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Abstract. Emission inversion using data assimilation fun-
damentally relies on having the correct assumptions about
the emission background error covariance. A perfect covari-
ance accounts for the uncertainty based on prior knowledge
and is able to explain differences between model simulations
and observations. In practice, emission uncertainties are con-
structed empirically; hence, a partially unrepresentative co-
variance is unavoidable. Concerning its complex parameteri-
zation, dust emissions are a typical example where the uncer-
tainty could be induced from many underlying inputs, e.g.,
information on soil composition and moisture, land cover and
erosive wind velocity, and these can hardly be taken into ac-
count together. This paper describes how an adjoint model
can be used to detect errors in the emission uncertainty as-
sumptions. This adjoint-based sensitivity method could serve
as a supplement of a data assimilation inverse modeling sys-
tem to trace back the error sources in case large observation-
minus-simulation residues remain after assimilation based on
empirical background covariance.

The method follows an application of a data assimilation
emission inversion for an extreme severe dust storm over East
Asia (Jin et al., 2019b). The assimilation system successfully
resolved observation-minus-simulation errors using satellite
AQD observations in most of the dust-affected regions. How-
ever, a large underestimation of dust in Northeast China re-
mained despite the fact that the assimilated measurements in-
dicated severe dust plumes there. An adjoint implementation
of our dust simulation model is then used to detect the most
likely source region for these unresolved dust loads. The

backward modeling points to the Horqin desert as the source
region, which was indicated as a non-source region by the
existing emission scheme. The reference emission and un-
certainty are then reconstructed over the Horqin desert by as-
suming higher surface erodibility. After the emission recon-
struction, the emission inversion is performed again, and the
posterior dust simulations and reality are now in much closer
harmony. Based on our results, it is advised that emission
sources in dust transport models include the Horgin desert as
a more active source region.

1 Introduction

Severe dust storms are relatively common events in arid or
semi-arid regions over the globe, e.g., in North Africa, the
Middle East, Southwest Asia and East Asia, and Australia
(Shao et al., 2013). Dust particles could be lifted several kilo-
meters high into the atmosphere and subsequently carried
over distances of thousands of kilometers by the prevailing
winds. Substantial amounts of dust particles in dust storms
are a great threat to human health and properties in areas
downwind of dust source regions (World Meteorological Or-
ganization, 2018; Basart et al., 2019). The impact on human
health consists of dust pneumonia, strep throat, cardiovascu-
lar disorders and eye infections. Dust storms can also carry
irritating spores, bacteria, viruses and persistent organic pol-
lutants (World Meteorological Organization, 2017). Next to
human health, the resulting low visibility can cause a severe
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disruption of the transportation system. For instance, struck
by a choking dust storm, visibility in Beijing plummeted, and
over 1100 flights were delayed in early May 2017 (Jin et al.,
2019b). The dust cycle itself is also a key player in the Earth
system, with profound effects on terrestrial and ocean fertil-
ization, precipitation (Benedetti et al., 2014) and atmospheric
radiation (Kosmopoulos et al., 2017).

Due to the growing interest in dust storms, the understand-
ing of the physical processes associated with the dust cycles
has increased rapidly over the last decades (Ginoux et al.,
2012; World Meteorological Organization, 2018). To im-
prove the simulation skill of dust models, many studies were
carried out to parameterize the emission rates using wind tun-
nel tests or field experiments (Shao et al., 1996; Marticorena
and Bergametti, 1995; Alfaro et al., 1998; Fécan et al., 1999).
These emission parameterization schemes were then incor-
porated into large-scale global chemical transport models,
e.g., CAMS-ECMWF (Morcrette et al., 2009), or regional
ones, e.g., NASA-GEOS-5 (Colarco et al., 2010) and BSC-
DREAMSDb (Basart et al., 2012). An important application
of these models is to forecast dust concentrations over a few
hours to a few days in order to reduce the potential impact
on society (Wang et al., 2000; Gong et al., 2003). Different
from anthropogenic aerosols, dust particles arise from a com-
plex erosion process with extremely high spatial and tempo-
ral variability. A crucial element for the correct simulation
(and forecast) of dust transport is the correct representation
of the source areas and emission rates. In large-scale model-
ing systems, this representation remains relatively crude, due
to uncertainty in the different input data such as soil proper-
ties (most importantly soil texture data), surface roughness,
land cover (vegetation), topography, as well as insufficient
knowledge about the aerosol lifting process itself (Escribano
et al., 2016). Besides, quality of forecast of relatively coarse
resolution models for wind fields and soil moisture can im-
pact prognostic quality of dust emission and transport. The
difficult task of describing all of these inputs correctly subse-
quently leads to nontrivial simulation errors. Large discrep-
ancies (a factor of up to 10) in dust emissions among mod-
els were reported in the evaluation of multiple models par-
ticipating in the Aerosol Comparison between Observations
and Models (AeroCom) phase I experiments (Huneeus et al.,
2011; Koffi et al., 2012); the observation-minus-simulation
difference can even be as large as 2 orders of magnitude (Uno
et al., 2006; Gong and Zhang, 2008).

Recent advances in sensor technology and the reduced cost
of monitoring systems have led to an increase in observa-
tion data that could be used to analyze dust storms. These
observations could be used to explore and improve aerosol
emission simulation through inverse modeling. Progress in
dust emission inversion has been made in the last decade
by assimilating column-integrated satellite aerosol proper-
ties (e.g., Moderate Resolution Imaging Spectroradiometer
(MODIS) in Schutgens et al., 2012, Khade et al., 2013,
Yumimoto and Takemura, 2015, Yumimoto et al., 2016a,
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Di Tomaso et al., 2017, and Himawari-8 in Jin et al.,
2019b), Cloud-Aerosol LIdar with Orthogonal Polarization
(CALIPSO) vertical aerosol profiles in Sekiyama et al.
(2010), and ground-based PMj( concentrations (Jin et al.,
2018, 2019a).

Most of these dust emission inversion systems use vari-
ational methods to estimate the optimal emissions. Since a
large programming effort is required to formulate and im-
plement the tangent linear (TL) model and its adjoint model
(AM) in the traditional 4DVar, those systems often employ
model-reduced or ensemble-based variational assimilation.
With model reduction, a simplified tangent-linear model is
used to propagate the background error covariance. Ensem-
ble methods generate an ensemble of perturbed emissions
and propagate this ensemble to approximate the evolution
of background error covariance. Both of these adjoint-free
methods are able to reduce uncertainty in emissions by deter-
mining the dominant and sensitive patterns. The computation
costs necessarily limit the size of the reduced tangent-linear
model or the size of the ensemble to a number that is much
smaller than the size of the emission parameter space. Con-
sequently, the optimal emissions that can be calculated are
constrained to a subset of the original space, which is defined
by the model or parameter reduction that was applied.

