Articles | Volume 15, issue 6
https://doi.org/10.5194/acp-15-3241-2015
https://doi.org/10.5194/acp-15-3241-2015
Research article
 | 
23 Mar 2015
Research article |  | 23 Mar 2015

Spaceborne observations of the lidar ratio of marine aerosols

K. W. Dawson, N. Meskhidze, D. Josset, and S. Gassó

Related authors

Influence of measurement uncertainties on soluble aerosol iron over the oceans
N. Meskhidze, M. S. Johnson, D. Hurley, and K. Dawson
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-14377-2015,https://doi.org/10.5194/bgd-12-14377-2015, 2015
Revised manuscript not accepted

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over the Indo-Gangetic Plain
Nabia Gulistan, Khan Alam, and Yangang Liu
Atmos. Chem. Phys., 24, 11333–11349, https://doi.org/10.5194/acp-24-11333-2024,https://doi.org/10.5194/acp-24-11333-2024, 2024
Short summary
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and central Africa
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024,https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
The emission, transport, and impacts of the extreme Saharan dust storm of 2015
Brian Harr, Bing Pu, and Qinjian Jin
Atmos. Chem. Phys., 24, 8625–8651, https://doi.org/10.5194/acp-24-8625-2024,https://doi.org/10.5194/acp-24-8625-2024, 2024
Short summary
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024,https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Remote Sensing detectability of airborne Arctic dust
Norman T. O’Neill, Keyvan Ranjbar, Liviu Ivănescu, Yann Blanchard, Seyed Ali Sayedain, and Yasmin AboEl-Fetouh
EGUsphere, https://doi.org/10.5194/egusphere-2024-1057,https://doi.org/10.5194/egusphere-2024-1057, 2024
Short summary

Cited articles

Ackermann, J.: The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study, J. Atmos. Ocean. Technol., 15, 1043–1050, https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2, 1998.
Amiridis, V., Balis, D. S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M. E. and Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements, Atmos. Chem. and Phys., 9, 2431–2440, https://doi.org/10.5194/acp-9-2431-2009, 2009.
Andreae, M. O.: Aerosols before Pollution, Science, 315, 50–51, 10.2307/20035138, 2007.
Anguelova, M., Barber Jr, R. P., and Wu, J.: Spume drops produced by the wind tearing of wave crests, J. Phys. Oceanogr., 29, 1156–1165, https://doi.org/10.1175/1520-0485(1999)029<1156:SDPBTW>2.0.CO;2, 1999.
Ansmann, A., Riebesell, M., and Weitkamp, C.: Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Lett., 15, 746–748, https://doi.org/10.1364/OL.15.000746, 1990.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Altmetrics
Final-revised paper
Preprint