Articles | Volume 24, issue 18
https://doi.org/10.5194/acp-24-10601-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-10601-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling of atmospheric concentrations of fungal spores: a 2-year simulation over France using CHIMERE
Matthieu Vida
Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, France
Gilles Foret
CORRESPONDING AUTHOR
Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France
Guillaume Siour
Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France
Florian Couvidat
Institut National de l'Environnement Industriel et des Risques, INERIS, 60550 Verneuil-en-Halatte, France
Olivier Favez
Institut National de l'Environnement Industriel et des Risques, INERIS, 60550 Verneuil-en-Halatte, France
Laboratoire Central de Surveillance de la Qualité de l'air, LCSQA, 60550 Verneuil-en-Halatte, France
Institut des Géosciences de l'Environnement, IGE, UGA, CNRS, IRD, G-INP, INRAE, 38000 Grenoble, France
Arineh Cholakian
Laboratoire de Météorologie Dynamique (LMD), Ecole Polytechnique, IPSL Research University, Ecole Normale Supérieure, Université Paris-Saclay, Sorbonne Universités, UPMC Université Paris 06, CNRS, Route de Saclay, 91128 Palaiseau, France
Sébastien Conil
ANDRA DISTEC/EES Observatoire Pérenne de l'Environnement, 55290 Bure, France
Matthias Beekmann
Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, 75013 Paris, France
Jean-Luc Jaffrezo
Institut des Géosciences de l'Environnement, IGE, UGA, CNRS, IRD, G-INP, INRAE, 38000 Grenoble, France
Related authors
No articles found.
Augustin Colette, Gaëlle Collin, François Besson, Etienne Blot, Vincent Guidard, Frederik Meleux, Adrien Royer, Valentin Petiot, Claire Miller, Oihana Fermond, Alizé Jeant, Mario Adani, Joaquim Arteta, Anna Benedictow, Robert Bergström, Dene Bowdalo, Jorgen Brandt, Gino Briganti, Ana C. Carvalho, Jesper Heile Christensen, Florian Couvidat, Ilia D’Elia, Massimo D’Isidoro, Hugo Denier van der Gon, Gaël Descombes, Enza Di Tomaso, John Douros, Jeronimo Escribano, Henk Eskes, Hilde Fagerli, Yalda Fatahi, Johannes Flemming, Elmar Friese, Lise Frohn, Michael Gauss, Camilla Geels, Guido Guarnieri, Marc Guevara, Antoine Guion, Jonathan Guth, Risto Hänninen, Kaj Hansen, Ulas Im, Ruud Janssen, Marine Jeoffrion, Mathieu Joly, Luke Jones, Oriol Jorba, Evgeni Kadantsev, Michael Kahnert, Jacek W. Kaminski, Rostislav Kouznetsov, Richard Kranenburg, Jeroen Kuenen, Anne Caroline Lange, Joachim Langner, Victor Lannuque, Francesca Macchia, Astrid Manders, Mihaela Mircea, Agnes Nyiri, Miriam Olid, Carlos Pérez García-Pando, Yuliia Palamarchuk, Antonio Piersanti, Blandine Raux, Miha Razinger, Lennard Robertson, Arjo Segers, Martijn Schaap, Pilvi Siljamo, David Simpson, Mikhail Sofiev, Anders Stangel, Joanna Struzewska, Carles Tena, Renske Timmermans, Thanos Tsikerdekis, Svetlana Tsyro, Svyatoslav Tyuryakov, Anthony Ung, Andreas Uppstu, Alvaro Valdebenito, Peter van Velthoven, Lina Vitali, Zhuyun Ye, Vincent-Henri Peuch, and Laurence Rouïl
EGUsphere, https://doi.org/10.5194/egusphere-2024-3744, https://doi.org/10.5194/egusphere-2024-3744, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service – Regional Production delivers daily forecasts, analyses, and reanalyses of air quality in Europe. The Service relies on a distributed modelling production by eleven leading European modelling teams following stringent requirements with an operational design which has no equivalent in the world. All the products are full, free, open and quality assured and disseminated with a high level of reliability.
Audrey Fortems-Cheiney, Grégoire Broquet, Robin Plauchu, Elise Potier, Antoine Berchet, Isabelle Pison, Adrien Martinez, Rimal Abeed, Gaelle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, Henk Eskes, Hugo A. C. Denier van der Gon, and Stijn N. C. Dellaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-3679, https://doi.org/10.5194/egusphere-2024-3679, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study assesses the potential of the OMI and TROPOMI satellite observations to inform about the evolution of NOx anthropogenic emissions between year 2005 and year 2019 at the regional to national scales in Europe. Both the OMI and TROPOMI inversions show decreases in European NOx anthropogenic emission budgets between 2005 and 2019, but with different magnitudes.
Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2776, https://doi.org/10.5194/egusphere-2024-2776, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We developed a new method to reconstruct missing elemental carbon (EC) data in four Chinese cities from 2013 to 2023. Using machine learning, we accurately filled data gaps and introduced a new approach to analyze EC trends. Our findings reveal a significant decline in EC due to stricter pollution controls, though this slowed after 2020. This study provides a versatile framework for addressing data gaps and supports strategies to reduce urban air pollution and its climate impacts.
Hasna Chebaicheb, Joel F. de Brito, Tanguy Amodeo, Florian Couvidat, Jean-Eudes Petit, Emmanuel Tison, Gregory Abbou, Alexia Baudic, Mélodie Chatain, Benjamin Chazeau, Nicolas Marchand, Raphaële Falhun, Florie Francony, Cyril Ratier, Didier Grenier, Romain Vidaud, Shouwen Zhang, Gregory Gille, Laurent Meunier, Caroline Marchand, Véronique Riffault, and Olivier Favez
Earth Syst. Sci. Data, 16, 5089–5109, https://doi.org/10.5194/essd-16-5089-2024, https://doi.org/10.5194/essd-16-5089-2024, 2024
Short summary
Short summary
Long-term (2015–2021) quasi-continuous measurements have been obtained at 13 French urban sites using online mass spectrometry, to acquire the comprehensive chemical composition of submicron particulate matter. The results show their spatial and temporal differences and confirm the predominance of organics in France (40–60 %). These measurements can be used for many future studies, such as trend and epidemiological analyses, or comparisons with chemical transport models.
