Articles | Volume 18, issue 13
https://doi.org/10.5194/acp-18-9975-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-9975-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF
Leighton A. Regayre
CORRESPONDING AUTHOR
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Jill S. Johnson
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Masaru Yoshioka
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Kirsty J. Pringle
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
David M. H. Sexton
UK Hadley Centre Met Office, Exeter, Fitzroy Road, Exeter, Devon, EX1 3PB, UK
Ben B. B. Booth
UK Hadley Centre Met Office, Exeter, Fitzroy Road, Exeter, Devon, EX1 3PB, UK
Lindsay A. Lee
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Nicolas Bellouin
Department of Meteorology, School of Mathematical & Physical Sciences, Faculty of Science,University of Reading, Reading, RG6 6BB, UK
Kenneth S. Carslaw
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Related authors
Leighton A. Regayre, Léa M. C. Prévost, Kunal Ghosh, Jill S. Johnson, Jeremy E. Oakley, Jonathan Owen, Iain Webb, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-3755, https://doi.org/10.5194/egusphere-2025-3755, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tiny particles called aerosols affect how much sunlight the Earth reflects back into space – one of the biggest climate uncertainties. We use a large set of climate model simulations and find that uncertainty drops in some regions, but persists in other areas, after comparing models to observations. By identifying the specific processes that cause the remaining uncertainty, we guide future efforts to reduce the aerosol forcing uncertainty so we can make more reliable climate predictions.
Rachel W. N. Sansom, Jill S. Johnson, Leighton A. Regayre, Lindsay A. Lee, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-3104, https://doi.org/10.5194/egusphere-2025-3104, 2025
Short summary
Short summary
The cloud transition from stratocumulus to cumulus features a distinct decrease in cloud cover. We used a high-resolution model to simulate many instances of the transition with different environmental conditions. In low aerosol conditions, the transition occurred faster due to drizzle depleting the cloud of moisture and aerosol, whereas in high aerosol conditions, other factors were more important. Understanding different regimes is important for accurately simulating clouds in global models.
Yusuf Bhatti, Duncan Watson-Parris, Leighton Regayre, Hailing Jia, David Neubauer, Ulas Im, Carl Svenhag, Nick Schutgens, Athanasios Tsikerdekis, Athanasios Nenes, Irfan Muhammed, Bastiaan van Diedenhoven, Ardit Arifi, Guangliang Fu, and Otto Hasekamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2848, https://doi.org/10.5194/egusphere-2025-2848, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols (small airborne particles) impact Earth's climate, but their extent is unknown. By running climate model simulations and emulating millions of additional variants with different settings, we found that natural emissions like sea spray and sulfur are key sources of uncertainty in climate predictions. Our work shows that understanding these natural processes better can help improve climate models and make future climate projections more accurate.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Stephen R. Arnold, Leighton A. Regayre, Duseong S. Jo, Wenxiang Shen, Hao Wang, Man Yue, Jingyi Wang, Wenxin Zhang, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4135, https://doi.org/10.5194/egusphere-2024-4135, 2025
Short summary
Short summary
This study uses a global chemistry-climate model to investigate how new particle formation (NPF) from highly oxygenated organic molecules (HOMs) contributes to cloud condensation nuclei (CCN) in both preindustrial (PI) and present-day (PD) environments, and its impact on aerosol indirect radiative forcing. The findings highlight the crucial role of biogenic emissions in climate change, providing new insights for carbon-neutral scenarios and enhancing understanding of aerosol-cloud interactions.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David Sexton, Christopher C. Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2022-1330, https://doi.org/10.5194/egusphere-2022-1330, 2022
Preprint archived
Short summary
Short summary
We show that potential structural deficiencies in a climate model can be exposed by comprehensively exploring its parametric uncertainty, and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. Combined consideration of parametric and structural uncertainties provides a future pathway towards building models that have greater physical realism and lower uncertainty.
Amy H. Peace, Ben B. B. Booth, Leighton A. Regayre, Ken S. Carslaw, David M. H. Sexton, Céline J. W. Bonfils, and John W. Rostron
Earth Syst. Dynam., 13, 1215–1232, https://doi.org/10.5194/esd-13-1215-2022, https://doi.org/10.5194/esd-13-1215-2022, 2022
Short summary
Short summary
Anthropogenic aerosol emissions have been linked to driving climate responses such as shifts in the location of tropical rainfall. However, the interaction of aerosols with climate remains one of the most uncertain aspects of climate modelling and limits our ability to predict future climate change. We use an ensemble of climate model simulations to investigate what impact the large uncertainty in how aerosols interact with climate has on predicting future tropical rainfall shifts.
Leighton A. Regayre, Léa M. C. Prévost, Kunal Ghosh, Jill S. Johnson, Jeremy E. Oakley, Jonathan Owen, Iain Webb, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-3755, https://doi.org/10.5194/egusphere-2025-3755, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Tiny particles called aerosols affect how much sunlight the Earth reflects back into space – one of the biggest climate uncertainties. We use a large set of climate model simulations and find that uncertainty drops in some regions, but persists in other areas, after comparing models to observations. By identifying the specific processes that cause the remaining uncertainty, we guide future efforts to reduce the aerosol forcing uncertainty so we can make more reliable climate predictions.
Xuemei Wang, Kenneth S. Carslaw, Daniel P. Grosvenor, and Hamish Gordon
Atmos. Chem. Phys., 25, 9685–9717, https://doi.org/10.5194/acp-25-9685-2025, https://doi.org/10.5194/acp-25-9685-2025, 2025
Short summary
Short summary
Anthropogenic emissions can influence aerosol particle number concentrations and cloud formation. Our model simulations predict around a 10 % increase in the particle and cloud droplet number concentrations when doubling the emissions in the Manaus region in the Amazonian wet season. However, the corresponding changes in cloud water and rain mass are around 4 %. Such a weak response implies that this convective environment is not sensitive to the localized anthropogenic emission changes here.
Xu-Cheng He, Nathan Luke Abraham, Han Ding, Maria R. Russo, Daniel P. Grosvenor, Yao Ge, Xuemei Wang, Anthony C. Jones, Pedro Campuzano-Jost, Benjamin Nault, Agnieszka Kupc, Donald Blake, Jose L. Jimenez, Christina J. Williamson, Kenneth S. Carslaw, James Weber, Alexander T. Archibald, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3700, https://doi.org/10.5194/egusphere-2025-3700, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols affect clouds and climate. However, current climate models still struggle to simulate them accurately. We used aircraft data from a global mission to evaluate how well the UK Earth System Model represents aerosols and their precursors. Our results show that the model misses key formation processes in clean ocean regions, suggesting that future improvements should focus on better representing how aerosols form naturally in the atmosphere.
Masaru Yoshioka, Daniel P. Grosvenor, Amy H. Peace, Jim M. Haywood, Ying Chen, and Paul R. Field
EGUsphere, https://doi.org/10.5194/egusphere-2025-3244, https://doi.org/10.5194/egusphere-2025-3244, 2025
Short summary
Short summary
We used advanced computer simulations to study how aerosol particles from a volcanic eruption in Iceland affected clouds. The eruption plume increased small droplets, but changes in cloud water and horizontal extent were not clear. Satellite comparisons between plume and non-plume regions can miss volcanic effects due to spatial variability in weather and aerosol, but simulations can isolate the impact by comparing cases with and without the eruption.
Rachel W. N. Sansom, Jill S. Johnson, Leighton A. Regayre, Lindsay A. Lee, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-3104, https://doi.org/10.5194/egusphere-2025-3104, 2025
Short summary
Short summary
The cloud transition from stratocumulus to cumulus features a distinct decrease in cloud cover. We used a high-resolution model to simulate many instances of the transition with different environmental conditions. In low aerosol conditions, the transition occurred faster due to drizzle depleting the cloud of moisture and aerosol, whereas in high aerosol conditions, other factors were more important. Understanding different regimes is important for accurately simulating clouds in global models.
Yusuf Bhatti, Duncan Watson-Parris, Leighton Regayre, Hailing Jia, David Neubauer, Ulas Im, Carl Svenhag, Nick Schutgens, Athanasios Tsikerdekis, Athanasios Nenes, Irfan Muhammed, Bastiaan van Diedenhoven, Ardit Arifi, Guangliang Fu, and Otto Hasekamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2848, https://doi.org/10.5194/egusphere-2025-2848, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols (small airborne particles) impact Earth's climate, but their extent is unknown. By running climate model simulations and emulating millions of additional variants with different settings, we found that natural emissions like sea spray and sulfur are key sources of uncertainty in climate predictions. Our work shows that understanding these natural processes better can help improve climate models and make future climate projections more accurate.
