-available machine learning air quality predictions from RFSML v1.0 and gridded chemical transport model forecasts from GEOS-Chem v13.1.0
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Bufan Xu, Wei Han, Mijie Pang, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-301,https://doi.org/10.5194/gmd-2022-301, 2023
Preprint under review for GMD
Short summary
How aerosol size matters in aerosol optical depth (AOD) assimilation and the optimization using the Ångström exponent
Jianbing Jin, Bas Henzing, and Arjo Segers
Atmos. Chem. Phys., 23, 1641–1660, https://doi.org/10.5194/acp-23-1641-2023,https://doi.org/10.5194/acp-23-1641-2023, 2023
Short summary
Climate-driven deterioration of future ozone pollution in Asia predicted by machine learning with multi-source data
Huimin Li, Yang Yang, Jianbing Jin, Hailong Wang, Ke Li, Pinya Wang, and Hong Liao
Atmos. Chem. Phys., 23, 1131–1145, https://doi.org/10.5194/acp-23-1131-2023,https://doi.org/10.5194/acp-23-1131-2023, 2023
Short summary
Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region
Huibin Dai, Hong Liao, Ke Li, Xu Yue, Yang Yang, Jia Zhu, Jianbing Jin, Baojie Li, and Xingwen Jiang
Atmos. Chem. Phys., 23, 23–39, https://doi.org/10.5194/acp-23-23-2023,https://doi.org/10.5194/acp-23-23-2023, 2023
Short summary
Development of a regional feature selection-based machine learning system (RFSML v1.0) for air pollution forecasting over China
Li Fang, Jianbing Jin, Arjo Segers, Hai Xiang Lin, Mijie Pang, Cong Xiao, Tuo Deng, and Hong Liao
Geosci. Model Dev., 15, 7791–7807, https://doi.org/10.5194/gmd-15-7791-2022,https://doi.org/10.5194/gmd-15-7791-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Local and remote climate impacts of future African aerosol emissions
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023,https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
The dependence of aerosols' global and local precipitation impacts on the emitting region
Geeta G. Persad
Atmos. Chem. Phys., 23, 3435–3452, https://doi.org/10.5194/acp-23-3435-2023,https://doi.org/10.5194/acp-23-3435-2023, 2023
Short summary
Assessing the climate and air quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling
Tuuli Miinalainen, Harri Kokkola, Antti Lipponen, Antti-Pekka Hyvärinen, Vijay Kumar Soni, Kari E. J. Lehtinen, and Thomas Kühn
Atmos. Chem. Phys., 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023,https://doi.org/10.5194/acp-23-3471-2023, 2023
Short summary
Aggravated air pollution and health burden due to traffic congestion in urban China
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023,https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023,https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary

Cited articles

Alfaro, S. C., Gaudichet, A., Gomes, L., and Maillé, M.: Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies, Geophys. Res. Lett., 25, 991–994, https://doi.org/10.1029/98gl00502, 1998. a
An, X. Q., Zhai, S. X., Jin, M., Gong, S., and Wang, Y.: Development of an adjoint model of GRAPES–CUACE and its application in tracking influential haze source areas in north China, Geosci. Model Dev., 9, 2153–2165, https://doi.org/10.5194/gmd-9-2153-2016, 2016. a
Basart, S., Pérez, C., Nickovic, S., Cuevas, E., and Baldasano, J.: Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East, Tellus B, 64, 18539, https://doi.org/10.3402/tellusb.v64i0.18539, 2012. a, b
Basart, S., Nickovic, S., Terradellas, E., Cuevas, E., García-Pando, C. P., García-Castrillo, G., Werner, E., and Benincasa, F.: The WMO SDS-WAS Regional Center for Northern Africa, Middle East and Europe, in: E3S Web of Conferences, vol. 99, EDP Sciences, 2019. a
Download
Short summary
Data assimilation provides a powerful tool to estimate emission inventories by feeding observations. This emission inversion relies on the correct assumption about the emission uncertainty, which describes the potential spatiotemporal spreads of sources. However, an unrepresentative uncertainty is unavoidable. Especially in the complex dust emission, the uncertainties can hardly all be taken into account. This study reports how adjoint can be used to detect errors in the emission uncertainty.
Altmetrics
Final-revised paper
Preprint