Sanhita Ghosh, Arineh Cholakian, Sylvain Mailler, and Laurent Menut
EGUsphere, https://doi.org/10.5194/egusphere-2024-3087, https://doi.org/10.5194/egusphere-2024-3087, 2024
Short summary
Short summary
In the study, we estimate the emissions of nitrogen oxides from lightning (LNOx) over the northern hemisphere and study its impact on tropospheric ozone (O3). We evaluate the present state of modelling the lightning, using a classical parametrization scheme and the model CHIMERE. The comparison of the simulated O3 to measurements shows that the inclusion of LNOx emissions remarkably improves the tropospheric O3 distribution, reducing the bias significantly, particularly in the free troposphere.
Sijia Lou, Manish Shrivastava, Alexandre Albinet, Sophie Tomaz, Deepchandra Srivastava, Olivier Favez, Huizhong Shen, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-3269, https://doi.org/10.5194/egusphere-2024-3269, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
PAHs, emitted from incomplete combustion, pose serious health risks due to their carcinogenic properties. This research demonstrates that viscous organic aerosol coatings significantly hinder PAH oxidation, with spatial distributions sensitive to the degradation modelling approach. Our findings underscore the importance of accurately modelling these processes for risk assessments, highlighting the need to consider both fresh and oxidized PAHs in evaluating human exposure and health risks.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Antoine Guion, Florian Couvidat, Marc Guevara, and Augustin Colette
EGUsphere, https://doi.org/10.5194/egusphere-2024-2911, https://doi.org/10.5194/egusphere-2024-2911, 2024
Short summary
Short summary
The residential sector can cause high background levels of pollutants and pollution peaks in winter. Its emissions are dominated by space heating and show strong daily variations linked to changes in outside temperature. Using Heating Degree Days, we provide country- and species-dependent parameters for the distribution of these emissions, improving the performance of the CHIMERE air quality model. This approach also allows to project annual residential emissions before official publications.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-3015, https://doi.org/10.5194/egusphere-2024-3015, 2024
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analysis of samples collected during ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in the summer 2022 in the Paris greater area. After analysis of the chemical composition by means of total carbon determination and high resolution mass spectrometry, this work highlights the influence of anthropogenic inputs into the chemical composition of both urban and forested areas.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Soo-Jin Park, Lya Lugon, Oscar Jacquot, Youngseob Kim, Alexia Baudic, Barbara D’Anna, Ludovico Di Antonio, Claudia Di Biagio, Fabrice Dugay, Olivier Favez, Véronique Ghersi, Aline Gratien, Julien Kammer, Jean-Eudes Petit, Olivier Sanchez, Myrto Valari, Jérémy Vigneron, and Karine Sartelet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2120, https://doi.org/10.5194/egusphere-2024-2120, 2024
Short summary
Short summary
To accurately represent the population exposure to outdoor concentrations of pollutants of health interest (NO2, black carbon, PM2.5, ultrafine particles), multi-scale modelling down to the street scale is setup and evaluated using measurements from field campaigns. An exposure scaling factor is defined, allowing to correct regional-scale simulations to evaluate population exposure. Urban heterogeneities strongly influence NO2, black carbon and ultrafine particles, but less PM2.5.
Ludovico Di Antonio, Matthias Beekmann, Guillaume Siour, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Joel F. de Brito, Paola Formenti, Cecile Gaimoz, Olivier Garret, Aline Gratien, Valérie Gros, Martial Haeffelin, Lelia N. Hawkins, Simone Kotthaus, Gael Noyalet, Diana Pereira, Jean-Eudes Petit, Eva Drew Pronovost, Véronique Riffault, Chenjie Yu, Gilles Foret, Jean-François Doussin, and Claudia Di Biagio
EGUsphere, https://doi.org/10.5194/egusphere-2024-2175, https://doi.org/10.5194/egusphere-2024-2175, 2024
Short summary
Short summary
Summer 2022 has been considered a proxy for future climate scenarios, given the registered hot and dry conditions. In this paper, we used the measurements from the ACROSS campaign, occurred over the Paris area in June–July 2022, in addition to observations from existing networks, to evaluate the WRF–CHIMERE model simulation over France and the Ile-de-France regions. Results over the Ile–de–France show to be satisfactory, allowing to explain the gas and aerosol variability at the ACROSS sites.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurelien Chauvigné, Sebastien Conil, Marco Pandolfi, and Oriol Jorba
EGUsphere, https://doi.org/10.5194/egusphere-2024-2086, https://doi.org/10.5194/egusphere-2024-2086, 2024
Short summary
Short summary
Brown carbon (BrC) absorbs UV and visible light, affecting climate. Our study investigates BrC's imaginary refractive index (k ) using data from 12 European sites. Residential emissions are a major OA source in winter, while secondary organic aerosols (SOA) dominate in summer. We derived source-specific k values, enhancing model accuracy. This research improves understanding of BrC's climate role, emphasizing the need for source-specific constraints in atmospheric models.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Fabian Maier, Ingeborg Levin, Sébastien Conil, Maksym Gachkivskyi, Hugo Denier van der Gon, and Samuel Hammer
