Research article 16 Dec 2019
Research article | 16 Dec 2019
The role of spring dry zonal advection in summer drought onset over the US Great Plains
Amir Erfanian and Rong Fu
Related authors
No articles found.
Sudip Chakraborty, Jonathon H. Jiang, Hui Su, and Rong Fu
Atmos. Chem. Phys., 21, 12855–12866, https://doi.org/10.5194/acp-21-12855-2021, https://doi.org/10.5194/acp-21-12855-2021, 2021
Short summary
Short summary
Boreal autumn is the main wet season over the Congo basin. Thus, changes in its onset date have a significant impact on the rainforest. This study provides compelling evidence that the cooling effect of aerosols modifies the timing and strength of the southern African easterly jet that is central to the boreal autumn wet season over the Congo rainforest. A higher boreal summer aerosol concentration is positively correlated with the boreal autumn wet season onset timing.
Pierre Gentine, Adam Massmann, Benjamin R. Lintner, Sayed Hamed Alemohammad, Rong Fu, Julia K. Green, Daniel Kennedy, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019, https://doi.org/10.5194/hess-23-4171-2019, 2019
Short summary
Short summary
Land–atmosphere interactions are key for the exchange of water, energy, and carbon dioxide, especially in the tropics. We here review some of the recent findings on land–atmosphere interactions in the tropics and where we see potential challenges and paths forward.
Sudip Chakraborty, Kathleen A. Schiro, Rong Fu, and J. David Neelin
Atmos. Chem. Phys., 18, 11135–11148, https://doi.org/10.5194/acp-18-11135-2018, https://doi.org/10.5194/acp-18-11135-2018, 2018
Short summary
Short summary
This study shows the observational evidence of the role of humidity and associations from wind shear and aerosol concentrations on the evolution of deep convective clouds from shallow clouds. This study shows how humidity, wind shear, and aerosols influence a parcel's buoyancy before the clouds form.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Jonathan H. Jiang, Qinbin Li, Rong Fu, Lei Huang, Xiaohong Liu, Xiangjun Shi, Hui Su, and Cenlin He
Atmos. Chem. Phys., 18, 1065–1078, https://doi.org/10.5194/acp-18-1065-2018, https://doi.org/10.5194/acp-18-1065-2018, 2018
Short summary
Short summary
The interactions between aerosols and ice clouds represent one of the largest uncertainties among anthropogenic forcings on climate change. We find that the responses of ice crystal effective radius, a key parameter determining ice clouds' net radiative effect, to aerosol loadings are modulated by water vapor amount and vary from a significant negative correlation in moist conditions (consistent with the “Twomey effect” for liquid clouds) to a strong positive correlation in dry conditions.
Jose A. Marengo, Gilberto F. Fisch, Lincoln M. Alves, Natanael V. Sousa, Rong Fu, and Yizhou Zhuang
Atmos. Chem. Phys., 17, 7671–7681, https://doi.org/10.5194/acp-17-7671-2017, https://doi.org/10.5194/acp-17-7671-2017, 2017
Short summary
Short summary
The onset and demise of the rainy season in Amazonia are assessed in this study using meteorological data from the GoAmazon experiment for the 2014–15 rainy season. The onset of the rainy season was strongly associated with changes in large-scale circulation in the region, and our analyses using regional thermodynamic indices suggest that local changes such the regional thermodynamic characteristics may have been less important on the occurrence of the onset compared to large-scale circulation.
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Deciphering organization of GOES-16 green cumulus through the empirical orthogonal function (EOF) lens
Satellite retrieval of cloud base height and geometric thickness of low-level cloud based on CALIPSO
Lightning occurrences and intensity over the Indian region: long-term trends and future projections
Contrasting ice formation in Arctic clouds: surface-coupled vs. surface-decoupled clouds
Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors
Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications
Lidar observations of cirrus clouds in Palau (7°33′ N, 134°48′ E)
Observing the timescales of aerosol–cloud interactions in snapshot satellite images
Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
How frequent is natural cloud seeding from ice cloud layers ( < −35 °C) over Switzerland?
Processes contributing to cloud dissipation and formation events on the North Slope of Alaska
Characterisation and surface radiative impact of Arctic low clouds from the IAOOS field experiment
Changes of cirrus cloud properties and occurrence over Europe during the COVID-19 caused air traffic reduction
A-Train estimates of the sensitivity of the cloud-to-rainwater ratio to cloud size, relative humidity, and aerosols
A New Conceptual Model for Adiabatic Fog
Ice injected into the tropopause by deep convection – Part 2: Over the Maritime Continent
3D radiative heating of tropical upper tropospheric cloud systems derived from synergistic A-Train observations and machine learning
The potential of increasing man-made air pollution to reduce rainfall over southern West Africa
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework
The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – case studies
Constraining the Twomey effect from satellite observations: issues and perspectives
Microphysical properties of three types of snow clouds: implication for satellite snowfall retrievals
Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017
Linkage among ice crystal microphysics, mesoscale dynamics, and cloud and precipitation structures revealed by collocated microwave radiometer and multifrequency radar observations
Possible mechanisms of summer cirrus clouds over the Tibetan Plateau
Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds
Towards the connection between snow microphysics and melting layer: insights from multifrequency and dual-polarization radar observations during BAECC
Cloud phase characteristics over Southeast Asia from A-Train satellite observations
Cloud regimes over the Amazon Basin: perspectives from the GoAmazon2014/5 campaign
Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea
Linking large-scale circulation patterns to low-cloud properties
Quantifying cloud adjustments and the radiative forcing due to aerosol–cloud interactions in satellite observations of warm marine clouds
Small-scale structure of thermodynamic phase in Arctic mixed-phase clouds observed by airborne remote sensing during a cold air outbreak and a warm air advection event
The influence of water vapor anomalies on clouds and their radiative effect at Ny-Ålesund
Variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes
Deconvolution of boundary layer depth and aerosol constraints on cloud water path in subtropical stratocumulus decks
Investigation of aerosol–cloud interactions under different absorptive aerosol regimes using Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) ground-based measurements
Low-level mixed-phase clouds in a complex Arctic environment
Synoptic-scale controls of fog and low-cloud variability in the Namib Desert
A new classification of satellite-derived liquid water cloud regimes at cloud scale
The day-to-day co-variability between mineral dust and cloud glaciation: a proxy for heterogeneous freezing
Retrieval of the vertical evolution of the cloud effective radius from the Chinese FY-4 (Feng Yun 4) next-generation geostationary satellites
Diurnal variation of high-level clouds from the synergy of AIRS and IASI space-borne infrared sounders
Analysis and quantification of ENSO-linked changes in the tropical Atlantic cloud vertical distribution using 14 years of MODIS observations
Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission precipitation radar measurements
Spatial and temporal variability of snowfall over Greenland from CloudSat observations
Cloud responses to climate variability over the extratropical oceans as observed by MISR and MODIS
Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations
Ice injected into the tropopause by deep convection – Part 1: In the austral convective tropics
Quantifying variations in shortwave aerosol–cloud–radiation interactions using local meteorology and cloud state constraints
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021, https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Rohit Chakraborty, Arindam Chakraborty, Ghouse Basha, and Madineni Venkat Ratnam
Atmos. Chem. Phys., 21, 11161–11177, https://doi.org/10.5194/acp-21-11161-2021, https://doi.org/10.5194/acp-21-11161-2021, 2021
Short summary
Short summary
In this study, urbanization-induced surface warming has been found to trigger prominent changes in upper-troposphere–lower-stratosphere regions leading to stronger and more frequent lightning extremes over India. Consequently, the implementation of this hypothesis in global climate models reveals that lightning frequency and intensity values across India will rise by ~10–25 % and 15–50 %, respectively, by 2100 at the current urbanization rate, which should be alarming for present policymakers.
