Articles | Volume 16, issue 17
Atmos. Chem. Phys., 16, 10941–10963, 2016
https://doi.org/10.5194/acp-16-10941-2016
Atmos. Chem. Phys., 16, 10941–10963, 2016
https://doi.org/10.5194/acp-16-10941-2016

Research article 06 Sep 2016

Research article | 06 Sep 2016

Inverse modelling of Köhler theory – Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

Samuel Lowe et al.

Related authors

Model calibration using ESEm v1.0.0 – an open, scalable Earth System Emulator
Duncan Watson-Parris, Andrew Williams, Lucia Deaconu, and Philip Stier
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-267,https://doi.org/10.5194/gmd-2021-267, 2021
Preprint under review for GMD
Short summary
Opportunistic Experiments to Constrain Aerosol Effective Radiative Forcing
Matthew Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel McCoy, Daniel McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-559,https://doi.org/10.5194/acp-2021-559, 2021
Preprint under review for ACP
Short summary
On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations
Shipeng Zhang, Philip Stier, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 10179–10197, https://doi.org/10.5194/acp-21-10179-2021,https://doi.org/10.5194/acp-21-10179-2021, 2021
Short summary
AEROCOM and AEROSAT AAOD and SSA study – Part 1: Evaluation and intercomparison of satellite measurements
Nick Schutgens, Oleg Dubovik, Otto Hasekamp, Omar Torres, Hiren Jethva, Peter J. T. Leonard, Pavel Litvinov, Jens Redemann, Yohei Shinozuka, Gerrit de Leeuw, Stefan Kinne, Thomas Popp, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 21, 6895–6917, https://doi.org/10.5194/acp-21-6895-2021,https://doi.org/10.5194/acp-21-6895-2021, 2021
Short summary
JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model
Langwen Huang and David Topping
Geosci. Model Dev., 14, 2187–2203, https://doi.org/10.5194/gmd-14-2187-2021,https://doi.org/10.5194/gmd-14-2187-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A comprehensive observation-based multiphase chemical model analysis of sulfur dioxide oxidations in both summer and winter
Huan Song, Keding Lu, Can Ye, Huabin Dong, Shule Li, Shiyi Chen, Zhijun Wu, Mei Zheng, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 13713–13727, https://doi.org/10.5194/acp-21-13713-2021,https://doi.org/10.5194/acp-21-13713-2021, 2021
Short summary
Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021,https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Development of a new emission reallocation method for industrial sources in China
Yun Fat Lam, Chi Chiu Cheung, Xuguo Zhang, Joshua S. Fu, and Jimmy Chi Hung Fung
Atmos. Chem. Phys., 21, 12895–12908, https://doi.org/10.5194/acp-21-12895-2021,https://doi.org/10.5194/acp-21-12895-2021, 2021
Short summary
Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region
Camilla Geels, Morten Winther, Camilla Andersson, Jukka-Pekka Jalkanen, Jørgen Brandt, Lise M. Frohn, Ulas Im, Wing Leung, and Jesper H. Christensen
Atmos. Chem. Phys., 21, 12495–12519, https://doi.org/10.5194/acp-21-12495-2021,https://doi.org/10.5194/acp-21-12495-2021, 2021
Short summary
A predictive model for salt nanoparticle formation using heterodimer stability calculations
Sabrina Chee, Kelley Barsanti, James N. Smith, and Nanna Myllys
Atmos. Chem. Phys., 21, 11637–11654, https://doi.org/10.5194/acp-21-11637-2021,https://doi.org/10.5194/acp-21-11637-2021, 2021
Short summary

Cited articles

Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C.: A parameterization of aerosol activation: 1. Single aerosol type, J. Geophys. Res., 103, 6123–6131, 1998.
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
Baduel, C., Nozière, B., and Jaffrezo, J.-L.: Summer/winter variability of the surfactants in aerosols from Grenoble, France, Atmos. Environ., 47, 413–420, https://doi.org/10.1016/j.atmosenv.2011.10.040, 2012.
Bigg, E.: Discrepancy between observation and prediction of concentrations of cloud condensation nuclei, Atmos. Res., 20, 81–86, 1986.
Birmili, W., Wiedensohler, A., Heintzenberg, J., and Lehmann, K.: Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology, J. Geophys. Res., 106, 32005–32018, 2001.
Download
Short summary
A novel inverse modelling framework is developed for analysing the sensitivity of cloud condensation nuclei (CCN) concentrations to simultaneous perturbations in multiple model parameters at atmospherically relevant humidities. Many parameter interactions are identified and CCN concentrations are found to be relatively insensitive to bulk–surface partitioning, while aerosol concentration, surface tension, composition and solution ideality exhibit a higher degree of sensitivity.
Altmetrics
Final-revised paper
Preprint