Atmos. Chem. Phys., 24, 8205–8223, https://doi.org/10.5194/acp-24-8205-2024, https://doi.org/10.5194/acp-24-8205-2024, 2024
Short summary
Short summary
We assess the uncertainty in continuous fossil fuel carbon dioxide (ffCO2) estimates derived from carbon monoxide (CO) observations and radiocarbon (14CO2) flask measurements from an urban and a rural site. This study provides the basis for using continuous CO-based ffCO2 observations in atmospheric transport inversion frameworks to derive ffCO2 emission estimates. We also compare the flask-based CO / ffCO2 ratios with modeled ratios to validate an emission inventory for central Europe.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Diego Aliaga, Victoria A. Sinclair, Radovan Krejci, Marcos Andrade, Paulo Artaxo, Luis Blacutt, Runlong Cai, Samara Carbone, Yvette Gramlich, Liine Heikkinen, Dominic Heslin-Rees, Wei Huang, Veli-Matti Kerminen, Alkuin Maximilian Koenig, Markku Kulmala, Paolo Laj, Valeria Mardoñez-Balderrama, Claudia Mohr, Isabel Moreno, Pauli Paasonen, Wiebke Scholz, Karine Sellegri, Laura Ticona, Gaëlle Uzu, Fernando Velarde, Alfred Wiedensohler, Doug Worsnop, Cheng Wu, Chen Xuemeng, Qiaozhi Zha, and Federico Bianchi
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-15, https://doi.org/10.5194/ar-2024-15, 2024
Revised manuscript accepted for AR
Short summary
Short summary
This study examines new particle formation (NPF) in the Bolivian Andes at Chacaltaya mountain (CHC) and the urban El Alto-La Paz area (EAC). Days are clustered into four categories based on NPF intensity. Differences in particle size, precursor gases, and pollution levels are found. High NPF intensities increased Aitken mode particle concentrations at both sites, while volcanic influence selectively diminished NPF intensity at CHC but not EAC. This study highlights NPF dynamics in the Andes.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Laurent Menut, Bertrand Bessagnet, Arineh Cholakian, Guillaume Siour, Sylvain Mailler, and Romain Pennel
Geosci. Model Dev., 17, 3645–3665, https://doi.org/10.5194/gmd-17-3645-2024, https://doi.org/10.5194/gmd-17-3645-2024, 2024
Short summary
Short summary
This study is about the modelling of the atmospheric composition in Europe during the summer of 2022, when massive wildfires were observed. It is a sensitivity study dedicated to the relative impacts of two modelling processes that are able to modify the meteorology used for the calculation of the atmospheric chemistry and transport of pollutants.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-516, https://doi.org/10.5194/egusphere-2024-516, 2024
Preprint archived
Short summary
Short summary
This study assesses atmospheric composition using air quality models during aircraft campaigns in Europe and Asia, focusing on carbonaceous aerosols and trace gases. While carbon monoxide is well modeled, other pollutants have moderate to weak agreement with observations. Wind speed modeling is reliable for identifying pollution plumes, where models tend to overestimate concentrations. This highlights challenges in accurately modeling aerosol and trace gas composition, particularly in cities.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Adrien Deroubaix, Marco Vountas, Benjamin Gaubert, Maria Dolores Andrés Hernández, Stephan Borrmann, Guy Brasseur, Bruna Holanda, Yugo Kanaya, Katharina Kaiser, Flora Kluge, Ovid Oktavian Krüger, Inga Labuhn, Michael Lichtenstern, Klaus Pfeilsticker, Mira Pöhlker, Hans Schlager, Johannes Schneider, Guillaume Siour, Basudev Swain, Paolo Tuccella, Kameswara S. Vinjamuri, Mihalis Vrekoussis, Benjamin Weyland, and John P. Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2024-521, https://doi.org/10.5194/egusphere-2024-521, 2024
Preprint archived
Short summary
Short summary
This study explores the proportional relationships between carbonaceous aerosols (black and organic carbon) and trace gases using airborne measurements from two campaigns in Europe and East Asia. Differences between regions were found, but air quality models struggled to reproduce them accurately. We show that these proportional relationships can help to constrain models and can be used to infer aerosol concentrations from satellite observations of trace gases, especially in urban areas.
Giancarlo Ciarelli, Sara Tahvonen, Arineh Cholakian, Manuel Bettineschi, Bruno Vitali, Tuukka Petäjä, and Federico Bianchi
Geosci. Model Dev., 17, 545–565, https://doi.org/10.5194/gmd-17-545-2024, https://doi.org/10.5194/gmd-17-545-2024, 2024
Short summary
Short summary
The terrestrial ecosystem releases large quantities of biogenic gases in the Earth's Atmosphere. These gases can effectively be converted into so-called biogenic aerosol particles and, eventually, affect the Earth's climate. Climate prediction varies greatly depending on how these processes are represented in model simulations. In this study, we present a detailed model evaluation analysis aimed at understanding the main source of uncertainty in predicting the formation of biogenic aerosols.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Arineh Cholakian
Geosci. Model Dev., 16, 7509–7526, https://doi.org/10.5194/gmd-16-7509-2023, https://doi.org/10.5194/gmd-16-7509-2023, 2023
Short summary
Short summary
We show that a new advection scheme named PPM + W (piecewise parabolic method + Walcek) offers geoscientific modellers an alternative, high-performance scheme designed for Cartesian-grid advection, with improved performance over the classical PPM scheme. The computational cost of PPM + W is not higher than that of PPM. With improved accuracy and controlled computational cost, this new scheme may find applications in chemistry-transport models, ocean models or atmospheric circulation models.