A crucial element of all inversion methods is the proper
specification of the spread in possible estimates, which is
in this application the spread in possible emissions. Ideally,
the emission uncertainties should be both physically reason-
able and capable of providing sufficient variations to ex-
plain the observation-minus-simulation differences. Unfor-
tunately, the many possible errors that could be present in
dust emission parameterizations could not be described all
together, and simplifications are needed. Many studies use
fairly coarse emission uncertainty, limited to optimization
of a few scaling factors for emission inventories spanning
a larger domain. For example, in the dust emission inver-
sion research by Yumimoto et al. (2008), the emission back-
ground covariance is assumed to be uncorrelated in space,
and the uncertainty is simply defined as 500 % of the prior
emission flux rate. Khade et al. (2013) introduced an un-
certain erodibility fraction parameter field to introduce vari-
ability in dust emissions over the Sahara and reduced the
uncertainty by using an ensemble adjustment Kalman filter
(EAKF). Di Tomaso et al. (2017) attributed the emission er-
ror to the uncertainty in the friction velocity threshold (FVT),
which was reduced by estimating an optimal correction fac-
tor using a local ensemble transform Kalman filter (LETKEF).
Limited by the ensemble size, the multiplicative value was
considered spatially and temporally constant. In a previous
study described in Jin et al. (2018), a spatially varying mul-
tiplicative factor was applied to compensate for the errors
in the FVT in the dust emission parameterization. More re-
cently in Jin et al. (2019b), the uncertainties were described
by including uncertainty in the FVT and in the surface wind
field.
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An essential step before starting an inversion is to check
whether the specified uncertainties are actually able to ex-
plain the differences between observations and simulations.
The sensitivity of the model with respect to the uncertain-
ties should learn whether the parameters considered are re-
ally the dominant problematic parameters. Under the circum-
stances that the aforementioned model-reduced or ensemble-
based variational data assimilation algorithms are adopted,
the knowledge of the sensitivity is particularly valuable,
since it can efficiently help the model/parameter reduction
by removing those insensitive problematic parameters. Based
on this knowledge, the background covariance could be im-
proved, which will immediately improve the emission inver-
sions.

An efficient way of examining sensitivities is the use
of an adjoint model. This is especially useful for exam-
ining the sensitivity of a limited number of output values
for changes in a large amount of input values. The first
implementations of an adjoint of an atmospheric transport
model were in the early 1980s with applications in numerical
weather forecasting (Dimet and Talagrand, 1986; Talagrand
and Courtier, 1987). Implementations in chemical transport
models (CTMs) can be found in Elbern et al. (1997), Hakami
et al. (2005), Hourdin and Talagrand (2006), Henze et al.
(2007b), and An et al. (2016). The standard forward version
of a CTM requires input from initial conditions and model
parameters and provides concentrations in receptor points as
output. The state evolution could therefore be regarded as
source-oriented. Adjoint models, however, could be regarded
as receptor-oriented, as they use a distortion in a receptor
point as input and compute from this the distortions of the
input parameters that explain this. In case of many uncer-
tain parameters, an adjoint model is very efficient in calculat-
ing model sensitivities than other methods such as the tradi-
tional finite-difference method, which requires many forward
model runs with perturbed inputs (Zhai et al., 2018).

In this study, we first review the emission inversion con-
ducted in Jin et al. (2019b), where the Himawari-8 satellite
AOD observations were assimilated for a dust storm event
in May 2017. Although significant improvements in dust
simulation and forecast skills driven by the posterior emis-
sions were reported, some large regional simulation errors
remained. In particular, during three severe dust (SD) out-
breaks, some high dust concentrations observed at ground
level were not at all or not completely resolved by the a pos-
teriori simulations, although the assimilated AOD observa-
tions also indicated that a severe dust plume was present. An
adjoint version of the transport model is then introduced. It
will not be used to optimize emissions (although that would
make sense in a 4DVar context); instead, it is used to trace
back the potential emission source that could explain the ob-
served high concentrations. For the three selected dust out-
breaks the sensitivity towards the emissions is computed for
observation sites that were not resolved correctly by the as-
similation. Each of the results pointed to the Horqin desert
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as the most likely source region for this event. The Horqin
desert, which is also named the Horqin sandy land, is mixed
with sparse vegetation and agriculture lands in northeastern
China. Though it is recognized as one potential emission
source in several dust models, it is also considered of far less
importance compared to other major ones, e.g., the Gobi and
Mongolia deserts and Taklamakan desert (Zhang et al., 2003;
Ginoux et al., 2012; UNEP, WMO, and UNCCD, 2016). Kim
et al. (2013) suggested a dynamic vegetation index is essen-
tial for representing the seasonal bareness variation that reg-
ulates dust emissions over this region. Zhang et al. (2016)
predicted a declining trend in dust emission from this sandy
land due to the climate change. For LOTOS-EUROS used
in this work and another model, BSC-DREAMSD, it is not
present as an easily erodible in the dust emission scheme,
at least for these tested severe events. To evaluate whether
dust emissions from the Horqin desert could indeed explain
the observed high concentrations, a new inversion is applied
with a modified emission model with a higher surface erodi-
bility over this region. The new reference model is further
improved by assimilating ground-based PM1g observations,
which significantly reduce the remaining differences.

While various studies on aerosol and/or dust emission
inverse modeling assume that the locations of sources are
known, this study represents application of this methodol-
ogy in detecting dust source areas which are still not rec-
ognized as sources with a significant contribution to the air-
borne dust cycle. Within this context, the highlights are 2-
fold. First, this study shows how an adjoint model could be
used to identify potential sources in case large observation-
minus-simulation error residues are found that cannot be ex-
plained by the existing model and assumed or empirical un-
certainties and thus cannot be corrected using a data assimi-
lation system. With the potential source region identified by
the adjoint sensitivities, the background emission uncertainty
is updated. Second, although the existing emission scheme
worked properly in most deserts in East Asia, e.g., Gobi and
Mongolia, it highly underestimated the possible emissions
from the Horqin desert. Based on our results, it is advised
that emission sources in dust transport models include the
Horqin desert as a more active source region.

This paper is organized as follows. Section 2 introduces
the measurements, the Himawari-8 AOD and the ground-
based PM( observations that are used in this study. Section 3
mainly discusses the numerical dust transport model, the var-
ious causes of simulation emission errors, and the difficul-
ties in accurate emission uncertainty quantification. Section 4
presents the theory of adjoint modeling and evaluates the ac-
curacy of adjoint sensitivity. Section 5 reviews the emission
uncertainty construction that was used in the previous study
(Jin et al., 2019b) on dust storm emission inversion for an
event in May 2017 and shows the locally high error residues
in that assimilation, when three severe dust outbreaks are not
well reproduced in Northeast China even though the assimi-
lated measurements indicated severe dust plumes. Section 6
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Figure 1. Two snapshots of Himawari-8 Level 2 AODs (500 nm) on 3 May, 12:30 and 6 May, 13:30. Note that only observations within the
black framework are included, where gray values denote pixels for which no AOD was retrieved.

detects the most likely emission source for the three dust out-
breaks at first; then the dust model is reconstructed by assum-
ing higher soil erodibility for emissions over the potential
source regions found with the adjoint model. The emission
uncertainty is also updated here. Finally, a regional emis-
sion inversion is performed again using the new input. Sec-
tion 7 further discusses the added value of using adjoint sen-
sitivities for detecting sources to resolve observation-minus-
simulation errors.