Xinyue Shao, Yaman Liu, Xinyi Dong, Minghuai Wang, Ruochong Xu, Joel A. Thornton, Duseong S. Jo, Man Yue, Wenxiang Shen, Manish Shrivastava, Stephen R. Arnold, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-1526, https://doi.org/10.5194/egusphere-2025-1526, 2025
Short summary
Short summary
Highly Oxygenated Organic Molecules (HOMs) are key precursors of secondary organic aerosols (SOA). Incorporating the HOMs chemical mechanism into a global climate model allows for a reasonable reproduction of observed HOM characteristics. HOM-SOA constitutes a significant fraction of global SOA, and its distribution and formation pathways exhibit strong sensitivity to uncertainties in autoxidation processes and peroxy radical branching ratios.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Barbara Ervens, Ken S. Carslaw, Thomas Koop, and Ulrich Pöschl
EGUsphere, https://doi.org/10.5194/egusphere-2025-419, https://doi.org/10.5194/egusphere-2025-419, 2025
Short summary
Short summary
Over the past two decades, the European Geosciences Union (EGU) has demonstrated the success, viability and benefits of interactive open access (OA) publishing with public peer review in its journals, its publishing platform EGUsphere and virtual compilations. The article summarizes the evolution of the EGU/Copernicus publications and of OA publishing with interactive public peer review at large by placing the EGU/Copernicus publications in the context of current and future global open science.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Stephen R. Arnold, Leighton A. Regayre, Duseong S. Jo, Wenxiang Shen, Hao Wang, Man Yue, Jingyi Wang, Wenxin Zhang, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4135, https://doi.org/10.5194/egusphere-2024-4135, 2025
Short summary
Short summary
This study uses a global chemistry-climate model to investigate how new particle formation (NPF) from highly oxygenated organic molecules (HOMs) contributes to cloud condensation nuclei (CCN) in both preindustrial (PI) and present-day (PD) environments, and its impact on aerosol indirect radiative forcing. The findings highlight the crucial role of biogenic emissions in climate change, providing new insights for carbon-neutral scenarios and enhancing understanding of aerosol-cloud interactions.
Xinyi Huang, Paul R. Field, Benjamin J. Murray, Daniel P. Grosvenor, Floortje van den Heuvel, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4070, https://doi.org/10.5194/egusphere-2024-4070, 2025
Short summary
Short summary
Cold-air outbreak (CAO) clouds play a vital role in climate prediction. This study explores the responses of CAO clouds to aerosols and ice production under different environmental conditions. We found that CAO cloud responses vary with cloud temperature and are strongly controlled by the liquid-ice partitioning in these clouds, suggesting the importance of good representations of cloud microphysics properties to predict the behaviours of CAO clouds in a warming climate.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025, https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosols that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust, we also need to represent ice nucleation by the organic components of soils.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Jonathan Tinker, Matthew D. Palmer, Benjamin J. Harrison, Enda O'Dea, David M. H. Sexton, Kuniko Yamazaki, and John W. Rostron
Ocean Sci., 20, 835–885, https://doi.org/10.5194/os-20-835-2024, https://doi.org/10.5194/os-20-835-2024, 2024
Short summary
Short summary
The northwest European shelf (NWS) seas are economically and environmentally important but poorly represented in global climate models (GCMs). We combine use of a shelf sea model with GCM output to provide improved 21st century projections of the NWS. We project a NWS warming of 3.11 °C and freshening of −1.01, and we provide uncertainty estimates. We calculate the climate signal emergence and consider warming levels. We have released our data for the UK's Climate Change Risk Assessment.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Rolf Müller, Ulrich Pöschl, Thomas Koop, Thomas Peter, and Ken Carslaw
Atmos. Chem. Phys., 23, 15445–15453, https://doi.org/10.5194/acp-23-15445-2023, https://doi.org/10.5194/acp-23-15445-2023, 2023
Short summary
Short summary
Paul J. Crutzen was a pioneer in atmospheric sciences and a kind-hearted, humorous person with empathy for the private lives of his colleagues and students. He made fundamental scientific contributions to a wide range of scientific topics in all parts of the atmosphere. Paul was among the founders of the journal Atmospheric Chemistry and Physics. His work will continue to be a guide for generations of scientists and environmental policymakers to come.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Nina Raoult, Tim Jupp, Ben Booth, and Peter Cox
Earth Syst. Dynam., 14, 723–731, https://doi.org/10.5194/esd-14-723-2023, https://doi.org/10.5194/esd-14-723-2023, 2023
Short summary
Short summary
Climate models are used to predict the impact of climate change. However, poorly constrained parameters used in the physics of the models mean that we simulate a large spread of possible future outcomes. We can use real-world observations to reduce the uncertainty of parameter values, but we do not have observations to reduce the spread of possible future outcomes directly. We present a method for translating the reduction in parameter uncertainty into a reduction in possible model projections.
Daniel P. Grosvenor and Kenneth S. Carslaw
Atmos. Chem. Phys., 23, 6743–6773, https://doi.org/10.5194/acp-23-6743-2023, https://doi.org/10.5194/acp-23-6743-2023, 2023
Short summary
Short summary
We determine what causes long-term trends in short-wave (SW) radiative fluxes in two climate models. A positive trend occurs between 1850 and 1970 (increasing SW reflection) and a negative trend between 1970 and 2014; the pre-1970 positive trend is mainly driven by an increase in cloud droplet number concentrations due to increases in aerosol, and the 1970–2014 trend is driven by a decrease in cloud fraction, which we attribute to changes in clouds caused by greenhouse gas-induced warming.
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
Tamzin E. Palmer, Carol F. McSweeney, Ben B. B. Booth, Matthew D. K. Priestley, Paolo Davini, Lukas Brunner, Leonard Borchert, and Matthew B. Menary
Earth Syst. Dynam., 14, 457–483, https://doi.org/10.5194/esd-14-457-2023, https://doi.org/10.5194/esd-14-457-2023, 2023
Short summary
Short summary
We carry out an assessment of an ensemble of general climate models (CMIP6) based on the ability of the models to represent the key physical processes that are important for representing European climate. Filtering the models with the assessment leads to more models with less global warming being removed, and this shifts the lower part of the projected temperature range towards greater warming. This is in contrast to the affect of weighting the ensemble using global temperature trends.
Xuemei Wang, Hamish Gordon, Daniel P. Grosvenor, Meinrat O. Andreae, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 4431–4461, https://doi.org/10.5194/acp-23-4431-2023, https://doi.org/10.5194/acp-23-4431-2023, 2023
Short summary
Short summary
New particle formation in the upper troposphere is important for the global boundary layer aerosol population, and they can be transported downward in Amazonia. We use a global and a regional model to quantify the number of aerosols that are formed at high altitude and transported downward in a 1000 km region. We find that the majority of the aerosols are from outside the region. This suggests that the 1000 km region is unlikely to be a
closed loopfor aerosol formation, transport and growth.
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
Ruth Price, Andrea Baccarini, Julia Schmale, Paul Zieger, Ian M. Brooks, Paul Field, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 2927–2961, https://doi.org/10.5194/acp-23-2927-2023, https://doi.org/10.5194/acp-23-2927-2023, 2023
Short summary
Short summary
Arctic clouds can control how much energy is absorbed by the surface or reflected back to space. Using a computer model of the atmosphere we investigated the formation of atmospheric particles that allow cloud droplets to form. We found that particles formed aloft are transported to the lowest part of the Arctic atmosphere and that this is a key source of particles. Our results have implications for the way Arctic clouds will behave in the future as climate change continues to impact the region.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David Sexton, Christopher C. Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2022-1330, https://doi.org/10.5194/egusphere-2022-1330, 2022
Preprint archived
Short summary
Short summary
We show that potential structural deficiencies in a climate model can be exposed by comprehensively exploring its parametric uncertainty, and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. Combined consideration of parametric and structural uncertainties provides a future pathway towards building models that have greater physical realism and lower uncertainty.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Amy H. Peace, Ben B. B. Booth, Leighton A. Regayre, Ken S. Carslaw, David M. H. Sexton, Céline J. W. Bonfils, and John W. Rostron
Earth Syst. Dynam., 13, 1215–1232, https://doi.org/10.5194/esd-13-1215-2022, https://doi.org/10.5194/esd-13-1215-2022, 2022
Short summary
Short summary
Anthropogenic aerosol emissions have been linked to driving climate responses such as shifts in the location of tropical rainfall. However, the interaction of aerosols with climate remains one of the most uncertain aspects of climate modelling and limits our ability to predict future climate change. We use an ensemble of climate model simulations to investigate what impact the large uncertainty in how aerosols interact with climate has on predicting future tropical rainfall shifts.