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021, https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary
Short summary
Heterogeneous ice formation in Arctic mixed-phase clouds under consideration of their surface-coupling state is investigated. Cloud phase and macrophysical properties were determined by means of lidar and cloud radar measurements, the coupling state, and cloud minimum temperature by radiosonde profiles. Above −15 °C cloud minimum temperature, surface-coupled clouds are more likely to contain ice by a factor of 2–6. By means of a literature survey, causes of the observed effects are discussed.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Johannes Mohrmann, Robert Wood, Tianle Yuan, Hua Song, Ryan Eastman, and Lazaros Oreopoulos
Atmos. Chem. Phys., 21, 9629–9642, https://doi.org/10.5194/acp-21-9629-2021, https://doi.org/10.5194/acp-21-9629-2021, 2021
Short summary
Short summary
Observations of marine-boundary-layer conditions are composited by cloud type, based on a new classification dataset. It is found that two cloud types, representing regions of clustered and suppressed low-level clouds, occur in very similar large-scale conditions but are distinguished from each other by considering low-level circulation and surface wind fields, validating prior results from modeling.
Francesco Cairo, Mauro De Muro, Marcel Snels, Luca Di Liberto, Silvia Bucci, Bernard Legras, Ajil Kottayil, Andrea Scoccione, and Stefano Ghisu
Atmos. Chem. Phys., 21, 7947–7961, https://doi.org/10.5194/acp-21-7947-2021, https://doi.org/10.5194/acp-21-7947-2021, 2021
Short summary
Short summary
A lidar was used in Palau from February–March 2016. Clouds were observed peaking at 3 km below the high cold-point tropopause (CPT). Their occurrence was linked with cold anomalies, while in warm cases, cirrus clouds were restricted to 5 km below the CPT. Thin subvisible cirrus (SVC) near the CPT had distinctive characteristics. They were linked to wave-induced cold anomalies. Back trajectories are mostly compatible with convective outflow, while some distinctive SVC may originate in situ.
Edward Gryspeerdt, Tom Goren, and Tristan W. P. Smith
Atmos. Chem. Phys., 21, 6093–6109, https://doi.org/10.5194/acp-21-6093-2021, https://doi.org/10.5194/acp-21-6093-2021, 2021
Short summary
Short summary
Cloud responses to aerosol are time-sensitive, but this development is rarely observed. This study uses isolated aerosol perturbations from ships to measure this development and shows that macrophysical (width, cloud fraction, detectability) and microphysical (droplet number) properties of ship tracks vary strongly with time since emission, background cloud and meteorological state. This temporal development should be considered when constraining aerosol–cloud interactions with observations.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Ulrike Proske, Verena Bessenbacher, Zane Dedekind, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 21, 5195–5216, https://doi.org/10.5194/acp-21-5195-2021, https://doi.org/10.5194/acp-21-5195-2021, 2021
Short summary
Short summary
Ice crystals falling out of one cloud can initiate freezing in a second cloud below. We estimate the occurrence frequency of this natural cloud seeding over Switzerland from satellite data and sublimation calculations. We find that such situations with an ice cloud above another cloud are frequent and that the falling crystals survive the fall between two clouds in a significant number of cases, suggesting that natural cloud seeding is an important phenomenon over Switzerland.
Joseph Sedlar, Adele Igel, and Hagen Telg
Atmos. Chem. Phys., 21, 4149–4167, https://doi.org/10.5194/acp-21-4149-2021, https://doi.org/10.5194/acp-21-4149-2021, 2021
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021, https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary
Short summary
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to the lack of measurements over the sea ice. In this paper, we exploit a series of lidar profiles acquired from autonomous drifting buoys deployed in the Arctic Ocean and derive a statistic of low cloud frequency and macrophysical properties. We also show that clouds contribute to warm the surface in the shoulder seasons but not significantly from May to September.
Qiang Li and Silke Groß
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-172, https://doi.org/10.5194/acp-2021-172, 2021
Preprint under review for ACP
Short summary
Short summary
Aircrafts emit exhaust gases and particles directly into the atmosphere which may contribute to climate change. In this work, we present a significant reduction in the occurrence rate and particle linear depolarization ratio of cirrus cloud based on the analysis of lidar measurements with the CALIPSO satellite during COVID-19 when air traffic was significantly reduced. The findings imply that these clouds had formed in air with less influence by aviation.
