Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
Volume 13, issue 8
Atmos. Chem. Phys., 13, 3979–3996, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 13, 3979–3996, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review article 18 Apr 2013

Review article | 18 Apr 2013

The physical and chemical characteristics of marine primary organic aerosol: a review

B. Gantt and N. Meskhidze B. Gantt and N. Meskhidze
  • Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA

Abstract. Knowledge of the physical characteristics and chemical composition of marine organic aerosols is needed for the quantification of their effects on solar radiation transfer and cloud processes. This review examines research pertinent to the chemical composition, size distribution, mixing state, emission mechanism, photochemical oxidation and climatic impact of marine primary organic aerosol (POA) associated with sea-spray. Numerous measurements have shown that both the ambient mass concentration of marine POA and size-resolved organic mass fraction of sea-spray aerosol are related to surface ocean biological activity. Recent studies have also indicated that fine mode (smaller than 200 nm in diameter) marine POA can have a size distribution independent from sea-salt, while coarse mode aerosols (larger than 1000 nm in diameter) are more likely to be internally mixed with sea-salt. Modelling studies have estimated global submicron marine POA emission rates of ~10 ± 5 Tg yr−1, with a considerable fraction of these emissions occurring over regions most susceptible to aerosol perturbations. Climate studies have found that marine POA can cause large local increases in the cloud condensation nuclei concentration and have a non-negligible influence on model assessments of the anthropogenic aerosol forcing of climate. Despite these signs of climate-relevance, the source strength, chemical composition, mixing state, hygroscopicity, cloud droplet activation potential, atmospheric aging and removal of marine POA remain poorly quantified. Additional laboratory, field, and modelling studies focused on the chemistry, size distribution and mixing state of marine POA are needed to better understand and quantify their importance.

Publications Copernicus
Final-revised paper