Alexander D. Harrison, Daniel O'Sullivan, Michael P. Adams, Grace C. E. Porter, Edmund Blades, Cherise Brathwaite, Rebecca Chewitt-Lucas, Cassandra Gaston, Rachel Hawker, Ovid O. Krüger, Leslie Neve, Mira L. Pöhlker, Christopher Pöhlker, Ulrich Pöschl, Alberto Sanchez-Marroquin, Andrea Sealy, Peter Sealy, Mark D. Tarn, Shanice Whitehall, James B. McQuaid, Kenneth S. Carslaw, Joseph M. Prospero, and Benjamin J. Murray
Atmos. Chem. Phys., 22, 9663–9680, https://doi.org/10.5194/acp-22-9663-2022, https://doi.org/10.5194/acp-22-9663-2022, 2022
Short summary
Short summary
The formation of ice in clouds fundamentally alters cloud properties; hence it is important we understand the special aerosol particles that can nucleate ice when immersed in supercooled cloud droplets. In this paper we show that African desert dust that has travelled across the Atlantic to the Caribbean nucleates ice much less well than we might have expected.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys., 22, 7443–7460, https://doi.org/10.5194/acp-22-7443-2022, https://doi.org/10.5194/acp-22-7443-2022, 2022
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ˜3.5 times higher than the number of clear days over the NCP.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Rachel E. Hawker, Annette K. Miltenberger, Jill S. Johnson, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Paul R. Field, Benjamin J. Murray, and Ken S. Carslaw
Atmos. Chem. Phys., 21, 17315–17343, https://doi.org/10.5194/acp-21-17315-2021, https://doi.org/10.5194/acp-21-17315-2021, 2021
Short summary
Short summary
We find that ice-nucleating particles (INPs), aerosols that can initiate the freezing of cloud droplets, cause substantial changes to the properties of radiatively important convectively generated anvil cirrus. The number concentration of INPs had a large effect on ice crystal number concentration while the INP temperature dependence controlled ice crystal size and cloud fraction. The results indicate information on INP number and source is necessary for the representation of cloud glaciation.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Benjamin M. Sanderson, Angeline G. Pendergrass, Charles D. Koven, Florent Brient, Ben B. B. Booth, Rosie A. Fisher, and Reto Knutti
Earth Syst. Dynam., 12, 899–918, https://doi.org/10.5194/esd-12-899-2021, https://doi.org/10.5194/esd-12-899-2021, 2021
Short summary
Short summary
Emergent constraints promise a pathway to the reduction in climate projection uncertainties by exploiting ensemble relationships between observable quantities and unknown climate response parameters. This study considers the robustness of these relationships in light of biases and common simplifications that may be present in the original ensemble of climate simulations. We propose a classification scheme for constraints and a number of practical case studies.
Ramiro Checa-Garcia, Yves Balkanski, Samuel Albani, Tommi Bergman, Ken Carslaw, Anne Cozic, Chris Dearden, Beatrice Marticorena, Martine Michou, Twan van Noije, Pierre Nabat, Fiona M. O'Connor, Dirk Olivié, Joseph M. Prospero, Philippe Le Sager, Michael Schulz, and Catherine Scott
Atmos. Chem. Phys., 21, 10295–10335, https://doi.org/10.5194/acp-21-10295-2021, https://doi.org/10.5194/acp-21-10295-2021, 2021
Short summary
Short summary
Thousands of tons of dust are emitted into the atmosphere every year, producing important impacts on the Earth system. However, current global climate models are not yet able to reproduce dust emissions, transport and depositions with the desirable accuracy. Our study analyses five different Earth system models to report aspects to be improved to reproduce better available observations, increase the consistency between models and therefore decrease the current uncertainties.
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021, https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary
Short summary
We investigated different methods to reconstruct spatiotemporal distribution of the fraction of diffuse radiation (Fdf) to qualify the aerosol impacts on GPP using the ORCHIDEE_DF land surface model. We find that climatological-averaging methods which dampen the variability of Fdf can cause significant bias in the modeled diffuse radiation impacts on GPP. Better methods to reconstruct Fdf are recommended.
Rachel E. Hawker, Annette K. Miltenberger, Jonathan M. Wilkinson, Adrian A. Hill, Ben J. Shipway, Zhiqiang Cui, Richard J. Cotton, Ken S. Carslaw, Paul R. Field, and Benjamin J. Murray
Atmos. Chem. Phys., 21, 5439–5461, https://doi.org/10.5194/acp-21-5439-2021, https://doi.org/10.5194/acp-21-5439-2021, 2021
Short summary
Short summary
The impact of aerosols on clouds is a large source of uncertainty for future climate projections. Our results show that the radiative properties of a complex convective cloud field in the Saharan outflow region are sensitive to the temperature dependence of ice-nucleating particle concentrations. This means that differences in the aerosol source or composition, for the same aerosol size distribution, can cause differences in the outgoing radiation from regions dominated by tropical convection.
Ananth Ranjithkumar, Hamish Gordon, Christina Williamson, Andrew Rollins, Kirsty Pringle, Agnieszka Kupc, Nathan Luke Abraham, Charles Brock, and Ken Carslaw
Atmos. Chem. Phys., 21, 4979–5014, https://doi.org/10.5194/acp-21-4979-2021, https://doi.org/10.5194/acp-21-4979-2021, 2021
Short summary
Short summary
The effect aerosols have on climate can be better understood by studying their vertical and spatial distribution throughout the atmosphere. We use observation data from the ATom campaign and evaluate the vertical profile of aerosol number concentration, sulfur dioxide and condensation sink using the UKESM (UK Earth System Model). We identify uncertainties in key atmospheric processes that help improve their theoretical representation in global climate models.
Kamalika Sengupta, Kirsty Pringle, Jill S. Johnson, Carly Reddington, Jo Browse, Catherine E. Scott, and Ken Carslaw
Atmos. Chem. Phys., 21, 2693–2723, https://doi.org/10.5194/acp-21-2693-2021, https://doi.org/10.5194/acp-21-2693-2021, 2021
Short summary
Short summary
Global models consistently underestimate atmospheric secondary organic aerosol (SOA), which has significant climatic implications. We use a perturbed parameter model ensemble and ground-based observations to reduce the uncertainty in modelling SOA formation from oxidation of volatile organic compounds. We identify plausible parameter spaces for the yields of extremely low-volatility, low-volatility, and semi-volatile organic compounds based on model–observation match for three key model outputs.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Benjamin J. Murray, Kenneth S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 21, 665–679, https://doi.org/10.5194/acp-21-665-2021, https://doi.org/10.5194/acp-21-665-2021, 2021
Short summary
Short summary
The balance between the amounts of ice and supercooled water in clouds over the world's oceans strongly influences how much these clouds can dampen or amplify global warming. Aerosol particles which catalyse ice formation can dramatically reduce the amount of supercooled water in clouds; hence we argue that we need a concerted effort to improve our understanding of these ice-nucleating particles if we are to improve our predictions of climate change.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Daniel P. Grosvenor and Kenneth S. Carslaw
Atmos. Chem. Phys., 20, 15681–15724, https://doi.org/10.5194/acp-20-15681-2020, https://doi.org/10.5194/acp-20-15681-2020, 2020
Short summary
Short summary
Particles arising from human activity interact with clouds and affect how much of the Sun's energy is reflected away. Lack of understanding about how to represent this in models leads to large uncertainties in climate predictions. We quantify cloud responses to particles in the latest UK Met Office climate model over the North Atlantic Ocean, showing that, in contrast to suggestions elsewhere, increases in cloud coverage and thickness are important over large areas.
Sandip S. Dhomse, Graham W. Mann, Juan Carlos Antuña Marrero, Sarah E. Shallcross, Martyn P. Chipperfield, Kenneth S. Carslaw, Lauren Marshall, N. Luke Abraham, and Colin E. Johnson
Atmos. Chem. Phys., 20, 13627–13654, https://doi.org/10.5194/acp-20-13627-2020, https://doi.org/10.5194/acp-20-13627-2020, 2020
Short summary
Short summary
We confirm downward adjustment of SO2 emission to simulate the Pinatubo aerosol cloud with aerosol microphysics models. Similar adjustment is also needed to simulate the El Chichón and Agung volcanic cloud, indicating potential missing removal or vertical redistribution process in models. Important inhomogeneities in the CMIP6 forcing datasets after Agung and El Chichón eruptions are difficult to reconcile. Quasi-biennial oscillation plays an important role in modifying stratospheric warming.
Hamish Gordon, Paul R. Field, Steven J. Abel, Paul Barrett, Keith Bower, Ian Crawford, Zhiqiang Cui, Daniel P. Grosvenor, Adrian A. Hill, Jonathan Taylor, Jonathan Wilkinson, Huihui Wu, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 10997–11024, https://doi.org/10.5194/acp-20-10997-2020, https://doi.org/10.5194/acp-20-10997-2020, 2020
Short summary
Short summary
The Met Office's Unified Model is widely used both for weather forecasting and climate prediction. We present the first version of the model in which both aerosol and cloud particle mass and number concentrations are allowed to evolve separately and independently, which is important for studying how aerosols affect weather and climate. We test the model against aircraft observations near Ascension Island in the Atlantic, focusing on how aerosols can "activate" to become cloud droplets.