2 Measurements
2.1 Himawari-8 AOD

The first of the next-generation geostationary Earth orbit me-
teorological satellites, Himawari-8, was launched in Octo-
ber 2014 by the Japan Meteorological Agency (Bessho et al.,
2016) and is pointed to East Asia. One of the instruments
on the satellite is the Advanced Himawari Imager (AHI)
(Yoshida et al., 2018), which provides observations with a
fine temporal (10 min) and spatial (5km) resolution and a
wide domain covering East Asia. The aerosol products have
been widely used in the airborne aerosol/dust data assimi-
lation (Yumimoto et al., 2016b; Sekiyama et al., 2016; Dai
et al., 2019). In our previous emission inversion in Jin et al.
(2019b), the Himawari-8 AOD was assimilated to identify
and track the rapidly changing dust storm events. Snapshots
of the Himawari-8 AOD are shown in Fig. 1.

2.2 Ground PM{jy measurements

Next to the Himawari-8 AOD, hourly PM|o concentrations
from the China Ministry of Environmental Protection (MEP)
air quality monitoring network are another powerful observa-
tional source. The network has over 1500 stations, which are
shown in Fig. 2, and also offers an opportunity to monitor the
dust plume with high accuracy. These PM|g measurements
from the network are not only used as independent data to
evaluate the a posteriori dust simulations after assimilation
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of Himawari-8 AOD in Jin et al. (2019b), but also treated
as supplementary data assimilated in the new emission in-
version specifically designed to resolve the observed dust in
Northeast China.

Though both the aforementioned Himawari-8 and the
ground PMj( data are actually a sum of the dust aerosols
and particles released in local activities, the 2017 dust storm
events were reported as extremely severe ones, with dust con-
centrations at downwind cities reaching up to 4000 ug m—3;
hence, dust aerosols are very dominant in the full aerosols.
For such kinds of severe dust events, Mahowald et al. (2017)
indicated AOD can be directly used as a reliable tool to rep-
resent dust loading in the atmosphere. AODs from Moder-
ate Resolution Imaging Spectroradiometer (MODIS) satel-
lite products and the ground PMjo observations were also
directly used to represent dust intensity for the same event
in Zhang et al. (2018). Therefore, all these measurements
are assumed to be representative for comparison with the
dust simulations in this study too. In case of less severe
dust storms, observational bias corrections (Dee and Up-
pala, 2009) would be required to remove the non-dust part
from the observations to allow comparison with a “dust-
only” model (Jin et al., 2019a). Besides, a variable obser-
vation representation error is used in this study to reduce the
observation bias influence, as will be explained in Sect. 6.2.

3 Dust model
3.1 Model configuration

A regional chemical transport model, LOTOS-EUROS, is
used to simulate the dust lifecycles, including emission, ad-
vection, diffusion, dry and wet deposition, and sedimenta-
tion (Manders et al., 2017). To simulate dust outbreaks in
East Asia, the model is configured on a domain from 15 to
50° N and 70 to 140° E, at a resolution of 0.25° x 0.25°. Ver-
tically, the model is configured on eight layers with a top
at 10km, where the second layer is a mixing layer repre-
senting a well-mixed boundary layer. The model is driven by

https://doi.org/10.5194/acp-20-15207-2020
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Figure 2. Locations of the Mongolia and Gobi, Alxa, Taklimakan, and Horqin deserts. The dots indicate locations of China MEP air quality
monitoring sites. Red marked region A (MR-A) and marked region B (MR-B) are where the dust is observed but not reproduced using the

transport model in this study.

Table 1. Dust aerosol size distribution in LOTOS-EUROS.

Bins dust_ff dust_f dust_ccc dust_cc dust_c
Diameter 0.01-1 1-2.5 2.5-4 4-7 7-10
range (um)

meteorological data from the European Centre for Medium-
Ranged Weather Forecasts (ECMWF), in this study opera-
tional forecasts for horizons of 3—12 h starting from the 00:00
and 12:00 analyses, retrieved at a regular longitude—latitude
grid of about 7 km resolution. The dust aerosols in the model
are described by five aerosol bins as shown in Table 1.

The severe dust storm event studied in this paper took
place over East Asia in May 2017 and has already been used
as a case study for emission inversion in Jin et al. (2019b).
The dust storm first originated from the Gobi and Mongolia
deserts and was then carried by the prevailing wind to north-
ern and central China. After crossing northern China, the dust
plume moved further east to the Korean Peninsula and Japan
(Minamoto et al., 2018), and part of the plume was eventu-
ally even transported across the Pacific Ocean (Zhang et al.,
2018).

3.2 Dust emission parameterization and error analysis

The physical basis of the dust emission model adopted in
LOTOS-EUROS is the parameterization scheme by Marti-
corena and Bergametti (1995). The dust flux F,, is calculated
as a function of horizontal saltation F}, the sandblasting ef-
ficiency o (Shao et al., 1996), a terrain preference S, and an
erodible surface fraction C as

Fo=Fp-a-S-C. 1)

The dust saltation rate Fj, is proportional to the third power
of the wind friction velocity u., as long as this exceeds a
certain (surface-dependent) friction velocity threshold u.;:
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The friction velocity u, is computed from the ECMWF 10 m
wind speed assuming neutral atmospheric stability, follow-
ing a logarithmic profile. The friction velocity threshold u .,
is derived first for an idealized dry and smooth surface and
then increased using two correction factors that described the
actual situation in a grid cell: the first factor accounts for soil
moisture in the presence of clay and the second factor ac-
counts for surface roughness elements. More formulas and
details related to the F}, parameterization can be found in Jin
et al. (2018).

Of the other factors in Eq. (1), the sandblasting efficiency
« is determined by the average diameter of the soil particles
in saltation and the average diameter of suspended particles.
The terrain preference S represents the probability of having
accumulated sediments in a given model cell (Ginoux et al.,
2001), calculated as

Si= (—Zm* — )5, 3)
Zmax — Zmin

where z; denotes the elevation of the given grid cell i, while
Zmax and zpin represent the maximum and minimum eleva-
tions in the surrounding 10° x 10° area, respectively. Note
that a typo error was made in the same terrain preference
equation but without a power of 5 in the related PhD the-
sis (Jin, 2019). The current configuration assumes that only
areas that are identified as barren surfaces in the land-use
maps allow wind-blown dust emissions, while all vegetated
or water-covered surfaces are considered non-erodible. The
fraction of barren surface C in a grid cell is taken from the
Global Land Cover database (http://forobs.jrc.ec.europa.eu/
products/glc2000/, last access: April 2020).