Victor Lannuque, Barbara D'Anna, Evangelia Kostenidou, Florian Couvidat, Alvaro Martinez-Valiente, Philipp Eichler, Armin Wisthaler, Markus Müller, Brice Temime-Roussel, Richard Valorso, and Karine Sartelet
Atmos. Chem. Phys., 23, 15537–15560, https://doi.org/10.5194/acp-23-15537-2023, https://doi.org/10.5194/acp-23-15537-2023, 2023
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation from toluene oxidation. In this study, speciation measurements in gaseous and particulate phases were carried out, providing partitioning and volatility data on individual toluene SOA components at different temperatures. A new detailed oxidation mechanism was developed to improve modeled speciation, and effects of different processes involved in gas–particle partitioning at the molecular scale are explored.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Máté Vörösmarty, Gaëlle Uzu, Jean-Luc Jaffrezo, Pamela Dominutti, Zsófia Kertész, Enikő Papp, and Imre Salma
Atmos. Chem. Phys., 23, 14255–14269, https://doi.org/10.5194/acp-23-14255-2023, https://doi.org/10.5194/acp-23-14255-2023, 2023
Short summary
Short summary
Poor air quality caused by high concentrations of particulate matter is one of the most severe public health concerns for humans worldwide. One of the most important biological mechanisms inducing adverse health effects is the oxidant–antioxidant imbalance. We showed that the oxidative stress changed substantially and in a complex manner with location and season. Biomass burning exhibited the dominant influence, while motor vehicles played an important role in the non-heating period.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Frédéric Ledoux, Cloé Roche, Gilles Delmaire, Gilles Roussel, Olivier Favez, Marc Fadel, and Dominique Courcot
Atmos. Chem. Phys., 23, 8607–8622, https://doi.org/10.5194/acp-23-8607-2023, https://doi.org/10.5194/acp-23-8607-2023, 2023
Short summary
Short summary
We quantify the emissions from the marine sector in northern France, whether from natural or human-made sources. Therefore, a 1-year PM10 sampling campaign was conducted at a French coastal site. Results showed that sea salts contributed 37 %, while secondary nitrate and sulfate contributed 42 %, biomass burning 8 %, and heavy-fuel-oil combustion from shipping emissions 5 %. Sources contributing more than 80 % of PM10 are of regional and/or long-range origin.
Sachiko Okamoto, Juan Cuesta, Matthias Beekmann, Gaëlle Dufour, Maxim Eremenko, Kazuyuki Miyazaki, Cathy Boonne, Hiroshi Tanimoto, and Hajime Akimoto
Atmos. Chem. Phys., 23, 7399–7423, https://doi.org/10.5194/acp-23-7399-2023, https://doi.org/10.5194/acp-23-7399-2023, 2023
Short summary
Short summary
We present a detailed analysis of the daily evolution of the lowermost tropospheric ozone documented by IASI+GOME2 multispectral satellite observations and that of its precursors from TCR-2 tropospheric chemistry reanalysis. It reveals that the ozone outbreak across Europe in July 2017 was produced during favorable condition for photochemical production of ozone and was associated with multiple sources of ozone precursors: biogenic, anthropogenic, and biomass burning emissions.
Laurent Menut, Arineh Cholakian, Guillaume Siour, Rémy Lapere, Romain Pennel, Sylvain Mailler, and Bertrand Bessagnet
Atmos. Chem. Phys., 23, 7281–7296, https://doi.org/10.5194/acp-23-7281-2023, https://doi.org/10.5194/acp-23-7281-2023, 2023
Short summary
Short summary
This study is about the wildfires occurring in France during the summer 2022. We study the forest fires that took place in the Landes during the summer of 2022. We show the direct impact of these fires on the air quality, especially downstream of the smoke plume towards the Paris region. We quantify the impact of these fires on the pollutants peak concentrations and the possible exceedance of thresholds.
Leïla Simon, Valérie Gros, Jean-Eudes Petit, François Truong, Roland Sarda-Estève, Carmen Kalalian, Alexia Baudic, Caroline Marchand, and Olivier Favez
Earth Syst. Sci. Data, 15, 1947–1968, https://doi.org/10.5194/essd-15-1947-2023, https://doi.org/10.5194/essd-15-1947-2023, 2023
Short summary
Short summary
Long-term measurements of volatile organic compounds (VOCs) have been set up to better characterize the atmospheric chemistry at the SIRTA national facility (Paris area, France). Results obtained from the first 2 years (2020–2021) confirm the importance of local sources for short-lived compounds and the role played by meteorology and air mass origins in the long-term analysis of VOCs. They also point to a substantial influence of anthropogenic on the monoterpene loadings.
Arineh Cholakian, Matthias Beekmann, Guillaume Siour, Isabelle Coll, Manuela Cirtog, Elena Ormeño, Pierre-Marie Flaud, Emilie Perraudin, and Eric Villenave
Atmos. Chem. Phys., 23, 3679–3706, https://doi.org/10.5194/acp-23-3679-2023, https://doi.org/10.5194/acp-23-3679-2023, 2023
Short summary
Short summary
This article revolves around the simulation of biogenic secondary organic aerosols in the Landes forest (southwestern France). Several sensitivity cases involving biogenic emission factors, land cover data, anthropogenic emissions, and physical or meteorological parameters were performed and each compared to measurements both in the forest canopy and around the forest. The chemistry behind the formation of these aerosols and their production and transport in the forest canopy is discussed.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Rémy Lapere, Nicolás Huneeus, Sylvain Mailler, Laurent Menut, and Florian Couvidat
Atmos. Chem. Phys., 23, 1749–1768, https://doi.org/10.5194/acp-23-1749-2023, https://doi.org/10.5194/acp-23-1749-2023, 2023
Short summary
Short summary
Glaciers in the Andes of central Chile are shrinking rapidly in response to global warming. This melting is accelerated by the deposition of opaque particles onto snow and ice. In this work, model simulations quantify typical deposition rates of soot on glaciers in summer and winter months and show that the contribution of emissions from Santiago is not as high as anticipated. Additionally, the combination of regional- and local-scale meteorology explains the seasonality in deposition.
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Zhizhao Wang, Florian Couvidat, and Karine Sartelet
Geosci. Model Dev., 15, 8957–8982, https://doi.org/10.5194/gmd-15-8957-2022, https://doi.org/10.5194/gmd-15-8957-2022, 2022
Short summary
Short summary
Air quality models need to reliably predict secondary organic aerosols (SOAs) at a reasonable computational cost. Thus, we developed GENOA v1.0, a mechanism reduction algorithm that preserves the accuracy of detailed gas-phase chemical mechanisms for SOA formation, thereby improving the practical use of actual chemistry in SOA models. With GENOA, a near-explicit chemical scheme was reduced to 2 % of its original size and computational time, with an average error of less than 3 %.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022, https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) of the positive matrix factorisation model that can be run for organic aerosol source apportionment. The current state of the art suggests that the rolling technique is more accurate, but no proof of its effectiveness has been provided yet. This paper tackles this issue in the context of a synthetic dataset and a multi-site real-world comparison.