Cited articles
Allen, R. J., Norris, J. R., and Kovilakam, M.: Influence of anthropogenic
aerosols and the Pacific Decadal Oscillation on tropical belt width,
Nat. Geosci., 7, 270–274, https://doi.org/10.1038/ngeo2091, 2014. a, b
Andreae, M. O., Jones, C. D., and Cox, P. M.: Strong present-day aerosol
cooling implies a hot future, Nature, 435, 1187–1190,
https://doi.org/10.1038/nature03671, 2005. a
Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T. J., Oakley, J. E.,
Nsubuga, R. N., Goldstein, M., and White, R. G.: History matching of a
complex epidemiological model of human immunodeficiency virus transmission by
using variance emulation, J. Roy. Stat. Soc. C-App.,
66, 717–740, https://doi.org/10.1111/rssc.12198, 2017. a
Barker, H. W. and Räisänen, P.: Radiative sensitivities for cloud
structural properties that are unresolved by conventional GCMs, Q. J. Roy. Meteor. Soc., 131, 3103–3122, https://doi.org/10.1256/qj.04.174,
2005. a
Barrett, T. J., Brattström, S., Sharma, S., Worthy, D. E. J., and Novelli,
P.: The role of scavenging in the seasonal transport of black carbon and
sulfate to the Arctic, Geophys. Res. Lett., 38, L16805, https://doi.org/10.1029/2011GL048221, 2011. a
Bellucci, A., Mariotti, A., and Gualdi, S.: The role of forcings in the
Twentieth-Century North Atlantic multidecadal variability: The
1940–1975 North Atlantic cooling case study, J. Climate, 30,
7317–7337, https://doi.org/10.1175/JCLI-D-16-0301.1, 2017. a
Beven, K. and Freer, J.: Equifinality, data assimilation, and uncertainty
estimation in mechanistic modelling of complex environmental systems using
the GLUE methodology, J. Hydrol., 249, 11–29,
https://doi.org/10.1016/S0022-1694(01)00421-8, 2001. a, b
Bollasina, M. A., Ming, Y., and Ramaswamy, V.: Earlier onset of the Indian
monsoon in the late twentieth century: The role of anthropogenic aerosols,
Geophys. Res. Lett., 40, 3715–3720, https://doi.org/10.1002/grl.50719, 2013. a, b, c, d
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender,
C. S.: Bounding the role of black carbon in the climate system: A
scientific assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013. a, b
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin,
N.: Aerosols implicated as a prime driver of twentieth-century North
Atlantic climate variability, Nature, 484, 228–232,
https://doi.org/10.1038/nature10946, 2012. a, b, c
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley,
P. M., Cambridge University Press, Cambridge, United Kingdom and New York,
USA, 2013. a
Boutle, I. A., Abel, S. J., Hill, P. G., and Morcrette, C. J.: Spatial
variability of liquid cloud and rain: observations and microphysical effects,
Q. J. Roy. Meteor. Soc., 140, 585–594,
https://doi.org/10.1002/qj.2140, 2014. a
Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K., and Boucher, O.: The
scavenging processes controlling the seasonal cycle in Arctic sulphate and
black carbon aerosol, Atmos. Chem. Phys., 12, 6775–6798,
https://doi.org/10.5194/acp-12-6775-2012, 2012. a, b, c
Calisto, M., Folini, D., Wild, M., and Bengtsson, L.: Cloud radiative forcing
intercomparison between fully coupled CMIP5 models and CERES satellite
data, Ann. Geophys., 32, 793–807, https://doi.org/10.5194/angeo-32-793-2014, 2014. a
Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A.,
Forster, P. M., Mann, G. W., Spracklen, D. V., Woodhouse, M., Regayre, L. A.,
and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in
indirect forcing, Nature, 503, 67–71, https://doi.org/10.1038/nature12674, 2013. a, b, c, d, e, f, g, h, i, j, k, l
Carslaw, K. S., Gordon, H., Hamilton, D. S., Johnson, J. S., Regayre, L. A.,
and Yoshioka, M.: Aerosols in the pre-industrial atmosphere, Curr. Clim. Change Rep., 3, 1–15, https://doi.org/10.1007/s40641-017-0061-2, 2017. a
Carslaw, K. S., Johnson, J. S., Regayre, L. A., and Lee, L. A.: Climate
models are uncertain, but we can do something about it, EOS, 99, https://doi.org/10.1029/2018EO093757., 2018. a
CERES: Clouds and the Earth's Radiant Energy System, available at: https://ceres.larc.nasa.gov/order_data.php, last access: August
2017. a
Chalmers, N., Highwood, E. J., Hawkins, E., Sutton, R., and Wilcox, L. J.:
Aerosol contribution to the rapid warming of near-term climate under RCP
2.6, Geophys. Res. Lett., 39, L18709, https://doi.org/10.1029/2012GL052848, 2012. a, b, c
Cherian, R., Quass, J., Salzmann, M., and Wild, M.: Pollution trends over
Europe constrain global aerosol forcing as simulated by climate models,
Geophys. Res. Lett., 41, 2176–2181, https://doi.org/10.1002/2013GL058715, 2014. a
Collins, M., Booth, B. B. B., Bhaskaran, B., Harris, G. R., Murphy, J. M.,
Sexton, D. M. H., and Webb, M. J.: Climate model errors, feedbacks and
forcings: a comparison of perturbed physics and multi-model ensembles, Clim. Dynam., 36, 1737–1766, 2010. a
Collins, M., Chandler, R. E., Cox, P. M., Huthnance, J. M., Rougier, J., and
Stephenson, D. B.: Quantifying future climate change, Nat. Clim. Change,
2, 403–409, 2012. a
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, D.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections Commitments and Irreversibility, in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a, b, c
Croft, B., Pierce, J. R., Martin, R. V., Hoose, C., and Lohmann, U.:
Uncertainty associated with convective wet removal of entrained aerosols in a
global climate model, Atmos. Chem. Phys., 12, 10725–10748,
https://doi.org/10.5194/acp-12-10725-2012, 2012. a, b
Dunstone, N. J., Smith, D. M., Booth, B. B. B., Hermanson, L., and Eade, R.:
Anthropogenic aerosol forcing of Atlantic tropical storms, Nat. Geosci.,
6, 534–539, https://doi.org/10.1038/ngeo1854, 2013. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W.,
Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Glecker, P.,
Guilyardi, E., Jacob, C., Kattsov, V., Reason, C., and Rumukainen, M.:
Evaluation of Climate Models, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D.,
Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, USA, 2013. a, b
Gantt, B., Johnson, M. S., Crippa, M., Prévôt, A. S. H., and
Meskhidze, N.: Implementing marine organic aerosols into the GEOS-Chem model,
Geosci. Model Dev., 8, 619–629, https://doi.org/10.5194/gmd-8-619-2015,
2015. a
Gettelman, A.: Putting the clouds back in aerosol-cloud interactions, Atmos.
Chem. Phys., 15, 12397–12411, https://doi.org/10.5194/acp-15-12397-2015,
2015. a, b
Gettleman, A., Kay, J. E., and Fasullo, J. T.: Spatial decomposition of climate
feedbacks in the Community Earth System Model, J. Climate, 26,
3544–3561, https://doi.org/10.1175/JCLI-D-12-00497.1, 2013. a
Ghan, S. J., Wang, M., Zhang, S., Ferrachat, S., Gettleman, A., Griesfeller,
J., Kipling, Z., Lohmann, U., Morrison, H., Neubauer, D., Partridge, D. G.,
Stier, P., Takemura, T., Wang, H., and Zhang, K.: Challenges in constraining
anthropogenic aerosol effects on cloud radiative forcing using present-day
spatiotemporal variability, Proc. Natl. Acad. Sci. USA, 113,
5804–5811, https://doi.org/10.1073/pnas.1514036113, 2016. a, b, c, d
Gnanadesikan, A., Scott, A. A., Pradal, M. A., and Seviour, W. J. M.: Regional
responses to black carbon aerosols: The importance of air-sea interaction,
J. Geophys. Res.-Atmos., 122, 12982–12999,
https://doi.org/10.1002/2017JD027589, 2017. a, b
Golaz, J. C., Horowitz, L. W., and II, H. L.: Cloud tuning in a coupled
climate model: impact on 20th century warming, Geophys. Res. Lett., 40, 2246–2251,
https://doi.org/10.1002/grl.50232, 2013. a, b
Goldstein, M. and Rougier, J.: Probabilistic formulations for transferring
inferences from mathematical models to physical systems, Siam, 26, 467–487,
https://doi.org/10.1137/S106482750342670X, 2004. a
Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M.,
Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy,
J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle,
C. R., Kulmala, M., Kurten, A., Lehtipalo, K., Makhmutov, V., Molteni, U.,
Rissanen, M. P., Stozkhov, Y., Trostl, J., Tsagkogeorgas, G., Wagner, R.,
Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.:
Causes and importance of new particle formation in the present-day and
preindustrial atmospheres, J. Geophys. Res.-Atmos., 122, 8739–8760,
https://doi.org/10.1002/2017JD026844, 2017. a
Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., van der Gon, H. D.,
Frost, G. J., Heli, A., Kaiser, J. W., Kinne, S., Kilmont, Z., Kloster, S.,
Lamarque, J. F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T.,
Raut, J. C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van
Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of
anthropogenic and biomass burning emissions of air pollutants at global and