Kevin M. Smalley and Anita D. Rapp
Atmos. Chem. Phys., 21, 2765–2779, https://doi.org/10.5194/acp-21-2765-2021, https://doi.org/10.5194/acp-21-2765-2021, 2021
Short summary
Short summary
We use satellite observations of shallow cumulus clouds to investigate the influence of cloud size on the ratio of cloud water path to rainwater (WRR) in different environments. For a fixed temperature and relative humidity, WRR increases with cloud size, but it varies little with aerosols. These results imply that increasing WRR with rising temperature relates not only to deeper clouds but also to more frequent larger clouds.
Felipe Toledo, Martial Haeffelin, Eivind Wærsted, and Jean-Charles Dupont
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1314, https://doi.org/10.5194/acp-2020-1314, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
The article presents a new paradigm to describe the temporal evolution of continental fog layers, based on seven years of fog measurements performed at the SIRTA observatory. This paradigm consists of a conceptual model that relates the liquid water path of fog with its thickness and surface liquid water content. The model provides diagnostic variables that could substantially improve the reliability of fog dissipation nowcasting at local scale, based on real-time profiling observations.
Iris-Amata Dion, Cyrille Dallet, Philippe Ricaud, Fabien Carminati, Thibaut Dauhut, and Peter Haynes
Atmos. Chem. Phys., 21, 2191–2210, https://doi.org/10.5194/acp-21-2191-2021, https://doi.org/10.5194/acp-21-2191-2021, 2021
Short summary
Short summary
Ice in the tropopause has a strong radiative effect on climate. The amount of ice injected (∆IWC) up to the tropical tropopause layer has been shown to be the highest over the Maritime Continent (MC), a region that includes Indonesia. ∆IWC is studied over islands and sea of the MC. Space-borne observations of ice, precipitation and lightning are used to estimate ∆IWC and are compared to ∆IWC estimated from the ERA5 reanalyses. It is shown that Java is the area of the greatest ∆IWC over the MC.
Claudia J. Stubenrauch, Giacomo Caria, Sofia E. Protopapadaki, and Friederike Hemmer
Atmos. Chem. Phys., 21, 1015–1034, https://doi.org/10.5194/acp-21-1015-2021, https://doi.org/10.5194/acp-21-1015-2021, 2021
Short summary
Short summary
Tropical anvils formed by convective outflow play a crucial role in modulating the Earth’s energy budget and heat transport. To explore the relation between these anvils and convection, we built 3D radiative heating fields, based on machine learning employed on cloud and atmospheric properties from IR sounder and meteorological reanalyses, trained on lidar–radar retrievals. The 15-year time series reveals colder convective systems during warm periods, affecting the atmospheric heating structure.
Gregor Pante, Peter Knippertz, Andreas H. Fink, and Anke Kniffka
Atmos. Chem. Phys., 21, 35–55, https://doi.org/10.5194/acp-21-35-2021, https://doi.org/10.5194/acp-21-35-2021, 2021
Short summary
Short summary
Seasonal rainfall amounts along the densely populated West African Guinea coast have been decreasing during the past 35 years, with recently accelerating trends. We find strong indications that this is in part related to increasing human air pollution in the region. Given the fast increase in emissions, the political implications of this work are significant. Reducing air pollution locally and regionally would mitigate an imminent health crisis and socio-economic damage from reduced rainfall.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Jörg Schmidt, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15247–15263, https://doi.org/10.5194/acp-20-15247-2020, https://doi.org/10.5194/acp-20-15247-2020, 2020
Short summary
Short summary
A novel lidar method to study cloud microphysical properties (of liquid water clouds) and to study aerosol–cloud interaction (ACI) is developed and presented in this paper. In Part 1, the theoretical framework including an error analysis is given together with an overview of the aerosol information that the same lidar system can obtain. The ACI concept based on aerosol and cloud information is also explained. Applications of the proposed approach to lidar measurements are presented in Part 2.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020, https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Short summary
Part 2 presents the application of the dual-FOV polarization lidar technique introduced in Part 1. A lidar system was upgraded with a second polarization telescope, and it was deployed at the southernmost tip of South America. A comparison with alternative remote sensing techniques and the evaluation of the aerosol–cloud–wind relation in a convective boundary layer in pristine marine conditions are presented in two case studies, demonstrating the potential of the approach for ACI studies.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Hwayoung Jeoung, Guosheng Liu, Kwonil Kim, Gyuwon Lee, and Eun-Kyoung Seo
Atmos. Chem. Phys., 20, 14491–14507, https://doi.org/10.5194/acp-20-14491-2020, https://doi.org/10.5194/acp-20-14491-2020, 2020
Short summary
Short summary
Radar and radiometer observations were used to study cloud liquid and snowfall in three types of snow clouds. While near-surface and shallow clouds have an area fraction of 90 %, deep clouds contribute half of the total snowfall volume. Deeper clouds have heavier snowfall, although cloud liquid is equally abundant in all three cloud types. The skills of a GMI Bayesian algorithm are examined. Snowfall in deep clouds may be reasonably retrieved, but it is challenging for near-surface clouds.
Juan Huo, Yufang Tian, Xue Wu, Congzheng Han, Bo Liu, Yongheng Bi, Shu Duan, and Daren Lyu
Atmos. Chem. Phys., 20, 14377–14392, https://doi.org/10.5194/acp-20-14377-2020, https://doi.org/10.5194/acp-20-14377-2020, 2020
Short summary
Short summary
A detailed analysis of ice cloud physical properties is presented based on 4 years of surface Ka-band radar measurements in Beijing, where the summer oceanic monsoon from the ocean and winter continental monsoon prevail alternately. More than 6000 ice cloud clusters were studied to investigate their physical properties, such as height, horizontal extent, temperature dependence and origination type, which can serve as a reference for parameterization and characterization in global climate models.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Feng Zhang, Qiu-Run Yu, Jia-Li Mao, Chen Dan, Yanyu Wang, Qianshan He, Tiantao Cheng, Chunhong Chen, Dongwei Liu, and Yanping Gao
Atmos. Chem. Phys., 20, 11799–11808, https://doi.org/10.5194/acp-20-11799-2020, https://doi.org/10.5194/acp-20-11799-2020, 2020
Short summary
Short summary
In this work, we make the three main contributions. (1) We reveal the remarkable differences in the geographical distributions of cirrus over the Tibetan Plateau regarding the cloud top height. (2) The orography, gravity wave, and deep convection determine the formation of cirrus with a cloud top below 9, at 9–12, and above 12 km, respectively. (3) It is the first time the contributions of the Tibetan Plateau to the presence of cirrus on a regional scale are discussed.