Zhuang Jiang, Joel Savarino, Becky Alexander, Joseph Erbland, Jean-Luc Jaffrezo, and Lei Geng
The Cryosphere, 16, 2709–2724, https://doi.org/10.5194/tc-16-2709-2022, https://doi.org/10.5194/tc-16-2709-2022, 2022
Short summary
Short summary
A record of year-round atmospheric nitrate isotopic composition along with snow nitrate isotopic data from Summit, Greenland, revealed apparent enrichments in nitrogen isotopes in snow nitrate compared to atmospheric nitrate, in addition to a relatively smaller degree of changes in oxygen isotopes. The results suggest that at this site post-depositional processing takes effect, which should be taken into account when interpreting ice-core nitrate isotope records.
Lucille Joanna Borlaza, Samuël Weber, Anouk Marsal, Gaëlle Uzu, Véronique Jacob, Jean-Luc Besombes, Mélodie Chatain, Sébastien Conil, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 22, 8701–8723, https://doi.org/10.5194/acp-22-8701-2022, https://doi.org/10.5194/acp-22-8701-2022, 2022
Short summary
Short summary
A 9-year dataset of the chemical and oxidative potential (OP) of PM10 was investigated at a rural background site. Extensive source apportionment led to identification of differences in source impacts between mass and OP, underlining the importance of PM redox activity when considering health effects. The influence of mixing and ageing processes was also tackled. Traffic contributions have decreased here over the years, attributed to regulations limiting vehicular emissions in bigger cities.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596, https://doi.org/10.5194/acp-22-8579-2022, https://doi.org/10.5194/acp-22-8579-2022, 2022
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterisations (binary, ternary involving sulfuric acid and ammonia, and heteromolecular involving sulfuric acid and extremely low-volatility organics, ELVOCs). The comparisons show that ternary nucleation may not be a dominant process for new particle formation in cities, but they stress the role of ELVOCs.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Stuart K. Grange, Gaëlle Uzu, Samuël Weber, Jean-Luc Jaffrezo, and Christoph Hueglin
Atmos. Chem. Phys., 22, 7029–7050, https://doi.org/10.5194/acp-22-7029-2022, https://doi.org/10.5194/acp-22-7029-2022, 2022
Short summary
Short summary
Oxidative potential (OP), a biologically relevant metric for particulate matter (PM), was linked to PM10 and PM2.5 sources and constituents across Switzerland between 2018 and 2019. Wood burning and non-exhaust traffic emissions were identified as key processes that led to enhanced OP. Therefore, the make-up of the PM mix was very important for OP. The results highlight the importance of the management of wood burning and non-exhaust emissions to reduce OP, and presumably biological harm.
Elsa Real, Florian Couvidat, Anthony Ung, Laure Malherbe, Blandine Raux, Alicia Gressent, and Augustin Colette
Earth Syst. Sci. Data, 14, 2419–2443, https://doi.org/10.5194/essd-14-2419-2022, https://doi.org/10.5194/essd-14-2419-2022, 2022
Short summary
Short summary
This paper describes a 16-year (2000–2015) dataset of air pollution concentrations and air quality indicators over France combining background measurements and modeling. Hourly concentrations and regulatory indicators of NO2, O3, PM10 and PM2.5 are produced with 4 km spatial resolution. The overall dataset has been cross-validated and showed overall very good results. We hope that this open-access publication will facilitate further studies on the impacts of air pollution.
Adam Brighty, Véronique Jacob, Gaëlle Uzu, Lucille Borlaza, Sébastien Conil, Christoph Hueglin, Stuart K. Grange, Olivier Favez, Cécile Trébuchon, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 22, 6021–6043, https://doi.org/10.5194/acp-22-6021-2022, https://doi.org/10.5194/acp-22-6021-2022, 2022
Short summary
Short summary
With an revised analytical method and long-term sampling strategy, we have been able to elucidate much more information about atmospheric plant debris, a poorly understood class of particulate matter. We found weaker seasonal patterns at urban locations compared to rural locations and significant interannual variability in concentrations between previous years and 2020, during the COVID-19 pandemic. This suggests a possible man-made influence on plant debris concentration and source strength.
Juan Cuesta, Lorenzo Costantino, Matthias Beekmann, Guillaume Siour, Laurent Menut, Bertrand Bessagnet, Tony C. Landi, Gaëlle Dufour, and Maxim Eremenko
Atmos. Chem. Phys., 22, 4471–4489, https://doi.org/10.5194/acp-22-4471-2022, https://doi.org/10.5194/acp-22-4471-2022, 2022
Short summary
Short summary
We present the first comprehensive study integrating satellite observations of near-surface ozone pollution, surface in situ measurements, and a chemistry-transport model for quantifying the role of anthropogenic emission reductions during the COVID-19 lockdown in spring 2020. It confirms the occurrence of a net enhancement of ozone in central Europe and a reduction elsewhere, except for some hotspots, linked with the reduction of precursor emissions from Europe and the Northern Hemisphere.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Andrea Pazmiño, Matthias Beekmann, Florence Goutail, Dmitry Ionov, Ariane Bazureau, Manuel Nunes-Pinharanda, Alain Hauchecorne, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 21, 18303–18317, https://doi.org/10.5194/acp-21-18303-2021, https://doi.org/10.5194/acp-21-18303-2021, 2021
Short summary
Short summary
UV-Visible Système d'Analyse par Observations Zénithales (SAOZ) NO2 tropospheric columns were evaluated to quantify the impact of the lockdown in limiting the COVID-19 propagation. Meteorological conditions and NO2 trends were considered. The negative anomaly in tropospheric columns in 2020, attributed to the lockdown (17 March–10 May and related emissions reductions), was 56 % at Paris and 46 % at a suburban site. A similar anomaly was found in the Airparif data of surface concentrations.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Laurent Menut, Bertrand Bessagnet, Régis Briant, Arineh Cholakian, Florian Couvidat, Sylvain Mailler, Romain Pennel, Guillaume Siour, Paolo Tuccella, Solène Turquety, and Myrto Valari
Geosci. Model Dev., 14, 6781–6811, https://doi.org/10.5194/gmd-14-6781-2021, https://doi.org/10.5194/gmd-14-6781-2021, 2021
Short summary
Short summary
The CHIMERE chemistry-transport model is presented in its new version, V2020r1. Many changes are proposed compared to the previous version. These include online modeling, new parameterizations for aerosols, new emissions schemes, a new parameter file format, the subgrid-scale variability of urban concentrations and new transport schemes.