Even though the existing parameterizations were already
validated with a high credibility either in wind tunnel tests or
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in simulations for case studies, the representations of these
schemes in regional and global atmospheric models are still
limited. Many uncertainties are present, for example in the
land-use (derived from the Global Land Cover database)
and soil databases (derived from the PSU/NCAR mesoscale
model known as MMS5) that are used as input. These uncer-
tainties result in differences between observations and sim-
ulations that cannot be traced back immediately to a sin-
gle cause. Besides, these deterministic parameterizations are
not representative of the stochastic nature of dust emissions.
For example, the dust saltation only occurs when u, exceeds
the minimum friction velocity that is needed to initiate a
movement of soil particles. However, observations show that
within the dust particle size range the threshold friction ve-
locity also differs widely due to stochastic inter-particle co-
hesion. In reality there will always be a (small) amount of
free-moving dust which can be resuspended even by weak
wind forces (Shao and Klose, 2016).

Several emission inverse modeling studies have analyzed
and estimated sources of dust aerosols on regional scales and
decreased uncertainties in the emission model by minimiza-
tion of observation-minus-simulation differences. However,
the large amount of uncertainties cannot be constrained com-
pletely by the available observations. Most studies therefore
coarsen the uncertainties, limiting the optimization to only
a few scaling factors for the emissions field (e.g., Yumimoto
et al., 2008) or for precursor emission inputs (e.g., for the rel-
ative erodibility surface fraction by Khade et al., 2013, and
friction velocity threshold by Di Tomaso et al., 2017, and
Jin et al., 2018) spanning large domains. However, a coarse
and simplified emission uncertainty configuration might not
be able to resolve all observation-minus-simulation differ-
ences during the inverse modeling. An example of this will
be shown in Sect. 5.2, where three severe dust outbreaks
are described. The emission inversion assimilating satellite
aerosol optical depth (AOD) was able to produce a posteri-
ori emission fields that lead to dust simulations in agreement
with dust observations at ground level, except for a small re-
gion in the domain.

4 Adjoint model

The adjoint approach provides an efficient tool for calculat-
ing the sensitivity of a simulation model with respect to its
input parameters. In this study, an adjoint model is used to
identify potential source regions for dust that could explain
the mismatch between simulations and observations in the
northeast of China.

4.1 Adjoint theory

The following notation will be used for the discrete time step
of our simulation model:

xkz./\/lkfl(xkfl7 fkfl). (4)
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In here, x* denotes the state vector at time k that consists
of 3D fields of dust aerosol concentrations for each of the
five dust size bins in the model, input vector f k=1 consists
of emission fields for the five size bins, and MF denotes the
model operator that simulates x* given the state and input at
time k — 1. For a pure dust transport simulation, the model
is linear with respect to both x and f and could therefore be
written using matrix operators:

xk =Mk71 xk7]+Ek7] fkfl. (5)

The operator M¥ represents the transport part of the model,
while E* represents the emission part. Repeated application
of Eq. (5) provides the evolution of the state from time k — K
to time k:

K =M1 (Mk—z xk=2 4 g2 fk—2>+Ek—1 fk—l

(6)

=Mk—1 ~Mk_2 xk—2+Mk—1 .Ek—2 fk_2+Ek_1 fk—]
@)

ML MR M KD VK kK (8)
ML ME2 L M KD R kK )
A MELUER2 pR2 gl ket (10)

We define a model response function as a scalar function
of the state:

Jx*)eR. (11)

The response could for example be defined as the simulation
at a single location (an observation site) or an average over
multiple grid cells. The gradient of this response function at
time k with respect to the input vector f k=K follows from the
application of the chain rule and using the fact that Eq. (9) is
the only term in the expansion of x* that depends on f k=K,

VI @) =¥k (6) g (12)
Z(Ekfk)T.(Mka)T.“.'(Mk72)T (13)
MYV T (5.

The transpose (MX)7 of the linear model operator M¥ is re-
ferred to as the adjoint model. To compute the above gradient
VJ, the adjoint model is applied in a reverse time sequence
k—1,k—2,..., k— K. The first adjoint operation in this
sequence is applied on the adjoint forcing:

Vo J (x5). (14)

An adjoint model is a powerful tool to compute the model
response with respect to various input parameters. A use-
ful application is found in 4D variational data assimilation,
where it is used to derive the gradient of a cost function
for the difference between observations and simulations. In
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the context of air quality, this approach has been used to
constrain initial conditions, emissions, and other uncertain
model parameters such as uptake (Elbern et al., 2000; Henze
et al., 2009).

For this study, an adjoint implementation of the LOTOS-
EUROS model will be used to identify potential emission
source regions. The adjoint model is created from the same
source code, but using an internal flag it applies adjoint
(transpose) versions of the transport and emission operators.
Using a negative time step, it is able to run backwards in
time, as is required to compute the gradients as in Eq. (12).
The assimilation system that is used in this study remains
the reduced-tangent-linearization four-dimensional variation
(4DVar) that was developed in earlier studies (Jin et al.,
2018, 2019a, b), which does not use the adjoint implemen-
tation. Although it would be possible to use the adjoint for
the assimilation too, it was chosen to keep the assimilation
system the same in order to compare results before and after
the introduction of new emission sources.

4.2 Testing the implementation of the adjoint model

Before using the adjoint model to identify potential emission
sources, the implementation is first illustrated and tested by
looking at a single site. A suitable test to validate whether the
adjoint model computes the correct sensitivity of the model
towards changes in the input is to compare its evaluation
with a finite-difference method (Henze et al., 2007a; Guer-
rette and Henze, 2015). That is, the sensitivity of a model
response 7 (x¥) to the previous emission field f k=K s com-
puted either using the adjoint or by perturbing the emission
field. For this test, we define the response function as the
dust concentration in the grid cell where during the most se-
vere dust plume (SD1) the highest PM o concentration was
observed within marked region MR-A, referred to as “MR-
A_6", the location of which could be found in Fig. 2. The
response function becomes

J(x*) = HxF, (15)

where the matrix operator H is actually a row vector with
zeros except for the elements that represent the five dust size
bins in the selected grid cell:

H=]0,...,0,1,1,1,1,1,0,...,0]. (16)
The adjoint forcing becomes
Ve J (K =HT. 17

Time #; is set to 19:00 on 3 May 2017, when the dust con-
centration in MR-A_6 peaked.