Adeyemi A. Adebiyi, Paquita Zuidema, Ian Chang, Sharon P. Burton, and Brian Cairns
Atmos. Chem. Phys., 20, 11025–11043, https://doi.org/10.5194/acp-20-11025-2020, https://doi.org/10.5194/acp-20-11025-2020, 2020
Short summary
Short summary
Over the southeast Atlantic, interactions between the low-level clouds and the overlying smoke aerosols have previously been highlighted, but no study has yet focused on the presence of the mid-level clouds that complicate the aerosol–cloud interactions. Here we show that these optically thin super-cooled mid-level clouds are relatively common, and they frequently occur at the top of the smoke layer between August and October with significant radiative impacts on the low-level clouds.
Haoran Li, Jussi Tiira, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Chem. Phys., 20, 9547–9562, https://doi.org/10.5194/acp-20-9547-2020, https://doi.org/10.5194/acp-20-9547-2020, 2020
Short summary
Short summary
A method for classifying rimed and unrimed snow based on X- and Ka-band Doppler radar measurements is developed and applied to synergetic radar observations collected during BAECC 2014. The results show that the radar-observed melting layer properties are highly related to the precipitation intensity. The previously reported bright band sagging is mainly connected to the increase in precipitation intensity, while riming plays a secondary role.
Yulan Hong and Larry Di Girolamo
Atmos. Chem. Phys., 20, 8267–8291, https://doi.org/10.5194/acp-20-8267-2020, https://doi.org/10.5194/acp-20-8267-2020, 2020
Short summary
Short summary
Cloud phase plays a crucial role in Earth radiation budget but is not well understood. Using A-Train satellite observations, this study provides climatological studies of cloud phase characteristics over Southeast Asia on multiple meteorological scales. Results show that ice, liquid, and ice over liquid clouds display distinct spatial heterogeneity and spectral radiance features. The intraseasonal and interannual behaviors of cloud phases are useful to track the MJO and ENSO.
Scott E. Giangrande, Dié Wang, and David B. Mechem
Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp-20-7489-2020, https://doi.org/10.5194/acp-20-7489-2020, 2020
Short summary
Short summary
The Amazon basin experiences prolific and diverse cloud conditions that are strongly influenced by (and influence via feedbacks) seasonal shifts in the local conditions and larger-scale atmospheric circulations. The primary atmospheric regimes observed during a heavily instrumented 2-year Amazon deployment are classified. We assess the potential atmospheric controls on convective clouds, precipitation, and the propensity for these regimes to promote extremes in precipitation.
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Short summary
In this study, we analyse how large-scale meteorological conditions influenced the local enhancement of snowfall during an intense precipitation event in Korea. We used atmospheric models, weather radars and snowflake images. We found out that a rising airstream in the warm sector of the low pressure system associated to this event influenced the evolution of snowfall. This study highlights the importance of interactions between large and local scales in this intense precipitation event.
Timothy W. Juliano and Zachary J. Lebo
Atmos. Chem. Phys., 20, 7125–7138, https://doi.org/10.5194/acp-20-7125-2020, https://doi.org/10.5194/acp-20-7125-2020, 2020
Short summary
Short summary
In this study, we use a machine learning method to examine the relationship between synoptic-scale changes in the North Pacific High structure and maritime cloud properties. Our novel approach suggests that there is a wide range (>30 W m−2, ~20 % of magnitude) of possible shortwave cloud radiative effect that is a clear function of the circulation pattern. We hope that this work will help improve fundamental understanding of the sensitivity of the climate system to various warm-cloud regimes.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 6225–6241, https://doi.org/10.5194/acp-20-6225-2020, https://doi.org/10.5194/acp-20-6225-2020, 2020
Short summary
Short summary
Aerosols, or small, suspended droplets in the atmosphere, are released from anthropogenic activity and interact with warm clouds, leading to changes in the clouds' brightness and size. Our study evaluates how aerosols alter warm clouds and their ability to cool the Earth's surface. We find aerosols make clouds brighter and grow larger in the atmosphere; however, the cooling effect due to whiter, brighter clouds is 5 times the cooling due to an increased extent.
Elena Ruiz-Donoso, André Ehrlich, Michael Schäfer, Evelyn Jäkel, Vera Schemann, Susanne Crewell, Mario Mech, Birte Solveig Kulla, Leif-Leonard Kliesch, Roland Neuber, and Manfred Wendisch
Atmos. Chem. Phys., 20, 5487–5511, https://doi.org/10.5194/acp-20-5487-2020, https://doi.org/10.5194/acp-20-5487-2020, 2020
Short summary
Short summary
Mixed-phase clouds, formed of water droplets and ice crystals, appear frequently in Arctic regions. Characterizing the distribution of liquid water and ice inside the cloud appropriately is important because it influences the cloud's impact on the surface temperature. In this study, we combined images of the cloud top with measurements inside the cloud to analyze in detail the 3D spatial distribution of liquid and ice in two mixed-phase clouds occurring under different meteorological scenarios.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, and Christoph Ritter
Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020, https://doi.org/10.5194/acp-20-5157-2020, 2020
Short summary
Short summary
This paper presents an influence of water vapor anomalies on cloud properties and their radiative effect at Ny-Ålesund. The study is based on a 2.5-year active and passive cloud observation and a radiative transfer model. The results show that moist and dry conditions are related to strong changes in cloud occurrence, phase partitioning, water path, and, consequently, modulate the surface radiative budget.