Gaëlle Dufour, Didier Hauglustaine, Yunjiang Zhang, Maxim Eremenko, Yann Cohen, Audrey Gaudel, Guillaume Siour, Mathieu Lachatre, Axel Bense, Bertrand Bessagnet, Juan Cuesta, Jerry Ziemke, Valérie Thouret, and Bo Zheng
Atmos. Chem. Phys., 21, 16001–16025, https://doi.org/10.5194/acp-21-16001-2021, https://doi.org/10.5194/acp-21-16001-2021, 2021
Short summary
Short summary
The IASI observations and the LMDZ-OR-INCA model simulations show negative ozone trends in the Central East China region in the lower free (3–6 km column) and the upper free (6–9 km column) troposphere. Sensitivity studies from the model show that the Chinese anthropogenic emissions contribute to more than 50 % in the trend. The reduction in NOx emissions that has occurred since 2013 in China seems to lead to a decrease in ozone in the free troposphere, contrary to the increase at the surface.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, Mikhail V. Panchenko, and Meinrat O. Andreae
Atmos. Meas. Tech., 14, 6647–6673, https://doi.org/10.5194/amt-14-6647-2021, https://doi.org/10.5194/amt-14-6647-2021, 2021
Short summary
Short summary
The absorption of solar light by organic matter, known as brown carbon (BrC), contributes significantly to the radiative budget of the Earth’s atmosphere, but its representation in atmospheric models is uncertain. This paper advances a methodology to constrain model parameters characterizing BrC absorption of atmospheric aerosol originating from biomass burning with the available remote ground-based observations of atmospheric aerosol.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Rebecca D. Kutzner, Juan Cuesta, Pascale Chelin, Jean-Eudes Petit, Mokhtar Ray, Xavier Landsheere, Benoît Tournadre, Jean-Charles Dupont, Amandine Rosso, Frank Hase, Johannes Orphal, and Matthias Beekmann
Atmos. Chem. Phys., 21, 12091–12111, https://doi.org/10.5194/acp-21-12091-2021, https://doi.org/10.5194/acp-21-12091-2021, 2021
Short summary
Short summary
Our work investigates the diurnal evolution of atmospheric ammonia concentrations during a major pollution event. It analyses it in regard of both chemical (gas–particle conversion) and physical (vertical mixing, meteorology) processes in the atmosphere. These mechanisms are key for understanding the evolution of the physicochemical state of the atmosphere; therefore, it clearly fits into the scope of Atmospheric Chemistry and Physics.
Samuël Weber, Gaëlle Uzu, Olivier Favez, Lucille Joanna S. Borlaza, Aude Calas, Dalia Salameh, Florie Chevrier, Julie Allard, Jean-Luc Besombes, Alexandre Albinet, Sabrina Pontet, Boualem Mesbah, Grégory Gille, Shouwen Zhang, Cyril Pallares, Eva Leoz-Garziandia, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 21, 11353–11378, https://doi.org/10.5194/acp-21-11353-2021, https://doi.org/10.5194/acp-21-11353-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of aerosols is apportioned to the main PM sources found in 15 sites over France. The sources present clear distinct intrinsic OPs at a large geographic scale, and a drastic redistribution between the mass concentration and OP measured by both ascorbic acid and dithiothreitol is highlighted. Moreover, the high discrepancy between the mean and median contributions of the sources to the given metrics raises some important questions when dealing with health endpoints.
Lucille Joanna S. Borlaza, Samuël Weber, Jean-Luc Jaffrezo, Stephan Houdier, Rémy Slama, Camille Rieux, Alexandre Albinet, Steve Micallef, Cécile Trébluchon, and Gaëlle Uzu
Atmos. Chem. Phys., 21, 9719–9739, https://doi.org/10.5194/acp-21-9719-2021, https://doi.org/10.5194/acp-21-9719-2021, 2021
Short summary
Short summary
With an enhanced source apportionment obtained in a companion paper, this paper acquires more understanding of the spatiotemporal associations of the sources of PM to oxidative potential (OP), an emerging health-based metric. Multilayer perceptron neural network analysis was used to apportion OP from PM sources. Results showed that such a methodology is as robust as the linear classical inversion and permits an improvement in the OP prediction when local features or non-linear effects occur.
Audrey Fortems-Cheiney, Isabelle Pison, Grégoire Broquet, Gaëlle Dufour, Antoine Berchet, Elise Potier, Adriana Coman, Guillaume Siour, and Lorenzo Costantino
Geosci. Model Dev., 14, 2939–2957, https://doi.org/10.5194/gmd-14-2939-2021, https://doi.org/10.5194/gmd-14-2939-2021, 2021
Short summary
Short summary
Up-to-date and accurate emission inventories for air pollutants are essential for understanding their role in the formation of tropospheric ozone and particulate matter, for anticipating pollution peaks and for identifying the key drivers that could help mitigate their emissions. Complementarily with bottom-up inventories, the system described here aims at updating and improving the knowledge on the high spatiotemporal variability of emissions of air pollutants.
