Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-15207-2020
https://doi.org/10.5194/acp-20-15207-2020
Research article
 | 
08 Dec 2020
Research article |  | 08 Dec 2020

Source backtracking for dust storm emission inversion using an adjoint method: case study of Northeast China

Jianbing Jin, Arjo Segers, Hong Liao, Arnold Heemink, Richard Kranenburg, and Hai Xiang Lin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jianbing Jin on behalf of the Authors (20 Oct 2020)  Author's response   Manuscript 
ED: Publish as is (02 Nov 2020) by Stelios Kazadzis
AR by Jianbing Jin on behalf of the Authors (02 Nov 2020)
Download
Short summary
Data assimilation provides a powerful tool to estimate emission inventories by feeding observations. This emission inversion relies on the correct assumption about the emission uncertainty, which describes the potential spatiotemporal spreads of sources. However, an unrepresentative uncertainty is unavoidable. Especially in the complex dust emission, the uncertainties can hardly all be taken into account. This study reports how adjoint can be used to detect errors in the emission uncertainty.
Altmetrics
Final-revised paper
Preprint