Kalliopi Artemis Voudouri, Elina Giannakaki, Mika Komppula, and Dimitris Balis
Atmos. Chem. Phys., 20, 4427–4444, https://doi.org/10.5194/acp-20-4427-2020, https://doi.org/10.5194/acp-20-4427-2020, 2020
Short summary
Short summary
In this paper we present the variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes. The kind of information presented here can be rather useful in the cirrus parameterisations required as input to radiative transfer models and can be a complementary tool for satellite products that cannot provide cloud vertical structure.
Anna Possner, Ryan Eastman, Frida Bender, and Franziska Glassmeier
Atmos. Chem. Phys., 20, 3609–3621, https://doi.org/10.5194/acp-20-3609-2020, https://doi.org/10.5194/acp-20-3609-2020, 2020
Short summary
Short summary
Cloud water content and the number of droplets inside clouds covary with boundary layer depth. This covariation may amplify the change in water content due to a change in droplet number inferred from long-term observations. Taking this into account shows that the change in water content for increased droplet number in observations and high-resolution simulations agrees in shallow boundary layers. Meanwhile, deep boundary layers are under-sampled in process-scale simulations and observations.
Xiaojian Zheng, Baike Xi, Xiquan Dong, Timothy Logan, Yuan Wang, and Peng Wu
Atmos. Chem. Phys., 20, 3483–3501, https://doi.org/10.5194/acp-20-3483-2020, https://doi.org/10.5194/acp-20-3483-2020, 2020
Short summary
Short summary
The continental low-level stratiform cloud susceptibilities to aerosols were investigated under different absorptive aerosol regimes. The weakly absorbing aerosols, which are more hygroscopic, can better activate as cloud condensation nuclei. The favorable thermodynamic condition enhances the cloud susceptibility, while the cloud-layer heating effect induced by strongly absorbing aerosols dampens the cloud susceptibility. Overall, the clouds are more susceptible to the weakly absorbing aerosols.
Rosa Gierens, Stefan Kneifel, Matthew D. Shupe, Kerstin Ebell, Marion Maturilli, and Ulrich Löhnert
Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, https://doi.org/10.5194/acp-20-3459-2020, 2020
Short summary
Short summary
Multiyear statistics of persistent low-level mixed-phase clouds observed at an Arctic fjord environment in Svalbard are presented. The effects the local boundary layer (i.e. the fjords' wind climate and surface coupling), regional wind direction, and seasonality have on the cloud occurrence and properties are evaluated using a synergy of ground-based remote sensing methods and auxiliary data. The phenomena considered were found to modify the amount of liquid and ice in the studied clouds.
Hendrik Andersen, Jan Cermak, Julia Fuchs, Peter Knippertz, Marco Gaetani, Julian Quinting, Sebastian Sippel, and Roland Vogt
Atmos. Chem. Phys., 20, 3415–3438, https://doi.org/10.5194/acp-20-3415-2020, https://doi.org/10.5194/acp-20-3415-2020, 2020
Short summary
Short summary
Fog and low clouds (FLCs) are an essential but poorly understood element of Namib regional climate. Here, a satellite-based data set of FLCs in central Namib, reanalysis data, and back trajectories are used to systematically analyze conditions when FLCs occur. Synoptic-scale mechanisms are identified that influence the formation of FLCs and the onshore advection of marine boundary-layer air masses. The findings lead to a new conceptual model of mechanisms that drive FLC variability in the Namib.
Claudia Unglaub, Karoline Block, Johannes Mülmenstädt, Odran Sourdeval, and Johannes Quaas
Atmos. Chem. Phys., 20, 2407–2418, https://doi.org/10.5194/acp-20-2407-2020, https://doi.org/10.5194/acp-20-2407-2020, 2020
Short summary
Short summary
In cloud research, it is necessary to classify clouds. The World Meteorological Organization proposes distinguishing stratiform and cumuliform clouds in three altitude layers. The paper explains why previous approaches to classify clouds fail for many applications and proposes a new classification on the basis of new approaches for satellite retrievals to derive cloud-base height, in combination with cloud inhomogeneity. It is demonstrated that this discriminates cloud characteristics well.
Diego Villanueva, Bernd Heinold, Patric Seifert, Hartwig Deneke, Martin Radenz, and Ina Tegen
Atmos. Chem. Phys., 20, 2177–2199, https://doi.org/10.5194/acp-20-2177-2020, https://doi.org/10.5194/acp-20-2177-2020, 2020
Short summary
Short summary
Spaceborne retrievals of cloud phase were analysed together with an atmospheric composition model to assess the global frequency of ice and liquid clouds. This analysis showed that at equal temperature the average occurrence of ice clouds increases for higher dust mixing ratios on a day-to-day basis in the middle and high latitudes. This indicates that mineral dust may have a strong impact on the occurrence of ice clouds even in remote areas.
Yilun Chen, Guangcan Chen, Chunguang Cui, Aoqi Zhang, Rong Wan, Shengnan Zhou, Dongyong Wang, and Yunfei Fu
Atmos. Chem. Phys., 20, 1131–1145, https://doi.org/10.5194/acp-20-1131-2020, https://doi.org/10.5194/acp-20-1131-2020, 2020
Short summary
Short summary
The vertical evolution of the cloud effective radius reflects the precipitation-forming process. We developed an algorithm for retrieving it based on objective cloud-cluster identification rather than the subjective polygon of the conventional method. The profile shows completely different morphologies in different life stages of the cloud cluster, which is important in the characterization of the formation of precipitation and the temporal evolution of microphysical processes.
Artem G. Feofilov and Claudia J. Stubenrauch
Atmos. Chem. Phys., 19, 13957–13972, https://doi.org/10.5194/acp-19-13957-2019, https://doi.org/10.5194/acp-19-13957-2019, 2019
Short summary
Short summary
Clouds play an important role in the energy budget of the planet: optically thick clouds reflect the incoming solar radiation leading to cooling of the Earth, while thinner clouds act as
greenhouse filmspreventing escape of the Earth’s infrared radiation to space. Satellite observations provide a continuous survey of clouds over the whole globe. In this work, we use a combination of two space-borne sounders to retrieve and analyse the characteristics of diurnal variation of high-level clouds.