Following Eq. (12), the sensitivities of this dust concentra-
tion towards dust emissions at time #;_g are

vfkij(xk) = ET . MKT .
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A snapshot of the adjoint emission sensitivities on 3 May,
13:00 CST is shown in Fig. 3a for one of the five dust size
bins in the model. According to these values, the dust con-
centration in MR-A_6 simulated for 6 h later is most sen-
sitive to emissions that are roughly in the rectangular box.
Note that in this example the response function 7 has units of
concentrations, which gives V7 the units of concentrations
(ug m~3) over emissions (ugm~2s~!), equivalent to sm™!.

The same sensitivity could also be calculated using a
finite-difference method. For this, 16 locations are chosen
within the box shown in Fig. 3a. The locations are marked
with dots and put at locations where the adjoint sensitivities
are non-zero. Then 16 model runs are performed over [13:00,
19:00], where each run is similar to a standard simulation but
using emissions that are only non-zero at [13:00, 14:00] at
just 1 of the 16 marked locations. The magnitude of these
emissions is simply set to 1 ugm~2s~! for each bin. The
result of each simulation is the simulated concentration in
ugm~3 in the MR-A_6 location at 19:00. The ratio between
simulated concentration and emission has units sm~! and is
a measure of the sensitivity of the simulation in MR-A_6 at
19:00 towards an emission at one of the marked locations at
13:00.

The scatter plot in Fig. 3b compares the 16 computed sen-
sitivities (for each of the five size bins) versus the sensi-
tivities computed with the adjoint model. The results show
that the adjoint-computed sensitivities are in good agreement
with the finite-difference sensitivities, which results in a rel-
ative high Pearson correlation coefficient of R =0.997. The
comparison suggests that the adjoint model has been imple-
mented correctly. The differences that remain might be due
to rounding errors at points where the sensitivity is low and
model processes other than transport and emission which
are not included in the adjoint. Both the finite-difference
and adjoint methods seem able to derive emission sensitiv-
ities. An advantage of the adjoint method however is that it
computes sensitivities with one single simulation, while the
finite-difference method requires many more (16 in this ex-
ample).

5 Dust emission inversion

In Jin et al. (2019b), an assimilation system which com-
bines the same transport model (LOTOS-EUROS) and the
reduced-tangent-linearization 4DVar data assimilation (Jin
et al., 2018) was used to assimilate from Himawari-8 AOD
observations. The assimilation system adjusted the dust
emissions in the source regions to obtain the best comparison
between simulated and observed AOD. Through comparison
with independent PM( data, the dust concentration forecast
was validated to be strongly improved at most downwind
sites by the assimilation. However, some large regional sim-
ulation errors still remained, especially in Northeast China,
as will be discussed later on.

Atmos. Chem. Phys., 20, 15207-15225, 2020



15214

(a)

Emission Sensitivities to the state (dust_ccc) at MR-A_6

A Y !
" o MR-A_6 at 2017/05/03 19:00 (CST)
points for sensitivity comparison

80°E 90°E 100°E 110°E

0 0.00038 0.00075 0.0015 0.003 0.006 0.009 0.012
mls

0.015

J. Jin et al.: Source backtracking for dust storm emission inversion

(b) Emis sens at 2017-05-03, 13:00 CST to MR-A 6
0.015 >

_ o dust_ff
“ o dust f R= 0-99,7/
1 Ve
£ o dust_ccc e
W o dust cc e
] - o
& 00104 o dustc o~ °
2 - ”
b= e
= P
L e
© ;l?:a
é o -]
5 0.005 1 n“’ﬁ/d
£ 20"
o &
3 7
: &
=

0.000 T T

0.000 0.005 0.010 0.015

adjoint sensitivities (m~1 s)
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(a) map of emission sensitivities computed by the adjoint model; (b) comparison between sensitivities computed by the adjoint method and

finite differences.

5.1 Dust emission

The uncertainty of the emission in Jin et al. (2019b) was
mainly assigned as a sum of two sources, the uncertainty in
the friction velocity threshold and in the erosive wind fields.
The uncertainty in the friction velocity threshold u.; was de-
scribed by a spatially varying multiplicative factor g, defined
as random variables with a mean of 1.0 and a standard devi-
ation o of 10 %. The uncertainty in the friction wind veloc-
ity u, was described by the spread in a meteorological en-
semble with 26 members. Note that the dust emission model
output data are on every hour per grid cell, and results may
vary strongly from hour to hour. Also, dust concentration ex-
tremes that last less than 1 h can be missed in model output
data. In the inversion system, the temporal variation of the
emission model is maintained and could be further increased
by the uncertainty during the assimilation window(s) of 24 h.

Figure 4a shows the accumulated dust emission flux from
2 May, 15:00, to 4 May, 15:00 China Standard Time (CST).
These dust emissions are responsible for the event that is
studied. Outside of this period, the dust emissions are rather
weak. The figure shows that the main source regions are in
the Gobi and Mongolia deserts. Figure 4b shows the cor-
responding standard deviation of the accumulated emission
that follows from assumed uncertainty.

Two snapshots of Himawari-8 AODs during the tested dust
events can be found in Fig. 1. These types of data were as-
similated with LOTOS-EUROS simulations in two 24 h win-
dows. The posterior accumulated emissions are also shown
in Fig. 4c. Both the prior and posterior simulations indicate
that the dust was emitted from the Gobi, Mongolia and Alex
deserts. Previous research (Zhang et al., 2018) and simulation
from an operational dust forecast model, BSC-DREAMS8b
(https://ess.bsc.es/bsc-dust-daily-forecast, last access: April
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2020), have identified the same emission source for this
event.

The red box in Fig. 2 indicates the location of the Horqin
desert. The area is not a completely sandy desert but has
some vegetation, although sparse. No (or hardly) any dust
emissions are assumed to be released from here in the emis-
sion model, and therefore the associated uncertainty is also
zero. Thus, the Horqin desert is in the model considered com-
pletely free of dust emissions, and emissions could also not
be introduced by the inversion system. However, as we shall
see later on, dust emissions from this region could very well
explain observed differences between observations and simu-
lations, and therefore the inversion system should be adjusted
to allow emissions from there too.

5.2 Regional differences between observations and
posterior simulations

Snapshots of the dust forecasts based on the a posteriori
emissions and PMjo concentration during the dust events
are shown in Figs. 5 and 6. Although for most locations the
a posteriori dust simulations showed good agreement with
the PM ¢ observations, some large mismatches remained, es-
pecially in the northeastern part of China. Specifically, ex-
tremely high values of surface dust concentration over three
severe dust events were reported by the ground-based moni-
toring system in this region, but neither could be reproduced
to the full extent by the simulations. This is illustrated in
Fig. 5 for the first severe dust plume from 3 May 2017,
08:00(CST) to 20:00, which we will refer to as “SD1”, and
in Fig. 6 for the second dust outbreak from 4 May, 02:00 to
14:00, which is referred to as “SD2”. Similar figures for the
third event (“SD3”) are available as the Supplement.

https://doi.org/10.5194/acp-20-15207-2020
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Figure 4. Accumulated prior dust emissions from 2 May 2017, 15:00 (CST) to 4 May, 15:00 (a) as well as the assumed standard deviation (b)
and the estimate after assimilation (c). This figure is adapted from Fig. 2 in Jin et al. (2019b).