regional scales during the 1980–2010 period, Climatic Change, 109, 163–190,
https://doi.org/10.1007/s10584-011-0154-1, 2011. a, b
Gryspeerdt, E., Quaas, J., Ferrachat, S., Gettelman, A., Ghan, S., Lohmann, U.,
Morrison, H., Neubauer, D., Partridge, D. G., Stier, P., Takemura, T., Wang,
H., Wang, M., and Zhang, K.: Constraining the instantaneous aerosol influence
on cloud albedo, Proc. Natl. Acad. Sci. USA, 114, 4899–4904,
https://doi.org/10.1073/pnas.1617765114, 2017. a
Guo, L., Highwood, E. J., Shaffrey, L. C., and Turner, A. G.: The effect of
regional changes in anthropogenic aerosols on rainfall of the East Asian
Summer Monsoon, Atmos. Chem. Phys., 13, 1521–1534,
https://doi.org/10.5194/acp-13-1521-2013, 2013. a
HadCRUT4: Met Office Hadley Centre observations dataset, HadCRUT4,
available at: https://www.metoffice.gov.uk/hadobs/hadcrut4, last
access: October 2017. a
HadGEM3: Met Office climate prediction model: HadGEM3 family, available at:
http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadgem3,
last access: March 2017. a
Haerter, J. O., Roeckner, E., Tomassini, L., and von Storch, J. S.:
Parametric uncertainty effects on aerosol radiative forcing, Geophys. Res. Lett., 36, L15707, https://doi.org/10.1029/2009GL039050, 2009. a, b, c
Hamilton, D. S., Lee, L. A., Pringle, K. J., Reddington, C. L. S., Spracklen,
D. V., and Carslaw, K. S.: Occurrence of pristine aerosol on a polluted
planet, Proc. Natl. Acad. Sci. USA, 111, 18466–18471,
https://doi.org/10.1073/pnas.1415440111, 2014. a, b, c
Hartmann, D. L., A. M. G. Klein T., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and
Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group
I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2013. a, b
Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hergl, G., Jones, P.,
Joshi, M., Osborne, T., Masson-Delmotte, V., Mignot, J., Thorne, P., and
Jan van Oldenborgh, G.: Estimating changes in global temperature since the
preindustrial period, B. Am. Meteorol. Soc., 98, 1841–1856,
https://doi.org/10.1175/BAMS-D-16-0007.1, 2017. a
Hetzel, J.: Package `Trapezoid', available at: https://cran.r-project.org/web/packages/trapezoid/trapezoid.pdf (last access: 9 July 2018), 2012. a
Hourdin, F., Mauritsen, T., Gettleman, A., Golaz, J., Balaji, V., Duan, Q.,
Folini, D., Klocke, D. J. D., Qian, Y., Rauser, F., Rio, C., Tomassini, L.,
Watanabe, M., and Williamson, D.: The art and science of climate model
tuning, B. Am. Meteorol. Soc., 98, 589–602,
https://doi.org/10.1175/BAMS-D-15-00135.1, 2017. a
Johnson, J. S., Cui, Z., Lee, L. A., Gosling, J. P., Blyth, A. M., and Carslaw,
K. S.: Evaluating uncertainty in convective cloud microphysics using
statistical emulation, J. Adv. Model. Earth Sy., 7, 162–187,
https://doi.org/10.1002/2014MS000383, 2015. a, b
Johnson, J. S., Regayre, L. A., Yoshioka, M., Pringle, K. J., Lee, L. A.,
Sexton, D., Rostron, J., Booth, B. B. B., and Carslaw, K. S.: The importance
of comprehensive parameter sampling and multiple observations for robust
constraint of aerosol radiative forcing, Atmos. Chem. Phys. Discuss.,
https://doi.org/10.5194/acp-2018-174, in review, 2018. a, b
Karydis, V. A., Tsimpidi, A. P., Bacer, S., Pozzer, A., Nenes, A., and
Lelieveld, J.: Global impact of mineral dust on cloud droplet number
concentration, Atmos. Chem. Phys., 17, 5601–5621,
https://doi.org/10.5194/acp-17-5601-2017, 2017. a
Kasoar, M., Voulgarakis, A., Lamarque, J.-F., Shindell, D. T., Bellouin, N.,
Collins, W. J., Faluvegi, G., and Tsigaridis, K.: Regional and global
temperature response to anthropogenic SO2 emissions from China in
three climate models, Atmos. Chem. Phys., 16, 9785–9804,
https://doi.org/10.5194/acp-16-9785-2016, 2016. a
Kay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R.,
Gettleman, A., Eaton, B., Boyle, J., Marchand, R., and Ackerman, T. P.:
Exposing Global Cloud Biases in the Community Atmosphere Model (CAM)
Using Satellite Observations and Their Corresponding Instrument Simulators,
J. Climate, 25, 5190–5207, https://doi.org/10.1175/JCLI-D-11-00469.1, 2012. a
Khain, A. P., Ovtchinnikov, M., Pinsky, M., Potrovsky, A., and Krugliak, H.:
Notes on state-of-the-art numerical modeling of cloud microphysics, Atmos. Res., 55, 159–224, https://doi.org/10.1016/S0169-8095(00)00064-8, 2000. a
Kim, D., Chin, M., Yu, H. B., Diehl, T., Tan, Q., Kahn, R. A., Tsigaridis, K.,
Bauer, S. E., Takemura, T., Pozzoli, L., Bellouin, N., Schulz, M., Peyridieu,
S., Chedin, A., and Koffi, B.: Sources, sinks and transatlantic transport of
North African dust aerosol: A multimodel analysis and comparison with
remote sensing data, J. Geophys. Res.-Atmos., 119, 6259–6277,
https://doi.org/10.1002/2013JD021099, 2014. a
Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S.
E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg,
A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen,
K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K.,
and Zhang, K.: What controls the vertical distribution of aerosol?
Relationships between process sensitivity in HadGEM3-UKCA and inter-model
variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2221–2241,
https://doi.org/10.5194/acp-16-2221-2016, 2016. a, b
Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R.,
Camilloni, I., Doblas-Reyes, F. J., Fiore, A. M., Kimoto, M., Meehl, G. A.,
Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G. J.,
Vecchi, G., and Wang, H. J.: Near-term Climate Change: Projections and
Predictability, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited
by:
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a, b, c, d
Knutti, R., Krähenmann, S., Frame, D. J., and Allen, M. R.: Comment on
“Heat capacity, time constant, and sensitivity of earth's climate system”
by SE Schwartz, J. Geophys. Res.-Atmos., 113, 1984–2012,
https://doi.org/10.1029/2007JD009473, 2008. a
Knutti, R., Masson, D., and Gettleman, A.: Climate model genealogy:
Generation CMIP5 and how we got there, Geophys. Res. Lett., 40,
1194–1199, https://doi.org/10.1002/grl.50256, 2013. a, b, c
Koffi, B., Schulz, M., Breon, F. M., Dentener, F., Steensen, B. M.,
Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S. E., Bellouin, N.,
Berntsen, T., Bian, H. S., Chin, M., Diehl, T., Easter, R., Ghan, S.,
Hauglustaine, D. A., Iversen, T., Kirkevag, A., Liu, X. H., Lohmann, U.,
Myhre, G., Rasch, P., Seland, O., Skeie, R. B., Steenrod, S. D., Stier, P.,
Tackett, J., Takemura, T., Tsigaridis, K., Vuolo, M. R., Yoon, J., and Zhang,
K.: Evaluation of the aerosol vertical distribution in global aerosol models
through comparison against CALIOP measurements: AeroCom phase II results,
J. Geophys. Res.-Atmos., 121, 7254–7283, https://doi.org/10.1002/2015JD024639,
2016. a
Kooperman, G. J., Pritchard, M. S., Ghan, S. J., Wang, M., Somerville,
R. C. J., and Russell, L. M.: Constraining the influence of natural
variability to improve estimates of global aerosol indirect effects in a
nudged version of the Community Atmosphere Model 5, J. Geophys. Res.,
117, 1–16, https://doi.org/10.1029/2012JD018588, 2012. a
Korhonen, H., Carslaw, K. S., Spracklen, D. V., Mann, G. W., and Woodhouse,
M. T.: Influence of oceanic dimethyl sulfide emissions on cloud condensation
nuclei concentrations and seasonality over the remote Southern Hemisphere
oceans: A global model study, J. Geophys. Res., 113, 16, 2008. a
Kretzschmar, J., Salzmann, M., Mülmenstädt, J., Boucher, O., and Quass,
J.: Comment on Rethinking the Lower Bound on Aerosol Radiative
Forcing, J. Climate, 30, 6579–6584, https://doi.org/10.1175/JCLI-D-16-0668.1, 2017. a
Lacagnina, C., Hasekamp, O. P., Huisheng, B., Curci, G., Myhre, G., van Noije, T., Schulz, M., Skeie, R. B., Takemura, T., and Zhang, K.: Aerosol
single-scattering albedo over the global oceans: Comapring PARASOL
retrievals with AERONET, OMI, and AeroCom models estiamtes, J. Geophys. Res.-Atmos., 120, 9814–9836, https://doi.org/10.1002/2015JD023501, 2015. a, b
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z.,
Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D.,
Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M.,
Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.:
Historical (1850–2000) gridded anthropogenic and biomass burning emissions of
reactive gases and aerosols: methodology and application, Atmos. Chem. Phys.,
10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a, b
Lebo, Z. J. and Feingold, G.: On the relationship between responses in cloud
water and precipitation to changes in aerosol, Atmos. Chem. Phys., 14,
11817–11831, https://doi.org/10.5194/acp-14-11817-2014, 2014. a
Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D.