Nils Madenach, Cintia Carbajal Henken, René Preusker, Odran Sourdeval, and Jürgen Fischer
Atmos. Chem. Phys., 19, 13535–13546, https://doi.org/10.5194/acp-19-13535-2019, https://doi.org/10.5194/acp-19-13535-2019, 2019
Kadiri Saikranthi, Basivi Radhakrishna, Thota Narayana Rao, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 19, 10423–10432, https://doi.org/10.5194/acp-19-10423-2019, https://doi.org/10.5194/acp-19-10423-2019, 2019
Short summary
Short summary
Recent studies have shown that simulation of monsoons can be improved with an exact representation of SST–precipitation relationship. The vertical structure of precipitation with SST is distinctly different over the Arabian Sea than over the Bay of Bengal. The reflectivity profiles show variation with SST over the Arabian Sea and do not show considerable variation with SST over the Bay of Bengal. The variations in reflectivity profiles seem to originate at the cloud formation stage itself.
Ralf Bennartz, Frank Fell, Claire Pettersen, Matthew D. Shupe, and Dirk Schuettemeyer
Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, https://doi.org/10.5194/acp-19-8101-2019, 2019
Short summary
Short summary
The Greenland Ice Sheet (GrIS) is rapidly melting. Snowfall is the only source of ice mass over the GrIS. We use satellite observations to assess how much snow on average falls over the GrIS and what the annual cycle and spatial distribution of snowfall is. We find the annual mean snowfall over the GrIS inferred from CloudSat to be 34 ± 7.5 cm yr−1 liquid equivalent.
Andrew Geiss and Roger Marchand
Atmos. Chem. Phys., 19, 7547–7565, https://doi.org/10.5194/acp-19-7547-2019, https://doi.org/10.5194/acp-19-7547-2019, 2019
Short summary
Short summary
The 13-year trends in cloud occurrence, observed by NASA's Multi-angle Imaging SpectroRadiometer, over the world's extratropical ocean basins are compared to trends in meteorological variables. We identify several patterns of changing cloud occurrence that correspond to specific patterns in trending meteorology. We find that many of these trends are related to changes in major modes of climate variability.
Constantino Listowski, Julien Delanoë, Amélie Kirchgaessner, Tom Lachlan-Cope, and John King
Atmos. Chem. Phys., 19, 6771–6808, https://doi.org/10.5194/acp-19-6771-2019, https://doi.org/10.5194/acp-19-6771-2019, 2019
Short summary
Short summary
Using satellite cloud products we investigate the supercooled liquid-water (SLW) distribution Antarctic-wide for the first time. We demonstrate differences between the monthly evolution of the marine low-level mixed-phase clouds and that of the marine low-level pure SLW clouds. In addition to the temperature and sea ice fraction as factors explaining the low-level liquid-cloud seasonal cycle, ice nuclei emissions from open water may also be driving the mixed-phase cloud monthly evolution.
Iris-Amata Dion, Philippe Ricaud, Peter Haynes, Fabien Carminati, and Thibaut Dauhut
Atmos. Chem. Phys., 19, 6459–6479, https://doi.org/10.5194/acp-19-6459-2019, https://doi.org/10.5194/acp-19-6459-2019, 2019
Short summary
Short summary
Water vapour and ice cirrus clouds near the tropical tropopause layer (TTL) have a strong radiative impact on climate. Based on space-borne observations, we have developed a model linking ice in the upper troposphere from the Microwave Limb Sounder (MLS) to precipitation in the troposphere from the Tropical Rainfall Measurement Mission (TRMM). Our study quantifies the amount of ice injected into the TTL by deep convection over tropical lands and oceans by investigating the diurnal cycle of ice.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 19, 6251–6268, https://doi.org/10.5194/acp-19-6251-2019, https://doi.org/10.5194/acp-19-6251-2019, 2019
Short summary
Short summary
Aerosols are released by natural and human activities. When aerosols encounter clouds they interact in what is known as the indirect effect. Brighter clouds are expected due to the microphysical response; however, certain environments can trigger a modified response. Limits on the stability, humidity, and cloud thickness are applied regionally to investigate local cloud responses to aerosol, resulting in a range of indirect effects that would result in significant cooling or slight warming.
Cited articles
Berg, L. K., Riihimaki, L. D., Qian, Y., Yan, H., Huang, M., Berg, L. K.,
Riihimaki, L. D., Qian, Y., Yan, H., and Huang, M.: The Low-Level Jet over
the Southern Great Plains Determined from Observations and Reanalyses and
Its Impact on Moisture Transport, J. Climate, 28, 6682–6706,
https://doi.org/10.1175/JCLI-D-14-00719.1, 2015.
Chang, F.-C. and Wallace, J. M.: Meteorological Conditions during Heat Waves
and Droughts in the United States Great Plains, Mon. Weather Rev., 115,
1253–1269, https://doi.org/10.1175/1520-0493(1987)115<1253:MCDHWA>2.0.CO;2, 1987.
Chen, P. and Newman, M.: Rossby wave propagation and the rapid development
of upper-level anomalous anticyclones during the 1988 U.S. drought, J.
Climate, 11, 2491–2504, https://doi.org/10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2, 1998.
Chou, C. and Lan, C. W.: Changes in the annual range of precipitation under
global warming, J. Climate, 25, 222–235, https://doi.org/10.1175/JCLI-D-11-00097.1,
2012.
Cook, B. I., Seager, R., and Miller, R. L.: Atmospheric circulation anomalies
during two persistent north american droughts: 1932–1939 and 1948–1957,
Clim. Dynam., 36, 2339–2355, https://doi.org/10.1007/s00382-010-0807-1, 2011.
Cook, B. I., Ault, T. R., and Smerdon, J. E.: Unprecedented 21st century
drought risk in the American Southwest and Central Plains, Sci. Adv., 1,
e1400082, https://doi.org/10.1126/sciadv.1400082, 2015.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration
and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Del Genio, A. D.: Representing the Sensitivity of Convective Cloud Systems
to Tropospheric Humidity in General Circulation Models, Surv. Geophys.,
33, 637–656, https://doi.org/10.1007/s10712-011-9148-9, 2012.