The top row in Fig. 5 shows PM( observations at three
different moments during the SD1 event. Obviously a dust
plume crosses the red marked region A (MR-A), with max-
imum PMq observations rising rapidly from 200 ugm™> at
08:00 to more than 2000 ugm™—> at 20:00. The second and
third rows show the a priori and a posteriori LOTOS-EUROS
simulations on the surface dust concentration for the same
hours. Unfortunately, the simulations in the MR-A region
were completely free of dust in both simulations. Note that
the simulated prior and posterior AODs, which are not shown
here, generally have a similar profile to the surface dust con-
centration shown in Fig. 5b and c.

The Himawari-8 AOD maps also indicated the existence
of a severe dust plume over MR-A, as can be seen in the
snapshot of AOD on 3 May, 12:30 in Fig. 1a. Most of the
AQOD values over MR-A exceed 1.2. Our first 24h cycle
of emission inversion was performed by assimilating these
high-valued AOD. The simulations driven by the posterior
emission fields, shown in Fig. 5¢c.1-c.3, did however not lead
to a dust load over MR-A during this period. The differences
between the posterior simulations and observations indicate
that the current emission model and associated uncertainties
cannot explain the dust plume in MR-A. In other words, the
dust plume that moved over MR-A was not due to emis-
sions from the Gobi and Mongolia deserts we predefined in
the background emission but must originate from somewhere
else.

The three snapshots of PM ¢ observations in Fig. 6a indi-
cate the second severe dust plume (SD2) over the same re-
gion MR-A. In this case, both prior and posterior LOTOS-
EUROS model simulations include a dust plume over MR-A
(see Fig. 6b and c), which could be traced back to emissions
from the Gobi, Mongolia, and Alex deserts. The maximum
of the modeled surface dust concentration over MR-A on
4 May is around 500 ug m—3. However, the maximum PM
measurement value exceeds 2000 ug m—>. It is true that these
observations minus simulation might be caused by the emis-
sion underestimation over the Mongolia and Gobi deserts.
Yet those emissions also contributed the dust plume observed
in central China. In this case, those dust flux rates are actually
constrained at a modest level by those observations. Besides,
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the dust plume did not fully cover the observed dust-affected
regions. Thus, the dust level is considered to be partially due
to the predefined emissions but also due to emissions from
another region. For this event, Himawari-8 measurements are
not successfully retrieved due to cloud scenes over MR-A;
thus, AOD snapshots are not available.

The underestimation of dust concentrations over MR-A
during the SD1 and SD2 events was also found in other
simulation systems, for example, as published by the SDS-
WAS service (https://ess.bsc.es/bsc-dust-daily-forecast, last
access: April 2020). As an example, results for SD1 and
SD2 from the forecast system BSC-DREAMSb (Basart et al.,
2012; Mona et al., 2014) are shown in the last row of Figs. 5
and 6, respectively. These suggests that these emission mod-
els are also prone to underestimating the emission rate over
the Horgin desert.

A similar conclusion was drawn for the third dust out-
break (“SD3”), for which simulation and PM;y measure-
ments are available in the Supplement. For SD3, it was found
that a severe dust plume was recorded over the marked re-
gion (MR-B) in Northeast China. However, neither the prior
nor posterior simulations of the BSC-DREAMS8b simula-
tion reproduce any dust over MR-B, although the assimilated
Himawari-8 AOD values did indicate the existence of a dust
plume over this region, as shown in Fig. 1b.

To further illustrate the three severe dust outbreaks in
Northeast China on 3 and 4 May, the time series of the PM g
observations averaged over all monitoring stations inside the
marked region MR-A are shown in Fig. 7a. The average
PMg levels are around 100-200 ugm~> when there is no
dust (earlier than 2 May, 12:00). The peak of SD1 arrives in
marked region MR-A around 3 May 08:00 and has left the
region on 4 May 00:00; the averaged PM ¢ concentrations
have reached a value of up to 1000 ug m~3. The most severe
dust plume occurs during SD2 on 4 May, with average PM g
measurements inside MR-A up to 1500 ugm™3.

Atmos. Chem. Phys., 20, 15207-15225, 2020
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Figure 5. PM( observations and surface dust concentrations simulated for the first severe dust event (SD2) for 3 May, 08:00 (CST) (a.1-
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simulations (c.1-c.3), and bottom row BSC-DREAMS8b simulations (d.1-d.3). MR-A: marked region A.

6 Result and discussion
6.1 Identification of new emission sources

During the investigated severe dust outbreaks (SD1 and
SD2), the emission inversion was not able to provide a pos-
teriori simulations that correctly represented the high dust
concentrations observed in sites in the northeast of China. To
identify whether this could be due to missing dust sources,
the adjoint model is used to identify potential source regions.

Similarly to the illustrative example in Sect. 4.2, the sensi-
tivity of a response function towards changes in emissions is
computed using the adjoint model for each of the three dust
outbreaks. The adjoint forcings H in Eq. (18) are chosen as
the observed state variables in MR-A_6 on 3 May 19:00 for
SD1, in MR-A_5 on 4 May 10:00 for SD2, and in MR-B_14

Atmos. Chem. Phys., 20, 15207-15225, 2020

on 6 May 18:00 for SD3, respectively. The locations of MR-
A_6, MR-A_5 and MR-B_14 can be found in Fig. 2b. These
three sites (and also the surrounding stations) reported the
highest PM ¢ levels during the three dust outbreaks. For each
case, the adjoint forcing H is filled with values of 10 uyg m—3
for each bin in the cell with the observation site. Time series
of emission sensitivity fields are shown in Fig. 8 for the se-
vere dust outbreaks SD1 and SD2, while the sensitivities for
SD3 are reported in the Supplement.