Vincent Michoud, Elise Hallemans, Laura Chiappini, Eva Leoz-Garziandia, Aurélie Colomb, Sébastien Dusanter, Isabelle Fronval, François Gheusi, Jean-Luc Jaffrezo, Thierry Léonardis, Nadine Locoge, Nicolas Marchand, Stéphane Sauvage, Jean Sciare, and Jean-François Doussin
Atmos. Chem. Phys., 21, 8067–8088, https://doi.org/10.5194/acp-21-8067-2021, https://doi.org/10.5194/acp-21-8067-2021, 2021
Short summary
Short summary
A multiphasic molecular characterization of oxygenated compounds has been carried out during the ChArMEx field campaign using offline analysis. It leads to the identification of 97 different compounds in the gas and aerosol phases and reveals the important contribution of organic acids to organic aerosol. In addition, comparison between experimental and theoretical partitioning coefficients revealed in most cases a large underestimation by the theory reaching 1 to 7 orders of magnitude.
Lucille Joanna S. Borlaza, Samuël Weber, Gaëlle Uzu, Véronique Jacob, Trishalee Cañete, Steve Micallef, Cécile Trébuchon, Rémy Slama, Olivier Favez, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 21, 5415–5437, https://doi.org/10.5194/acp-21-5415-2021, https://doi.org/10.5194/acp-21-5415-2021, 2021
Short summary
Short summary
This study focuses on fully discriminating the origins of particulates by tackling specific secondary organic aerosol (SOA) sources that are difficult to resolve using traditional datasets, especially at a city scale. This is done through the use of additional fit-for-purpose tracers in the Positive Matrix Factorization (PMF) model, which can be obtained using simpler and more targeted techniques, and the comparison of the PMF models from sites in close range but with different urban typologies.
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021, https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Short summary
We developed a box model with a volatility basis set to simulate organic aerosol (OA) from biomass burning and optimized the vapor-wall-loss-corrected OA yields with a genetic algorithm. The optimized parameterizations were then implemented in the air quality model CAMx v6.5. Comparisons with ambient measurements indicate that the vapor-wall-loss-corrected parameterization effectively improves the model performance in predicting OA, which reduced the mean fractional bias from −72.9 % to −1.6 %.
Roland Stirnberg, Jan Cermak, Simone Kotthaus, Martial Haeffelin, Hendrik Andersen, Julia Fuchs, Miae Kim, Jean-Eudes Petit, and Olivier Favez
Atmos. Chem. Phys., 21, 3919–3948, https://doi.org/10.5194/acp-21-3919-2021, https://doi.org/10.5194/acp-21-3919-2021, 2021
Short summary
Short summary
Air pollution endangers human health and poses a problem particularly in densely populated areas. Here, an explainable machine learning approach is used to analyse periods of high particle concentrations for a suburban site southwest of Paris to better understand its atmospheric drivers. Air pollution is particularly excaberated by low temperatures and low mixed layer heights, but processes vary substantially between and within seasons.
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, and Meinrat O. Andreae
Atmos. Chem. Phys., 21, 357–392, https://doi.org/10.5194/acp-21-357-2021, https://doi.org/10.5194/acp-21-357-2021, 2021
Short summary
Short summary
A lack of consistent observational constraints on the atmospheric evolution of the optical properties of biomass burning (BB) aerosol limits the accuracy of assessments of the aerosol radiative and climate effects. We show that useful insights into the evolution of the BB aerosol optical properties can be inferred from a combination of satellite observations and 3D modeling. We report major changes that occurred in the optical properties of Siberian BB aerosol during its long-range transport.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Pascal Zapf, Guillaume Siour, Xavier Landsheere, Guillaume Méjean, Daniele Romanini, and Bénédicte Picquet-Varrault
Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, https://doi.org/10.5194/amt-13-6311-2020, 2020
Short summary
Short summary
An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals in the CSA simulation chamber at LISA. The optical cavity allows a high sensitivity for NO3 detection up to 6 ppt for an integration time of 10 s. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (with rate constants up to 10−10 cm3 molecule−1 s−1).
Audrey Fortems-Cheiney, Gaëlle Dufour, Karine Dufossé, Florian Couvidat, Jean-Marc Gilliot, Guillaume Siour, Matthias Beekmann, Gilles Foret, Frederik Meleux, Lieven Clarisse, Pierre-François Coheur, Martin Van Damme, Cathy Clerbaux, and Sophie Génermont
Atmos. Chem. Phys., 20, 13481–13495, https://doi.org/10.5194/acp-20-13481-2020, https://doi.org/10.5194/acp-20-13481-2020, 2020
Short summary
Short summary
Studies have suggested the importance of ammonia emissions on pollution particle formation over Europe, whose main atmospheric source is agriculture. In this study, we performed an inter-comparison of two alternative inventories, both with a reference inventory, that quantify the French ammonia emissions during spring 2011. Over regions with large mineral fertilizer use, like over northeastern France, NH3 emissions are probably considerably underestimated by the reference inventory.
Ingeborg Levin, Ute Karstens, Markus Eritt, Fabian Maier, Sabrina Arnold, Daniel Rzesanke, Samuel Hammer, Michel Ramonet, Gabriela Vítková, Sebastien Conil, Michal Heliasz, Dagmar Kubistin, and Matthias Lindauer
Atmos. Chem. Phys., 20, 11161–11180, https://doi.org/10.5194/acp-20-11161-2020, https://doi.org/10.5194/acp-20-11161-2020, 2020
Short summary
Short summary
Based on observations and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling, a sampling strategy has been developed for tall tower stations of the Integrated Carbon Observation System (ICOS) research infrastructure atmospheric station network. This strategy allows independent quality control of in situ measurements, provides representative coverage of the influence area of the sites, and is capable of automated targeted sampling of fossil fuel CO2 emission hotspots.
Laurent Poulain, Gerald Spindler, Achim Grüner, Thomas Tuch, Bastian Stieger, Dominik van Pinxteren, Jean-Eudes Petit, Olivier Favez, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Meas. Tech., 13, 4973–4994, https://doi.org/10.5194/amt-13-4973-2020, https://doi.org/10.5194/amt-13-4973-2020, 2020
Short summary
Short summary
The stability and the comparability between ACSM and collocated filter sampling and MPSS measurements was investigated in order to examine the instruments robustness for year-long measurements. Specific attention was paid to the influence of the upper size cutoff diameter to better understand how it might affect the data validation. Recommendations are provided for better on-site quality assurance and quality control of the ACSM, which would be useful for either long-term or intensive campaigns.