V.: Emulation of a complex global aerosol model to quantify sensitivity to
uncertain parameters, Atmos. Chem. Phys., 11, 12253–12273,
https://doi.org/10.5194/acp-11-12253-2011, 2011. a
Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W.: Mapping the
uncertainty in global CCN using emulation, Atmos. Chem. Phys., 12,
9739–9751, https://doi.org/10.5194/acp-12-9739-2012, 2012. a, b
Lee, L. A., Pringle, K. J., Reddington, C. L., Mann, G. W., Stier, P.,
Spracklen, D. V., Pierce, J. R., and Carslaw, K. S.: The magnitude and causes
of uncertainty in global model simulations of cloud condensation nuclei,
Atmos. Chem. Phys., 13, 8879–8914, https://doi.org/10.5194/acp-13-8879-2013,
2013. a, b, c, d, e
Liu, X. H. and Wang, J. A.: How important is organic aerosol hygroscopicity to
aerosol indirect effect?, Environ. Res. Lett., 5, 044010,
https://doi.org/10.1088/1748-9326/5/4/044010, 2010. a
Liu, Y. and Gupta, H. V.: Uncertainties in hydrologic modeling: Toward an
integrated data assimilation framework, Water Resour. Res., 43, 1–17,
https://doi.org/10.1029/2006WR005756, 2007. a
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F.,
Kato, S., Manalo-Smith, N., and Wong, T.: Toward Optimal Closure of the
Earth's Top-of-Atmosphere Radiation Budget, J. Climate., 22, 748–766,
https://doi.org/10.1175/2008JCLI2637.1, 2009. a, b
Loeb, N. G., Kato, S., Su, W., Wong, T., Rose, F. G., Doelling, D. R., Norris,
J. R., and Huang, X.: Advances in Understanding Top-of-Atmosphere Radiation
Variability from Satellite Observations, Surv. Geophys., 33, 359–385,
https://doi.org/10.1007/s10712-012-9175-1, 2012. a
Lohmann, U.: Why does knowledge of past aerosol forcing matter for future
climate change?, J. Geophys. Res.-Atmos., 122, 5021–5023,
https://doi.org/10.1002/2017JD026962, 2017. a
Malavelle, F. F., Haywood, J. M., Ones, A. J., Gettleman, A., Larisse, L. C.,
Bauduin, S., Allan, R. P., Karset, I. H. H., Kristjansson, J. E., Oreopoulos,
L., Ho, N. C., Lee, D., Bellouin, N., Boucher, O., Grosvenor, D. P., Carslaw,
K. S., Dhomse, S., Mann, G. W., Schmidt, A., and M. E. Hartley, H. C.,
Dalvi, M., Hill, A. A., Johnson, B. T., Jphnson, C. E., Knight, J. R., Jeff,
R., O'Connor, F. M., Partridge, D. G., Stier, P., Myhre, G., Platnick, S.,
Stephens, G. L., Takahashi, H., and Thordarson, T.: Strong constraints on
aerosol-cloud interactions from volcanic eruptions, Nature, 543, 485–491,
https://doi.org/10.1038/nature22974, 2017. a, b, c, d
Manktelow, P. T., Carslaw, K. S., Mann, G. W., and Spracklen, D. V.: The
impact of dust on sulfate aerosol, CN and CCN during an East Asian dust
storm, Atmos. Chem. Phys., 10, 365–382,
https://doi.org/10.5194/acp-10-365-2010, 2010. a
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P.
T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description
and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for
the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551,
https://doi.org/10.5194/gmd-3-519-2010, 2010. a
Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M.,
Asmi, A., Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A.,
Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams,
P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T.
P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C. E.,
Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A.,
Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U.,
Kaminski, U., Jennings, S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C.
S., Kulmala, M., Viisanen, Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V.,
Fiebig, M., Hansson, H.-C., Swietlicki, E., and Henzing, J. S.:
Intercomparison and evaluation of global aerosol microphysical properties
among AeroCom models of a range of complexity, Atmos. Chem. Phys., 14,
4679–4713, https://doi.org/10.5194/acp-14-4679-2014, 2014. a, b
Mauritsen, T., Stevens, B., Roeckner, E., Crueger, T., Esch, M., Giorgetta, M.,
Haak, H., Jungclaus, J., Klocke, D., Matei, D., Mikolajewicz, U., Notz, D.,
Pincus, R., Schmidt, H., and Tomassini, L.: Tuning the climate of a global
model, J. Adv. Model. Earth Sy., 4, M00A01,
https://doi.org/10.1029/2012MS000154, 2012. a, b
Metzger, A., Verheggen, B., Dommen, J., Duplissy, J., Prevot, A. S. H.,
Weingartner, E., Riipinen, I., Kulmala, M., Spracklen, D. V., Carslaw, K. S.,
and Baltensperger, U.: Evidence for the role of organics in aerosol particle
formation under atmospheric conditions, Proc. Natl. Acad. Sci. USA, 107,
6646–6651, https://doi.org/10.1073/pnas.0911330107, 2010. a
Michibata, T. and Takemura, T.: Evaluation of autoconversion schemes in a
single model framework with satellite observations, J. Geophys. Res.-Atmos., 120, 1–21, https://doi.org/10.1002/2015JD023818-T, 2015. a, b
Morgan, M. G., Adams, P. J., and Keith, D. W.: Elicitation of expert judgements
about aerosol forcing, Climatic Change, 75, 195–214,
https://doi.org/10.1007/s10584-005-9025-y, 2006. a
Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang,
J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock,
A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural
Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited
by:
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 2013. a, b, c, d, e, f, g
Nam, C., Bony, S., Dufresne, J. L., and Chepfer, H.: The “too few, too
bright”
tropical low-cloud problem in CMIP5 models, Geophys. Res. Lett., 39,
L21801, https://doi.org/10.1029/2012GL053421, 2012. a
Neubauer, D., Lohmann, U., Hoose, C., and Frontoso, M. G.: Impact of the
representation of marine stratocumulus clouds on the anthropogenic aerosol
effect, Atmos. Chem. Phys., 14, 11997–12022,
https://doi.org/10.5194/acp-14-11997-2014, 2014. a
Oakley, J. E. and O'Hagan, A.: Probabilistic sensitivity analysis of complex
models: a Bayesian approach, JRSSB, 66, 751–769, 2004. a
Pan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P. R., Diehl, T.
L., Takemura, T., Pozzoli, L., Tsigaridis, K., Bauer, S., and Bellouin, N.: A
multi-model evaluation of aerosols over South Asia: common problems and
possible causes, Atmos. Chem. Phys., 15, 5903–5928,
https://doi.org/10.5194/acp-15-5903-2015, 2015. a
Pennell, C. and Reichler, T.: On the effective number of climate models, J.
Climate, 24, 2358–2367, 2010. a
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem.
Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. a, b
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B.,
and Wagener, T.: Sensitivity analysis of environmental models: A systematic
review of practical workflow, Environ. Model. Softw., 79, 214–232,
https://doi.org/10.1016/j.envsoft.2016.02.008, 2016. a
Pringle, K. J., Carslaw, K. S., Fan, T., Mann, G. W., Hill, A., Stier, P.,
Zhang, K., and Tost, H.: A multi-model assessment of the impact of sea spray
geoengineering on cloud droplet number, Atmos. Chem. Phys., 12, 11647–11663,
https://doi.org/10.5194/acp-12-11647-2012, 2012. a
Qian, Y., Yan, H., Zhangshuan, H., Gardar, J., Klein, S., Lucas, D., Neale, R.,
Rasch, P., Swiller, L., Tannahill, J., Wang, H., Wang, M., and Zhao, C.:
Parametric sensitivity analysis of precipitation at global and local scales
in the Comunity Atmosphere Model CAM5, J. Adv. Model. Earth Sy., 7, 382–411, https://doi.org/10.1002/2014MS000354, 2015. a
Räisänen, P., Barker, H. W., Khairoutdinov, M. F., Li, J., and Randall,
D. A.: Stochastic generation of subgrid-scale cloudy columns for large-scale
models, Q. J. Roy. Meteor. Soc., 130, 2047–2067,
https://doi.org/10.1256/qj.03.99, 2004. a
Randles, C. A., Kinne, S., Myhre, G., Schulz, M., Stier, P., Fischer, J.,
Doppler, L., Highwood, E., Ryder, C., Harris, B., Huttunen, J., Ma, Y.,
Pinker, R. T., Mayer, B., Neubauer, D., Hitzenberger, R., Oreopoulos, L.,
Lee, D., Pitari, G., Di Genova, G., Quaas, J., Rose, F. G., Kato, S.,
Rumbold, S. T., Vardavas, I., Hatzianastassiou, N., Matsoukas, C., Yu, H.,
Zhang, F., Zhang, H., and Lu, P.: Intercomparison of shortwave radiative
transfer schemes in global aerosol modeling: results from the AeroCom
Radiative Transfer Experiment, Atmos. Chem. Phys., 13, 2347–2379,
https://doi.org/10.5194/acp-13-2347-2013, 2013. a, b
Reddington, C. L., Carslaw, K. S., Spracklen, D. V., Frontoso, M. G.,
Collins, L., Merikanto, J., Minikin, A., Hamburger, T., Coe, H., Kulmala, M.,
Aalto, P., Flentje, H., Plass-Dülmer, C., Birmili, W., Wiedensohler, A.,
Wehner, B., Tuch, T., Sonntag, A., O'Dowd, C. D., Jennings, S. G., Dupuy, R.,
Baltensperger, U., Weingartner, E., Hansson, H.-C., Tunved, P., Laj, P.,
Sellegri, K., Boulon, J., Putaud, J.-P., Gruening, C., Swietlicki, E.,
Roldin, P., Henzing, J. S., Moerman, M., Mihalopoulos, N., Kouvarakis, G.,
Ždímal, V., Zíková, N., Marinoni, A., Bonasoni, P., and
Duchi, R.: Primary versus secondary contributions to particle number
concentrations in the European boundary layer, Atmos. Chem. Phys., 11,
12007–12036, https://doi.org/10.5194/acp-11-12007-2011, 2011. a
Reddington, C. L., Carslaw, K. S., Stier, P., Schutgens, N., Coe, H., Liu, D.,
Allan, J., Browse, J., Pringle, K., Lee, L., Yoshioka, M., Johnson, J.,
Regayre, L., Spracklen, D., Mann, G., Clarke, A., Hermann, M., Henning, S.,
Wex, H., Kristensen, T., Leaitch, W., Poeschl, U., Rose, D., Andreae, M.,
Schmale, J., Kondo, Y., Oshima, N., Schwarz, J., Nenes, A., Andreson, B.,
Roberts, G., Snider, J., Leck, C., Quinn, P., Chi, X., Ding, A., Jimenez, J.,
and Zhang, Q.: The Global Aerosol Synthesis and Science Project
(GASSP), B. Am. Meteorol. Soc., 8, 1857–1877, https://doi.org/10.1175/BAMS-D-15-00317.1, 2017. a, b
Regayre, L. A., Pringle, K. J., Booth, B. B. B., Lee, L. A., Mann, G. W.,
Browse, J., Woodhouse, M. T., Rap, A., Reddington, C. L. S., and Carslaw,
K. S.: Uncertainty in the magnitude of aerosol-cloud radiative forcing over
recent decades, Geophys. Res. Lett., 41, 9040–9049,
https://doi.org/10.1002/2014GL062029, 2014. a, b, c, d, e, f, g
Regayre, L. A., Pringle, K. J., Lee, L. A., Booth, B. B. B., Rap, A., Browse,
J., Mann, G. W., Woodhouse, M. T., Reddington, C. L. S., and Carslaw, K. S.:
The climatic importance of uncertainties in regional aerosol-cloud radiative
forcings over recent decades, J. Climate., 28, 6589–6607,
https://doi.org/10.1175/JCLI-D-15-0127.1, 2015. a, b, c, d, e, f, g, h, i, j
Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S.,
Wernli, H., Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited
regimes of cloud droplet formation: influence of particle number, size and
hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos.
