Articles | Volume 17, issue 1
https://doi.org/10.5194/acp-17-277-2017
https://doi.org/10.5194/acp-17-277-2017
Research article
 | 
05 Jan 2017
Research article |  | 05 Jan 2017

Evaluating the representation of aerosol optical properties using an online coupled model over the Iberian Peninsula

Laura Palacios-Peña, Rocío Baró, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Dominik Brunner, and Pedro Jiménez-Guerrero

Related authors

Reducing future air-pollution-related premature mortality over Europe by mitigating emissions from the energy sector: assessing an 80 % renewable energies scenario
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022,https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Impact of large wildfires on PM10 levels and human mortality in Portugal
Patricia Tarín-Carrasco, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Pedro Jiménez-Guerrero
Nat. Hazards Earth Syst. Sci., 21, 2867–2880, https://doi.org/10.5194/nhess-21-2867-2021,https://doi.org/10.5194/nhess-21-2867-2021, 2021
Short summary
Sensitivity of surface solar radiation to aerosol–radiation and aerosol–cloud interactions over Europe in WRFv3.6.1 climatic runs with fully interactive aerosols
Sonia Jerez, Laura Palacios-Peña, Claudia Gutiérrez, Pedro Jiménez-Guerrero, Jose María López-Romero, Enrique Pravia-Sarabia, and Juan Pedro Montávez
Geosci. Model Dev., 14, 1533–1551, https://doi.org/10.5194/gmd-14-1533-2021,https://doi.org/10.5194/gmd-14-1533-2021, 2021
Short summary
Precipitation response to aerosol–radiation and aerosol–cloud interactions in regional climate simulations over Europe
José María López-Romero, Juan Pedro Montávez, Sonia Jerez, Raquel Lorente-Plazas, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 21, 415–430, https://doi.org/10.5194/acp-21-415-2021,https://doi.org/10.5194/acp-21-415-2021, 2021
Short summary
Sensitivity of aerosol optical properties to the aerosol size distribution over central Europe and the Mediterranean Basin using the WRF-Chem v.3.9.1.1 coupled model
Laura Palacios-Peña, Jerome D. Fast, Enrique Pravia-Sarabia, and Pedro Jiménez-Guerrero
Geosci. Model Dev., 13, 5897–5915, https://doi.org/10.5194/gmd-13-5897-2020,https://doi.org/10.5194/gmd-13-5897-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024,https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024,https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024,https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe: Development and first applications, Atmos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-2310(98)00006-5, 1998.
Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J. L., Navas-Guzmán, F., Pérez-Ramírez, D., and Olmo, F. J.: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star- and Sun-photometry, Geophys. Res. Lett., 38, L01807, https://doi.org/10.1029/2010GL045999, 2010.
Albrecht, B.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Andreae, M. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Antón, M., Valenzuela, A., Cazorla, A., Gil, J. E., Fernández-Gálvez, J., Lyamani, H., Foyo-Moreno, I., Olmo, F. J., and Alados-Arboledas, L: Global and diffuse shortwave irradiance during a strong desert dust episode at Granada (Spain), Atmos. Res., 118, 232–239, 2012.
Download
Short summary
The effects of atmospheric aerosols over the Earth’s climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget, the main source of uncertainty in climate change. In this work we have studied the representation of aerosol optical properties using an online coupled model (WRF-Chem) when aerosol–radiation interactions (ARIs) and aerosol–clouds interactions (ACIs) are taken into account over the Iberian Peninsula.
Altmetrics
Final-revised paper
Preprint