Figure 8a.1-a.6 show the potential source regions for the
high PMj¢ values observed in MR-A_6 on 3 May, 11:00.
The blue marked box encloses the Horqin desert, which is a
potential source region for dust emitted 10 h before the ob-
servation time. If the dust was emitted earlier, it seems to
originate from regions further south, mainly the North China

https://doi.org/10.5194/acp-20-15207-2020
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Plain. Though it is also considered a weak potential source by
Ginoux et al. (2012), it is a densely populated region covered
with vegetation and therefore treated as being further less
likely to be a source of dust in our model. Besides, the PMq
observations on 3 May, 03:00 and 06:00 corresponding to the
last two snapshots in Fig. 8a are presented in Fig. S3 in the
Supplement: they show that the northern China plains were
clear of dusts during the event. The sensitivity maps show
that for this time period the MR-A_6 location is not sensitive
to dust emitted from the Gobi and Mongolia deserts, which
are in the current emission model of the main source regions.
This explains also why the assimilation system, which was
based on adjusting emissions from these deserts, was not able
to resolve the high dust levels within marked region MR-A
during SDI.

https://doi.org/10.5194/acp-20-15207-2020

As shown in Fig. 8b.1-b.6, a potential source region for
dust observed in marked region MR-A during SD2 is again
the Horqin desert, in case the emission took place 12 h before
observation. For emissions longer ago, the Gobi and Mon-
golia deserts could be source regions too. According to the
reference and posterior dust simulations in Fig. 6, the dust
plume that originated from the Gobi desert was in fact carried
to MR-A on 4 May, after 20 to 30 h of long-range transport.
However, the simulated dust concentrations in this plume are
much lower than the observed PM ¢ concentrations. The best
explanation is that the dust plume was first released from
the Gobi desert and that a part of it was carried to North-
east China by the prevailing winds. When it crossed over the
Horqin desert, huge amounts of new dust particles were lifted
too, and the mixed plume reached marked region MR-A on

Atmos. Chem. Phys., 20, 15207-15225, 2020
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The location of the stations is indicated in Fig. 2.

4 May. An observational study mainly based on Himawari-8
RGB imagery carried by Minamoto et al. (2018) also indi-
cated that the dust particles in SD2 were not only from the
Gobi desert, but might also originate from the Horqin desert,
which was up to now recognized as a less active source by
most dust emission models.

Similar conclusions were drawn for the severe dust event
(“SD3”), for which figures of backward emission sensitiv-
ities are available as the Supplement. For SD3, it was no-
ticed that dust emissions from the Horqin desert between
6 May 09:00 and 15:00 could explain the high dust loads
observed. Earlier emissions are traced northwards from re-
gions in Siberia or other high-latitude regions as discussed
in Bullard et al. (2016) that are still not identified as active
source in dust emission models.

The simulation of the emission source sensitivities over
the three independent dust events all indicated that the
Horqin desert is likely to be the main source region for SD1
and SD3, and also at least partly a source region for SD2.
Therefore, the existing emission scheme needs to be adjusted
to allow dust emission more erodible from the Horqin desert,
especially when dust is observed in Northeast China.

Atmos. Chem. Phys., 20, 15207-15225, 2020

6.2 Emission inversion with improved emission
uncertainty

Parameterization of source areas, which requires knowledge
on soil properties and vegetation cover, parameterization of
surface roughness, dust emission and transport processes are
some possible reasons why the current simulation model is
not always able to simulate the actual dust emissions. From
the study with the adjoint model it was shown that a lack of
emissions from the Horqin desert is likely to be one of these
reasons. To allow dust emissions from this region too, the
following changes were applied to model the emissions and
their uncertainties.

— In the land-use database, most parts of the Horqin desert
are described as “sparse vegetated”. For this region, the
properties of sparse vegetated surfaces are set similarly
to “bare areas”, which leads to a higher erodibility pa-
rameter C; in Eq. (1).

— The terrain preference correction is disabled, leading to
S; = 1in Eq. (3).

— A tuning factor 0.7 is used to obtain a lower new friction
velocity threshold in Eq. (2).

https://doi.org/10.5194/acp-20-15207-2020
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Figure 8. Backward time series of emission sensitivity of the dust simulation at MR-A_6 3 May 2017, 19:00 CST: emission sensitivity
distribution on 3 May 2017, 18:00 (a.1), 15:00 (a.2), 12:00 (a.3), 09:00 (a.4), 06:00 (a.5), 03:00 (a.6); and of the dust simulation at MR-A_5
4 May 2017, 10:00: emission sensitivity distribution on 4 May 2017, 09:00 (b.1), 05:00 (b.2), 01:00 (b.3), 3 May, 21:00 (b.4), 17:00 (b.5),

13:00 (b.6).

— The uncertainties in the new emission field is described
similarly to Jin et al. (2018, 2019b) by correction fac-
tors applied to the new friction velocity threshold. The
correction factors are spatially varying and have a mean
1 and a standard deviation 10 %.

These changes are highly empirical and chosen just to have
better dust simulations for May 2017. However, these might
not be sufficient to correctly describe the emissions from the
Horqin dessert during other events. Application in other sim-
ulations therefore requires careful inspection by the user.
The assimilation of Himawari-8 AODs described in Jin
et al. (2019b) The experiment is set from 3 May to 5 May
with two 24 h assimilation cycles, which covers the two dust

https://doi.org/10.5194/acp-20-15207-2020

outbreaks, SD1 and SD2, respectively. As seen in Fig. 7b,
the two analyses are performed on 4 May, 00:00 and 5 May,
00:00, respectively. Each of them calculates the most likely
emission fields in the past 24 h that fits both the prior infor-
mation and available measurements. Himawari-8§ AOD val-
ues are assimilated in the first cycle, of which the measure-
ment error configurations are similar to those in Jin et al.
(2019b). However, almost no AOD values are retrieved in
the second window over the MR-A region; hence, the ground
PMj( observations are assimilated additionally. A variable
representation error designed in Jin et al. (2018) is used to
represent the uncertainty of PM;o measurements, in which a
smaller representation error is assigned to measurements re-
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Table 2. Dust storm emission inversions.

J. Jin et al.: Source backtracking for dust storm emission inversion

First analysis
assimilated data

Second analysis
assimilated data

prior -
emis inver

extra emis inver
prior using improved emis -
emis inver using improved emis

Himawari-8§ AOD
Himawari-8 AOD and PM

Himawari-8 AOD

Himawari-8§ AOD
Himawiri-8 and and PM

Himawari-8 AOD and PM

Note: —: no assimilation; emis inver: emission inversion; improved emis: improved emission model.
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Figure 9. Accumulated dust emissions over the Horqin desert from 3 May, 20:00 CST to 5 May, 07:00 (SD2): (a) prior emissions; (b) pos-
terior emissions. The “old” priori and posterior accumulated emission map can be seen in Fig. 4.

porting a higher PM 10 value so that those small-value PM 1o
observations with larger non-dust fraction will has less in-
fluence in assimilation than those high-value measurements.
Details over these assimilation tests are listed in Table 2.

The model domain is still configured on the whole of East
Asia from 15 to 50° N and 70 to 140° E shown in Fig. 2. The
computation complexity on our reduce-tangent-linearization
4DVar is generally proportional to the size of uncertain emis-
sion fields. To save the computation costs, the aforemen-
tioned new emission and uncertainty are only applied to dust
emission over the Horqin desert, while over the rest of the
domain, the deterministic emission scheme described in Jin
et al. (2019Db) is used.