Chem. Phys., 9, 7067–7080, https://doi.org/10.5194/acp-9-7067-2009, 2009. a
Rodrigues, L. F. S., Vernon, I., and Bower, R.: Constraints on galaxy formation
models from the galaxy stellar mass function and its evolution, Mon. Not.
R. Astron. Soc., 466, 2418–2435, https://doi.org/10.1093/mnras/stw3269, 2017. a
Rougier, J.: Ensemble averaging and mean squared error, J. Climate, 29,
8865–8870, https://doi.org/10.1175/JCLI-D-16-0012.1, 2016. a
Saltelli, A., Tarantola, S., and Chan, K. P. S.: A quantitative
model-independent method for global sensitivity analysis of model output,
Technometrics, 41, 39–56, https://doi.org/10.2307/1270993, 1999. a, b
Saltelli, A., Chan, K., and Scott, E. M.: Sensitivity Analysis, Wiley,
Oxford, UK, 2000. a
Samset, B. H., Myhre, G., Herber, A., Kondo, Y., Li, S.-M., Moteki, N.,
Koike, M., Oshima, N., Schwarz, J. P., Balkanski, Y., Bauer, S. E., Bellouin,
N., Berntsen, T. K., Bian, H., Chin, M., Diehl, T., Easter, R. C., Ghan, S.
J., Iversen, T., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Penner,
J. E., Schulz, M., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T.,
Tsigaridis, K., and Zhang, K.: Modelled black carbon radiative forcing and
atmospheric lifetime in AeroCom Phase II constrained by aircraft
observations, Atmos. Chem. Phys., 14, 12465–12477,
https://doi.org/10.5194/acp-14-12465-2014, 2014. a
Sanderson, B. M.: A multimodel study of parametric uncertainty in predictions
of climate response to rising greenhouse gas concentrations., J. Climate.,
24, 1362–1377, https://doi.org/10.1175/2010JCLI3498.1, 2010. a
Schmidt, A., Ostro, B., Carslaw, K. S., Wilson, M., Thordarson, T., Mann,
G. W., and Simmons, A. J.: Excess mortality in Europe following a future
Laki-style Icelandic eruption, Proc. Natl. Acad. Sci. USA, 108,
15710–15715, 2011. a
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T.,
Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A.,
Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G.,
Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura,
T.: Radiative forcing by aerosols as derived from the AeroCom present-day and
pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246,
https://doi.org/10.5194/acp-6-5225-2006, 2006. a
Schutgens, N., Tsyro, S., Gryspeerdt, E., Goto, D., Weigum, N., Schulz, M.,
and Stier, P.: On the spatio-temporal representativeness of observations,
Atmos. Chem. Phys., 17, 9761–9780, https://doi.org/10.5194/acp-17-9761-2017,
2017. a
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather,
K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, Proc. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016. a, b
Sexton, D. M. H., Karmalkar, A., Murphy, J., and Booth, B. B. B.: The
elicitation of distributions of parameters in HadGEM3 versions GA4 and
GA7 for use in perturbed parameter ensembles, Hadley Centre technical
note 101, Met Office, UK, 2018. a
Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin,
M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G.,
Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S.,
Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik,
V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T.,
Voulgarakis, A., Yoon, J.-H., and Lo, F.: Radiative forcing in the ACCMIP
historical and future climate simulations, Atmos. Chem. Phys., 13,
2939–2974, https://doi.org/10.5194/acp-13-2939-2013, 2013. a, b, c, d, e
Shiogama, H., Watanabe, M., Yoshimori, M., Yokohata, T., Ogura, T., Annan,
J. D., Hargreaves, J. C., Abe, M., Kamae, Y., O'ishi, R., Nobui, R., Emori,
S., Nozawa, T., Abe-Ouchi, A., and Kimoto, M.: Perturbed physics ensemble
using the MIROC5 coupled atmosphere-ocean GCM without flux corrections:
experimental design and results, Clim. Dynam., 39, 3041–3056,
https://doi.org/10.1007/s00382-012-1441-x, 2012. a, b
Shrivastava, M., Zhao, C., Easter, R. C., Qian, Y., Zelenyuk, A., Fast, J. D.,
Liu, Y., Zhang, Q., and Guenther, A.: Sensitivity analysis of simulated SOA
loadings using a variance-based statistical approach, J. Adv. Model. Earth Sy., 8, 499–519, https://doi.org/10.1002/2015MS000554, 2016. a
Smith, S. J., van Aardenne, J., Klimont, Z., Andres, R. J., Volke, A., and
Delgado Arias, S.: Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos.
Chem. Phys., 11, 1101-1116, https://doi.org/10.5194/acp-11-1101-2011, 2011. a
Snedecor, G. W. and Cochran, W. G.: Statistical methods, Iowa State
University Press, 8th edn., Ames, Iowa, 1989. a
Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and
Mann, G. W.: A global off-line model of size-resolved aerosol microphysics:
I. Model development and prediction of aerosol properties, Atmos. Chem.
Phys., 5, 2227–2252, https://doi.org/10.5194/acp-5-2227-2005, 2005. a
Spracklen, D. V., Carslaw, K. S., Merikanto, J., Mann, G. W., Reddington, C.
L., Pickering, S., Ogren, J. A., Andrews, E., Baltensperger, U., Weingartner,
E., Boy, M., Kulmala, M., Laakso, L., Lihavainen, H., Kivekäs, N.,
Komppula, M., Mihalopoulos, N., Kouvarakis, G., Jennings, S. G., O'Dowd, C.,
Birmili, W., Wiedensohler, A., Weller, R., Gras, J., Laj, P., Sellegri, K.,
Bonn, B., Krejci, R., Laaksonen, A., Hamed, A., Minikin, A., Harrison, R. M.,
Talbot, R., and Sun, J.: Explaining global surface aerosol number
concentrations in terms of primary emissions and particle formation, Atmos.
Chem. Phys., 10, 4775–4793, https://doi.org/10.5194/acp-10-4775-2010, 2010. a
Spracklen, D. V., Carslaw, K. S., Pöschl, U., Rap, A., and Forster, P.
M.: Global cloud condensation nuclei influenced by carbonaceous combustion
aerosol, Atmos. Chem. Phys., 11, 9067–9087,
https://doi.org/10.5194/acp-11-9067-2011, 2011a. a
Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M.
J., Mann, G. W., Zhang, Q., Canagaratna, M. R., Allan, J., Coe, H.,
McFiggans, G., Rap, A., and Forster, P.: Aerosol mass spectrometer constraint
on the global secondary organic aerosol budget, Atmos. Chem. Phys., 11,
12109-12136, https://doi.org/10.5194/acp-11-12109-2011, 2011b. a
Stevens, B.: Rethinking the Lower Bound on Aerosol Radiative Forcing, J.
