Articles | Volume 15, issue 6
Atmos. Chem. Phys., 15, 3241–3255, 2015
https://doi.org/10.5194/acp-15-3241-2015
Atmos. Chem. Phys., 15, 3241–3255, 2015
https://doi.org/10.5194/acp-15-3241-2015
Research article
23 Mar 2015
Research article | 23 Mar 2015

Spaceborne observations of the lidar ratio of marine aerosols

K. W. Dawson et al.

Related authors

Influence of measurement uncertainties on soluble aerosol iron over the oceans
N. Meskhidze, M. S. Johnson, D. Hurley, and K. Dawson
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-14377-2015,https://doi.org/10.5194/bgd-12-14377-2015, 2015
Revised manuscript not accepted

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Simultaneous retrievals of biomass burning aerosols and trace gases from the ultraviolet to near-infrared over northern Thailand during the 2019 pre-monsoon season
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022,https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
A decadal assessment of the climatology of aerosol and cloud properties over South Africa
Abdulaziz Tunde Yakubu and Naven Chetty
Atmos. Chem. Phys., 22, 11065–11087, https://doi.org/10.5194/acp-22-11065-2022,https://doi.org/10.5194/acp-22-11065-2022, 2022
Short summary
Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022,https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Long-range transport of Asian dust to the Arctic: identification of transport pathways, evolution of aerosol optical properties, and impact assessment on surface albedo changes
Xiaoxi Zhao, Kan Huang, Joshua S. Fu, and Sabur F. Abdullaev
Atmos. Chem. Phys., 22, 10389–10407, https://doi.org/10.5194/acp-22-10389-2022,https://doi.org/10.5194/acp-22-10389-2022, 2022
Short summary
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022,https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary

Cited articles

Ackermann, J.: The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study, J. Atmos. Ocean. Technol., 15, 1043–1050, https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2, 1998.
Amiridis, V., Balis, D. S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M. E. and Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements, Atmos. Chem. and Phys., 9, 2431–2440, https://doi.org/10.5194/acp-9-2431-2009, 2009.
Andreae, M. O.: Aerosols before Pollution, Science, 315, 50–51, 10.2307/20035138, 2007.
Anguelova, M., Barber Jr, R. P., and Wu, J.: Spume drops produced by the wind tearing of wave crests, J. Phys. Oceanogr., 29, 1156–1165, https://doi.org/10.1175/1520-0485(1999)029<1156:SDPBTW>2.0.CO;2, 1999.
Ansmann, A., Riebesell, M., and Weitkamp, C.: Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Lett., 15, 746–748, https://doi.org/10.1364/OL.15.000746, 1990.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Altmetrics
Final-revised paper
Preprint