It is actually unfair to compared the results between the
emission inversion in Jin et al. (2019b) and the proposed one
using improved emission model directly, since the difference
could be caused either by extra PM( observations or by the
emission schemes introduced. Therefore, an extra emission
inversion is conducted. As shown in Table 2, it repeats the
previous emission inversion exactly but extra PM|o observa-
tions over the MR-A region are assimilated. The extra emis-
sion inversion results in the consistent posterior to the emis-
sion inversion in Jin et al. (2019b). The posterior simulation
of extra emission inversion is not shown in this paper, but the
RMSE time series over MR-A region is calculated and given

Atmos. Chem. Phys., 20, 15207-15225, 2020

in Fig. 7b which are approximately the same to the posterior
of emission inversion in Jin et al. (2019b). It is because the
existing emission background error covariance that explains
the emission spread cannot resolve the extra PMg measure-
ments. The comparison indicates that solely assimilating ex-
tra PM ¢ but without using improved emission modeling has
no effect on improving dust emission inversion over North-
east China.

The emission inversions using the new emission and un-
certainty model are then performed. The accumulated dust
emissions before and after assimilation are shown in Fig. 9.
After assimilation (panel b), a much stronger total emission
is estimated than what is computed by the updated a priori
model (panel a). In comparison, the “old” parameterization
scheme indicates that there is no dust emission at all as shown
in Fig. 4. Snapshots of the dust simulations on SD1 and SD2
driven by these emissions are shown in Figs. 10 and 11 for
three different times (columns), respectively; in each figure,
the top row shows simulations using the reference emissions,
and the bottom row using the assimilation result.

These maps could be compared to the observations and
simulations using the original emission model as shown in
Figs. 5 and 6. Driven by a more easily erodible emission
scheme, the a priori simulation (see Fig. 10a) generated
a dust band which originated from the Horqin desert and

https://doi.org/10.5194/acp-20-15207-2020
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Figure 10. Simulation of SD1 using the new emission fields: (a) a priori and (b) posterior (by assimilating the Himawari-8 AODs) on 3 May,

08:00 (a.1-b.1); 14:00 (a.2-b.2); 20:00 (a.3-b.3). MR-A: marked region A.
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Figure 11. Simulation of SD2 using the new emission fields: (a) prior and (b) posterior (by assimilating the ground-based PM( observations)
on 4 May, 02:00 (a.1-b.1); 08:00 (a.2-b.2); 14:00 (a.3-b.3). MR-A: marked region A.

then carried towards the northeast crossing the MR-A. The
dust simulation in Fig. 10b are obtained by assimilating the
Himawari-8 AOD values on 3 May. This posterior is in bet-
ter agreement with the real dust load according to the PMjg
observations.

https://doi.org/10.5194/acp-20-15207-2020

During SD2, parts of the dust concentrations in the MR-A
originate from a dust plume that was lifted from the Gobi
and Mongolia deserts. This initial plume is the result of
a LOTOS-EUROS simulation driven by the prior emission
scheme. Meanwhile, extra particles are also mobilized from
the Horqin desert and transported northwards. The new emis-
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sion model increases the dust load, however, the simulation
without assimilation still under estimates the PM g concen-
trations shown in Fig. 6a.1-a.3. Using the posterior emission
field, the dust simulations are enhanced further and are in
much better agreement with the observations.

To quantify the improvements through the assimilation,
the root mean square error (RMSE) between the observed
PM¢ concentrations and the a priori and posterior dust sim-
ulations has been computed for each hour during the two dust
outbreaks SD1 and SD2. These RMSE values are added to
Fig. 7b, which already showed similar time series for simu-
lations using the original emission model. Using the “new”
emission model, the a priori RMSE values are slightly im-
proved compared to the older simulations. Although extra
emissions from the Horgin dessert are now included, the de-
fault amount is still not strong enough to simulate the ob-
served dust peak, especially during SD2. The largest im-
provement is made when assimilation is used to further en-
hance the emissions; the maximum RMSE values during
SD1 are reduced from 1100 to 600 uygm~3, and during SD2
they are reduced from 2000 to 1000 ugm—3. In the original
assimilation configuration this could not be achieved since
the emission uncertainty model did not allow any additional
emissions from the Horqin desert at all.

7 Summary and conclusion

In this study, we illustrate the importance of using a cor-
rect background error covariance in emission inversion. An
adjoint-based sensitivity method is used to identify new error
sources that should be included when constructing emission
uncertainties. The methodology is applied to dust outbreaks
over East Asia in May 2017.

First, the dust storm emission inversion in Jin et al. (2019b)
was reviewed. Although in there improvements in dust sim-
ulations and forecasts have been achieved through assimila-
tion of Himawari-8 satellite AOD, large errors still remained
unresolved at some locations. Specifically, three severe dust
outbreaks in Northeast China were investigated, which are
neither reproduced by the a priori nor posterior simulation
despite the assimilated measurements indicating the exis-
tence of severe dust plumes.

To trace back the potential emission sources, an adjoint
model has been introduced, which efficiently calculates the
sensitivities of model responses with respect to a large num-
ber of input parameters. Evaluation showed that the adjoint
sensitivities are in good agreement with the values obtained
using a finite-difference method. The adjoint model was then
used to trace the sensitivity of three independent dust events
to emissions from upwind regions. All the experiments indi-
cate that the Horqin desert is the most likely source region,
which is modeled as a non-source in our existing emission
parameterizations.
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The emission scheme and the corresponding uncertainties
over the Horqin desert are then reconstructed by assigning
higher erodibility. The agreement with observations is only
slightly improved when using a standard model simulation.
However, more significant improvements are made when a
new assimilation is carried out that is able to further enhance
the new emissions. The maximum RMSE between dust sim-
ulation and PMjy observations are reduced from 2000 to
1100 ug m~3. In future, the residues could be further reduced
using a better reference emission as well as an improved un-
certainty description for the Horqin desert. Note that also the
presence of non-dust particles in the PM g observations lim-
its the assimilation accuracy; removal of the non-dust part as
in (Jin et al., 2019a) will become part of the standard proce-
dure in the future work when the huge amount of computing
power is available.

Although existing emission scheme work properly for
most deserts in East Asia, e.g., Gobi and Mongolia, they
seem to highly underestimate the Horqin desert as a source
region. Based on our results, it is advised that dust sources
in dust transport models include the Horqin desert as a more
active source region, especially when severe dust is observed
in Northeast China.

Our study clearly shows the importance of using a correct
background error covariance in resolving observation-minus-
simulation errors in emission inversions. The proposed ad-
joint method could also be performed to identify the sensi-
tivity towards emission sources and guide the construction of
emission uncertainties. This does not only hold for applica-
tions focusing on dust, but also for other atmospheric inverse
modeling applications, e.g., black carbon, haze, or gases in
case that their source locations are not fully known yet.
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