Donat, M. G., King, A. D., Overpeck, J. T., Alexander, L. V., Durre, I., and
Karoly, D. J.: Extraordinary heat during the 1930s US Dust Bowl and
associated large-scale conditions, Clim. Dynam., 46, 413–426,
https://doi.org/10.1007/s00382-015-2590-5, 2016.
Feng, S., Hu, Q., and Oglesby, R. J.: Influence of Atlantic sea surface
temperatures on persistent drought in North America, Clim. Dynam., 37,
569–586, https://doi.org/10.1007/s00382-010-0835-x, 2011.
Fernando, D. N., Mo, K. C., Fu, R., Pu, B., Bowerman, A., Scanlon, B. R.,
Solis, R. S., Yin, L., Mace, R. E., Mioduszewski, J. R., Ren, T., and Zhang,
K.: What caused the spring intensification and winter demise of the 2011
drought over Texas?, Clim. Dynam., 47, 3077–3090,
https://doi.org/10.1007/s00382-016-3014-x, 2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Hao, W.: A Moisture Budget Analysis of the Protracted Heat Wave in the
Southern Plains during the Summer of 1980, Weather Forecast., 2,
269–288, https://doi.org/10.1175/1520-0434(1987)002<0269:AMBAOT>2.0.CO;2, 1987.
Hoerling, M., Schubert, S., and Mo, K. C.: An Interpretation of the Origins
of the 2012 Central Great Plains Drought Assessment Report, (March), 50,
available at:
ftp://ftp.oar.noaa.gov/CPO/pdf/mapp/reports/2012-Drought-Interpretation-final.web-041113.pdf
(last access: 27 January 2018), 2013.
Hoerling, M., Eischeid, J., Kumar, A., Leung, R., Mariotti, A., Mo, K.,
Schubert, S., and Seager, R.: Causes and predictability of the 2012 great
plains drought, B. Am. Meteor. Soc., 95, 269–282,
https://doi.org/10.1175/BAMS-D-13-00055.1, 2014.
Kushnir, Y., Seager, R., Ting, M., Naik, N., and Nakamura, J.: Mechanisms of
tropical atlantic SST influence on North American precipitation variability,
J. Climate, 23, 5610–5628, https://doi.org/10.1175/2010JCLI3172.1, 2010.
Lamb, P. J., Portis, D. H., and Zangvil, A.: Investigation of Large-Scale
Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern
Great Plains including for CLASIC (June 2007), J. Hydrometeorol., 13,
1719–1738, https://doi.org/10.1175/JHM-D-12-01.1, 2012.
Leathers, D. J., Yarnal, B., Palecki, M. A., Leathers, D. J., Yarnal, B., and
Palecki, M. A.: The Pacific/North American Teleconnection Pattern and United
States Climate, Part I: Regional Temperature and Precipitation Associations,
J. Climate, 4, 517–528, https://doi.org/10.1175/1520-0442(1991)004<0517:TPATPA>2.0.CO;2, 1991.
Li, L., Schmitt, R. W., Ummenhofer, C. C., Karnauskas, K. B., Li, L.,
Schmitt, R. W., Ummenhofer, C. C., and Karnauskas, K. B.: Implications of
North Atlantic Sea Surface Salinity for Summer Precipitation over the U.S.
Midwest: Mechanisms and Predictive Value, J. Climate, 29, 3143–3159,
https://doi.org/10.1175/JCLI-D-15-0520.1, 2016.
Livezey, R. E., Chen, W. Y., Livezey, R. E., and Chen, W. Y.: Statistical
Field Significance and its Determination by Monte Carlo Techniques, Mon.
Weather Rev., 111, 46–59, https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2, 1983.
Lyon, B. and Dole, R. M.: A diagnostic comparison of the 1980 and 1988 US
summer heat wave- droughts, J. Climate, 8, 1658–1675,
https://doi.org/10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2,
1995.
McCabe, G. J., Palecki, M. A., and Betancourt, J. L.: Pacific and Atlantic
Ocean influences on multidecadal drought frequency in the United States,
P. Natl. Acad. Sci. USA, 101, 4136–4141, https://doi.org/10.1073/pnas.0306738101,
2004.
Myoung, B., Nielsen-Gammon, J. W., Myoung, B., and Nielsen-Gammon, J. W.: The
Convective Instability Pathway to Warm Season Drought in Texas, Part II:
Free-Tropospheric Modulation of Convective Inhibition, J. Clim., 23,
4474–4488, https://doi.org/10.1175/2010JCLI2947.1, 2010.
Namias, J.: Spring and Summer 1988 Drought over the Contiguous United-States
– Causes and Prediction, J. Climate, 4, 54–65,
https://doi.org/10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2, 1991.
Peng, D. and Zhou, T.: Why was the arid and semiarid northwest China getting
wetter in the recent decades?, J. Geophys. Res.-Atmos., 122, 9060–9075,
https://doi.org/10.1002/2016JD026424, 2017.
Pu, B., Fu, R., Dickinson, R. E., and Fernando, D. N.: Why do summer droughts
in the Southern Great Plains occur in some La Niña years but not
others?, J. Geophys. Res.-Atmos., 121, 1120–1137,
https://doi.org/10.1002/2015JD023508, 2016.
Quan, X.-W., Hoerling, M. P., Lyon, B., Kumar, A., Bell, M. A., Tippett, M.
K., Wang, H., Quan, X.-W., Hoerling, M. P., Lyon, B., Kumar, A., Bell, M.
A., Tippett, M. K., and Wang, H.: Prospects for Dynamical Prediction of
Meteorological Drought, J. Appl. Meteorol. Climatol., 51, 1238–1252,
https://doi.org/10.1175/JAMC-D-11-0194.1, 2012.
Rasmusson, E. M.: Atmospheric Water Vapor Transport and the Water Balance of
North America, Mon. Weather Rev., 96, 720–734,
https://doi.org/10.1175/1520-0493(1968)096<0720:AWVTAT>2.0.CO;2,
1968.