Climate, 28, 4794–4819, https://doi.org/10.1175/JCLI-D-14-00656.1, 2015. a
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and
precipitation in a buffered system, Nature, 461, 607–613, 2009. a
Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O., Chin,
M., Ghan, S., Huneeus, N., Kinne, S., Lin, G., Ma, X., Myhre, G., Penner, J.
E., Randles, C. A., Samset, B., Schulz, M., Takemura, T., Yu, F., Yu, H., and
Zhou, C.: Host model uncertainties in aerosol radiative forcing estimates:
results from the AeroCom Prescribed intercomparison study, Atmos. Chem.
Phys., 13, 3245–3270, https://doi.org/10.5194/acp-13-3245-2013, 2013. a, b
Storelvmo, T., Lohmann, U., and Bennartz, R.: What governs the spread in
shortwave forcings in the transient IPCC AR4 models?, Geophys. Res. Lett., 36, L01806, https://doi.org/10.1029/2008GL036069,
2009. a
Sullivan, S. C., Lee, D., Oreopoulos, L., and Nenes, A.: Role of updraft
velocity in temporal variability of global cloud hydrometeor number, Proc. Natl. Acad. Sci. USA, 113, 5791–5796, https://doi.org/10.1073/pnas.1514039113,
2016. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b
Telford, P. J., Braesicke, P., Morgenstern, O., and Pyle, J. A.: Technical
Note: Description and assessment of a nudged version of the new dynamics
Unified Model, Atmos. Chem. Phys., 8, 1701–1712,
https://doi.org/10.5194/acp-8-1701-2008, 2008. a
Tett, S. F. B., Rowlands, D. J., Mineter, M. J., and Cartis, C.: Can
Top-Of-Atmosphere Radiation Measurements Constrain Climate Predictions? Part
II: Climate Sensitivity, J. Climate, 26, 9367–9383,
https://doi.org/10.1175/JCLI-D-12-00596.1, 2013. a, b, c
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S.,
Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T.,
Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S.,
Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I.,
Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M.,
Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J.,
Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.:
Analysis and quantification of the diversities of aerosol life cycles within
AeroCom, Atmos. Chem. Phys., 6, 1777–1813,
https://doi.org/10.5194/acp-6-1777-2006, 2006. a
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S.,
Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T.,
Feichter, J., Fillmore, D., Ginoux, P., Gong, S., Grini, A., Hendricks, J.,
Horowitz, L., Huang, P., Isaksen, I. S. A., Iversen, T., Kloster, S., Koch,
D., Kirkevåg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J.
F., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, M.
S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.: The effect of
harmonized emissions on aerosol properties in global models – an AeroCom
experiment, Atmos. Chem. Phys., 7, 4489–4501,
https://doi.org/10.5194/acp-7-4489-2007, 2007. a
Toll, V., Christensen, M., Gassó, S., and Bellouin, N.: Volcano and ship
tracks indicate excessive aerosol-induced cloud water increases in a climate
model, Geophys. Res. Lett., 44, 12492–12500,
https://doi.org/10.1002/2017GL075280, 2017. a, b, c, d
Tost, H., Lawrence, M. G., Brühl, C., Jöckel, P., The GABRIEL Team,
and The SCOUT-O3-DARWIN/ACTIVE Team: Uncertainties in atmospheric chemistry
modelling due to convection parameterisations and subsequent scavenging,
Atmos. Chem. Phys., 10, 1931–1951, https://doi.org/10.5194/acp-10-1931-2010,
2010. a
Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P.,
Bahadur, R., Balkanski, Y., Bauer, S. E., Bellouin, N., Benedetti, A.,
Bergman, T., Berntsen, T. K., Beukes, J. P., Bian, H., Carslaw, K. S., Chin,
M., Curci, G., Diehl, T., Easter, R. C., Ghan, S. J., Gong, S. L., Hodzic,
A., Hoyle, C. R., Iversen, T., Jathar, S., Jimenez, J. L., Kaiser, J. W.,
Kirkevåg, A., Koch, D., Kokkola, H., Lee, Y. H., Lin, G., Liu, X., Luo,
G., Ma, X., Mann, G. W., Mihalopoulos, N., Morcrette, J.-J., Müller,
J.-F., Myhre, G., Myriokefalitakis, S., Ng, N. L., O'Donnell, D., Penner, J.
E., Pozzoli, L., Pringle, K. J., Russell, L. M., Schulz, M., Sciare, J.,
Seland, Ø., Shindell, D. T., Sillman, S., Skeie, R. B., Spracklen, D.,
Stavrakou, T., Steenrod, S. D., Takemura, T., Tiitta, P., Tilmes, S., Tost,
H., van Noije, T., van Zyl, P. G., von Salzen, K., Yu, F., Wang, Z., Wang,
Z., Zaveri, R. A., Zhang, H., Zhang, K., Zhang, Q., and Zhang, X.: The
AeroCom evaluation and intercomparison of organic aerosol in global models,
Atmos. Chem. Phys., 14, 10845–10895,
https://doi.org/10.5194/acp-14-10845-2014, 2014. a
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707-11735, https://doi.org/10.5194/acp-10-11707-2010, 2010. a
Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C.,
Noppel, M., and Laaksonen, A.: An improved parameterization for sulfuric
acid-water nucleation rates for tropospheric and stratospheric conditions,
J. Geophys. Res., 107, D22, https://doi.org/10.1029/2002JD002184, 2002. a
Vergara-Temprado, J., Murray, B. J., Wilson, T. W., O'Sullivan, D., Browse,
J., Pringle, K. J., Ardon-Dryer, K., Bertram, A. K., Burrows, S. M.,
Ceburnis, D., DeMott, P. J., Mason, R. H., O'Dowd, C. D., Rinaldi, M., and
Carslaw, K. S.: Contribution of feldspar and marine organic aerosols to
global ice nucleating particle concentrations, Atmos. Chem. Phys., 17,
3637–3658, https://doi.org/10.5194/acp-17-3637-2017, 2017.
a
Villarini, G. and Vecchi, G. A.: Projected increases in North Atlantic
tropical cyclone intensity from CMIP5 models, J. Climate, 26, 3231–3240,
https://doi.org/10.1175/JCLI-D-12-00441.1, 2013. a, b
Welch, B. L.: The generalization of “Student's” problem when several
different population variances are involved, Biometrika, 34, 28–35,
https://doi.org/10.1093/biomet/34.1-2.28, 1947. a
West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin,
N., Partridge, D. G., and Kipling, Z.: The importance of vertical velocity
variability for estimates of the indirect aerosol effects, Atmos. Chem.
Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, 2014. a
Wilcox, L. J., Highwood, E. J., Booth, B. B. B., and Carslaw, K. S.:
Quantifying sources of inter-model diversity in the cloud albedo effect,
Geophys. Res. Lett., 42, 1568–1575, https://doi.org/10.1002/2015GL063301, 2015. a, b
Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson,
L., and Yamazaki, K.: History matching for exploring and reducing climate
model parameter space using observations and a large perturbed physics
ensemble, Clim. Dynam., 41, 1703–1729, https://doi.org/10.1007/s00382-013-1896-4,
2013. a
Yoshioka, M., Regayre, L. A., Pringle, K. J., Johnson, J. S., Mann, G. W.,
Partridge, D., Stier, P., Kipling, Z., Bellouin, N., Sexton, D. M. H.,
Lister, G. M. S., Browse, J., Booth, B. B. B., Johnson, C. E., Johnson, B.,
Mollard, J. D. P., and Carslaw, K. S.: Ensembles of global climate model
variants for the quantification and constraint of uncertainty in aerosols and
their radiative forcing, J. Adv. Model. Earth Sy., in prep., 2018. a, b, c, d, e
Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer,
D., Lohmann, U., Ferrachat, S., Takeamura, T., Gettelman, A., Morrison, H.,
Lee, Y., Shindell, D. T., Partridge, D. G., Stier, P., Kipling, Z., and Fu,
C.: On the characteristics of aerosol indirect effect based on dynamic
regimes in global climate models, Atmos. Chem. Phys., 16, 2765–2783,
https://doi.org/10.5194/acp-16-2765-2016, 2016. a
Zhao, C., Liu, X., Qian, Y., Yoon, J., Hou, Z., Lin, G., McFarlane, S., Wang,
H., Yang, B., Ma, P.-L., Yan, H., and Bao, J.: A sensitivity study of
radiative fluxes at the top of atmosphere to cloud-microphysics and aerosol
parameters in the community atmosphere model CAM5, Atmos. Chem. Phys., 13,
10969–10987, https://doi.org/10.5194/acp-13-10969-2013, 2013. a
Short summary
We sample uncertainty in one climate model by perturbing aerosol and physical atmosphere parameters. Our uncertainty is comparable to multi-model studies. Atmospheric parameters cause most of the top-of-atmosphere flux uncertainty; uncertainty in aerosol forcing is mostly caused by aerosols: both are important. The strongest aerosol forcings are inconsistent with top-of-atmosphere flux observations. Better constraint requires observations that share causes of uncertainty with aerosol forcing.
We sample uncertainty in one climate model by perturbing aerosol and physical atmosphere...
Altmetrics
Final-revised paper
Preprint