Articles | Volume 20, issue 23
Atmos. Chem. Phys., 20, 15207–15225, 2020

Special issue: Dust aerosol measurements, modeling and multidisciplinary...

Atmos. Chem. Phys., 20, 15207–15225, 2020

Research article 08 Dec 2020

Research article | 08 Dec 2020

Source backtracking for dust storm emission inversion using an adjoint method: case study of Northeast China

Jianbing Jin et al.

Related authors

Position correction in dust storm forecasting using LOTOS-EUROS v2.1: grid-distorted data assimilation v1.0
Jianbing Jin, Arjo Segers, Hai Xiang Lin, Bas Henzing, Xiaohui Wang, Arnold Heemink, and Hong Liao
Geosci. Model Dev., 14, 5607–5622,,, 2021
Short summary
Improved gridded ammonia emission inventory in China
Baojie Li, Lei Chen, Weishou Shen, Jianbing Jin, Teng Wang, Pinya Wang, Yang Yang, and Hong Liao
Atmos. Chem. Phys. Discuss.,,, 2021
Preprint under review for ACP
Short summary
Machine learning for observation bias correction with application to dust storm data assimilation
Jianbing Jin, Hai Xiang Lin, Arjo Segers, Yu Xie, and Arnold Heemink
Atmos. Chem. Phys., 19, 10009–10026,,, 2019

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Characteristics of surface energy balance and atmospheric circulation during hot-and-polluted episodes and their synergistic relationships with urban heat islands over the Pearl River Delta region
Ifeanyichukwu C. Nduka, Chi-Yung Tam, Jianping Guo, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 13443–13454,,, 2021
Short summary
Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones
Enrique Pravia-Sarabia, Juan José Gómez-Navarro, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Atmos. Chem. Phys., 21, 13353–13368,,, 2021
Short summary
Quantification of uncertainties in the assessment of an atmospheric release source applied to the autumn 2017 106Ru event
Joffrey Dumont Le Brazidec, Marc Bocquet, Olivier Saunier, and Yelva Roustan
Atmos. Chem. Phys., 21, 13247–13267,,, 2021
Short summary
Forecasting and identifying the meteorological and hydrological conditions favoring the occurrence of severe hazes in Beijing and Shanghai using deep learning
Chien Wang
Atmos. Chem. Phys., 21, 13149–13166,,, 2021
Short summary
Improving prediction of trans-boundary biomass burning plume dispersion: from northern peninsular Southeast Asia to downwind western North Pacific Ocean
Maggie Chel-Gee Ooi, Ming-Tung Chuang, Joshua S. Fu, Steven S. Kong, Wei-Syun Huang, Sheng-Hsiang Wang, Sittichai Pimonsree, Andy Chan, Shantanu Kumar Pani, and Neng-Huei Lin
Atmos. Chem. Phys., 21, 12521–12541,,, 2021
Short summary

Cited articles

Alfaro, S. C., Gaudichet, A., Gomes, L., and Maillé, M.: Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies, Geophys. Res. Lett., 25, 991–994,, 1998. a
An, X. Q., Zhai, S. X., Jin, M., Gong, S., and Wang, Y.: Development of an adjoint model of GRAPES–CUACE and its application in tracking influential haze source areas in north China, Geosci. Model Dev., 9, 2153–2165,, 2016. a
Basart, S., Pérez, C., Nickovic, S., Cuevas, E., and Baldasano, J.: Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East, Tellus B, 64, 18539,, 2012. a, b
Basart, S., Nickovic, S., Terradellas, E., Cuevas, E., García-Pando, C. P., García-Castrillo, G., Werner, E., and Benincasa, F.: The WMO SDS-WAS Regional Center for Northern Africa, Middle East and Europe, in: E3S Web of Conferences, vol. 99, EDP Sciences, 2019. a
Benedetti, A., Baldasano, J. M., Basart, S., Benincasa, F., Boucher, O., Brooks, M. E., Chen, J.-P., Colarco, P. R., Gong, S., Huneeus, N., Jones, L., Lu, S., Menut, L., Morcrette, J.-J., Mulcahy, J., Nickovic, S., Perez, G-P. C., Reid, J. S., Sekiyama, T. T., Tanaka, T. Y., Terradellas, E., Westphal, D. L., Zhang, X.-Y., and Zhou, C.-H.: Operational dust prediction, Springer, 2014. a
Short summary
Data assimilation provides a powerful tool to estimate emission inventories by feeding observations. This emission inversion relies on the correct assumption about the emission uncertainty, which describes the potential spatiotemporal spreads of sources. However, an unrepresentative uncertainty is unavoidable. Especially in the complex dust emission, the uncertainties can hardly all be taken into account. This study reports how adjoint can be used to detect errors in the emission uncertainty.
Final-revised paper