Redmond, K. T. and Koch, R. W.: Surface Climate and Streamflow Variability
in the Western United States and Their Relationship to Large-Scale
Circulation Indices, Water Resour. Res., 27, 2381–2399,
https://doi.org/10.1029/91WR00690, 1991.
Saini, R., Wang, G., Pal, J. S., Saini, R., Wang, G., and Pal, J. S.: Role of
Soil Moisture Feedback in the Development of Extreme Summer Drought and
Flood in the United States, J. Hydrometeorol., 17, 2191–2207,
https://doi.org/10.1175/JHM-D-15-0168.1, 2016.
Schubert, S. D., Helfand, H. M., Wu, C. Y., and Min, W.: Subseasonal
variations in warm-season moisture transport and precipitation over the
central and eastern United States, J. Climate, 11, 2530–2555,
https://doi.org/10.1175/1520-0442(1998)011<2530:SVIWSM>2.0.CO;2,
1998.
Schubert, S. D., Suarez, M. J., Pegion, P. J., Koster, R. D., and Bacmeister,
J. T.: Causes of long-term drought in the U.S. Great Plains, J. Climate,
17, 485–503, https://doi.org/10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2, 2004.
Seager, R. and Henderson, N.: Diagnostic computation of moisture budgets in
the ERA-interim reanalysis with reference to analysis of CMIP-archived
atmospheric model data, J. Climate, 26, 7876–7901,
https://doi.org/10.1175/JCLI-D-13-00018.1, 2013.
Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L., Xia, Y.,
and Fernando, N.: Drought onset mechanisms revealed by satellite
solar-induced chlorophyll fluorescence: Insights from two contrasting
extreme events, J. Geophys. Res.-Biogeo., 120, 2427–2440,
https://doi.org/10.1002/2015JG003150, 2015.
Teng, H., Branstator, G., Meehl, G. A., and Washington, W. M.: Projected
intensification of subseasonal temperature variability and heat waves in the
Great Plains, Geophys. Res. Lett., 43, 2165–2173,
https://doi.org/10.1002/2015GL067574, 2016.
Trenberth, K. E. and Guillemot, C. J.: Evaluation of the global atmospheric
moisture budget as seen from analyses, J. Climate, 8, 2255–2272,
https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2,
1995.
Trenberth, K. E., Branstator, G. W., and Arkin, P. A.: Origins of the 1988
North American drought, Science, 242, 1640–1645,
https://doi.org/10.1126/science.242.4886.1640, 1988.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric moisture
transports from ocean to land and global energy flows in reanalyses, J.
Climate, 24, 4907–4924, https://doi.org/10.1175/2011JCLI4171.1, 2011.
Wang, H., Schubert, S., Suarez, M., Koster, R., Wang, H., Schubert, S.,
Suarez, M., and Koster, R.: The Physical Mechanisms by Which the Leading
Patterns of SST Variability Impact U.S. Precipitation, J. Climate, 23,
1815–1836, https://doi.org/10.1175/2009JCLI3188.1, 2010.
Wang, H., Schubert, S., Koster, R., Ham, Y.-G., and Suarez, M.: On the Role
of SST Forcing in the 2011 and 2012 Extreme U.S. Heat and Drought: A Study
in Contrasts, J. Hydrometeorol., 15, 1255–1273,
https://doi.org/10.1175/JHM-D-13-069.1, 2014.
Weaver, S. J., Nigam, S., Weaver, S. J., and Nigam, S.: Variability of the
Great Plains Low-Level Jet: Large-Scale Circulation Context and Hydroclimate
Impacts, J. Climate, 21, 1532–1551, https://doi.org/10.1175/2007JCLI1586.1, 2008.
Yanai, M., Esbensen, S., and Chu, J.-H.: Determination of Bulk Properties of
Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets, J.
Atmos. Sci., 30, 611–627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2, 1973.
Zangvil, A., Portis, D. H., and Lamb, P. J.: Diurnal variations in the water
vapor budget components over the Midwestern United States in summer 1979,
53–63, American Geophysical Union (AGU), 1993.
Zangvil, A., Portis, D. H., and Lamb, P. J.: Investigation of the large-scale
atmospheric moisture field over the midwestern United States in relation to
summer precipitation, Part I: Relationships between moisture budget
components on different timescales, J. Climate, 14, 582–597,
https://doi.org/10.1175/1520-0442(2001)014<0582:IOTLSA>2.0.CO;2,
2001.
Zhang, Y., Klein, S. A., Zhang, Y., and Klein, S. A.: Mechanisms Affecting
the Transition from Shallow to Deep Convection over Land: Inferences from
Observations of the Diurnal Cycle Collected at the ARM Southern Great Plains
Site, J. Atmos. Sci., 67, 2943–2959, https://doi.org/10.1175/2010JAS3366.1, 2010.
Zhao, S., Deng, Y., and Black, R. X.: Observed and Simulated Spring and
Summer Dryness in the United States: the Impact of the Pacific Sea Surface
Temperature and Beyond, J. Geophys. Res.-Atmos., 122, 12713–12731,
https://doi.org/10.1002/2017JD027279, 2017.
Zhuang, Y., Fu, R., Wang, H., Zhuang, Y., Fu, R., and Wang, H.: How Do
Environmental Conditions Influence Vertical Buoyancy Structure and
Shallow-to-Deep Convection Transition across Different Climate Regimes?, J.
Atmos. Sci., 75, 1909–1932, https://doi.org/10.1175/JAS-D-17-0284.1, 2018.
Short summary
An eastward advection of dry and warm air in spring was identified as a major drought onset mechanism over the US Great Plains (GP). Further breakdown of the zonal advection into the dynamic versus thermodynamic contributions revealed dominance of the latter in the tropospheric drying observed during the onset of GP 2011 and 2012 droughts. The dependence of thermodynamic advection on moisture gradient links the spring precipitation in the Rockies and US southwest to the GP summer precipitation.
An eastward advection of dry and warm air in spring was identified as a major drought onset...
Altmetrics
Final-revised paper
Preprint