Martin Rigler, Luka Drinovec, Gašper Lavrič, Athanasia Vlachou, André S. H. Prévôt, Jean Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Kranjc, Janja Turšič, Anthony D. A. Hansen, and Griša Močnik
Atmos. Meas. Tech., 13, 4333–4351, https://doi.org/10.5194/amt-13-4333-2020, https://doi.org/10.5194/amt-13-4333-2020, 2020
Short summary
Short summary
Carbonaceous aerosols are a large fraction of fine particulate matter. They are extremely diverse, and they directly impact air quality, visibility, cloud formation and public health. In this paper we present a new instrument and new method to measure carbon content in particulate matter in real time and at a high time resolution. The new method was validated in a 1-month winter field campaign in Ljubljana, Slovenia.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Carl Malings, Daniel M. Westervelt, Aliaksei Hauryliuk, Albert A. Presto, Andrew Grieshop, Ashley Bittner, Matthias Beekmann, and R. Subramanian
Atmos. Meas. Tech., 13, 3873–3892, https://doi.org/10.5194/amt-13-3873-2020, https://doi.org/10.5194/amt-13-3873-2020, 2020
Short summary
Short summary
Most air quality information comes from accurate but expensive instruments. These can be supplemented by lower-cost sensors to increase the density of ground data and expand monitoring into less well-instrumented areas, like sub-Saharan Africa. In this paper, we look at how low-cost sensor data can be combined with satellite information on air quality (which requires ground data to properly calibrate measurements) and assess the benefits these low-cost sensors provide in this context.
Solène Turquety, Laurent Menut, Guillaume Siour, Sylvain Mailler, Juliette Hadji-Lazaro, Maya George, Cathy Clerbaux, Daniel Hurtmans, and Pierre-François Coheur
Geosci. Model Dev., 13, 2981–3009, https://doi.org/10.5194/gmd-13-2981-2020, https://doi.org/10.5194/gmd-13-2981-2020, 2020
Short summary
Short summary
Biomass burning emissions are a major source of trace gases and aerosols that need to be accounted for in air quality assessment and forecasting. The APIFLAME model presented in this paper allows the calculation of these emissions based on merged satellite observations at hourly time steps and kilometer scales. Implementing emissions in a chemistry transport model allows realistic simulations of fire plumes as illustrated for wildfires in Portugal in August 2016 using the CHIMERE model.
Lu Qi, Alexander L. Vogel, Sepideh Esmaeilirad, Liming Cao, Jing Zheng, Jean-Luc Jaffrezo, Paola Fermo, Anne Kasper-Giebl, Kaspar R. Daellenbach, Mindong Chen, Xinlei Ge, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 20, 7875–7893, https://doi.org/10.5194/acp-20-7875-2020, https://doi.org/10.5194/acp-20-7875-2020, 2020
Short summary
Short summary
We present the first application of this online and offline strategy using the new extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF), which achieves increased chemical specificity relative to other online techniques. Measurement and source apportionment of 1 year of filter samples collected in Zurich, Switzerland, show seasonal contributions from fresh and aged wood combustion in winter and biogenic emission-derived SOA in summer, as well as other sources.
Abdoulaye Samaké, Aurélie Bonin, Jean-Luc Jaffrezo, Pierre Taberlet, Samuël Weber, Gaëlle Uzu, Véronique Jacob, Sébastien Conil, and Jean M. F. Martins
Atmos. Chem. Phys., 20, 5609–5628, https://doi.org/10.5194/acp-20-5609-2020, https://doi.org/10.5194/acp-20-5609-2020, 2020
Short summary
Short summary
Despite being a major source of coarse organic matter, primary biogenic organic aerosols (PBOAs) remain poorly implemented in source-resolved chemical transport models. This study, based on an intensive field sampling of aerosols, combined physicochemical characterizations of PM10 with DNA high-throughput sequencing to provide a comprehensive understanding of the microbial fingerprints associated with primary sugar compounds (tracers of PBOAs) and their main surrounding environmental sources.
Antonio Tovar-Sánchez, Araceli Rodríguez-Romero, Anja Engel, Birthe Zäncker, Franck Fu, Emilio Marañón, María Pérez-Lorenzo, Matthieu Bressac, Thibaut Wagener, Sylvain Triquet, Guillaume Siour, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 17, 2349–2364, https://doi.org/10.5194/bg-17-2349-2020, https://doi.org/10.5194/bg-17-2349-2020, 2020
Short summary
Short summary
Residence times of particulate metals derived from aerosol deposition in the Sea Surface Microlayer of the Mediterranean Sea ranged from a couple of minutes (e.g., for Fe) to a few hours (e.g., for Cu). Microbial activity seems to play an important role in in this process and in the concentration and distribution of metals between diferent water layers.
Victor Lannuque, Florian Couvidat, Marie Camredon, Bernard Aumont, and Bertrand Bessagnet
Atmos. Chem. Phys., 20, 4905–4931, https://doi.org/10.5194/acp-20-4905-2020, https://doi.org/10.5194/acp-20-4905-2020, 2020
Short summary
Short summary
Large uncertainties remain in modeling secondary organic aerosol (SOA) and evolution and properties in air quality models. In this article, the recently developed VBS-GECKO parameterization for SOA formation has been implemented in the air quality model CHIMERE. Simulations have been driven to identify the main SOA sources and to evaluate the sensitivity of simulated SOA concentrations to (i) secondary organic compound properties and (ii) emissions from traffic and transportation sources.
Laurent Menut, Guillaume Siour, Bertrand Bessagnet, Florian Couvidat, Emilie Journet, Yves Balkanski, and Karine Desboeufs
Geosci. Model Dev., 13, 2051–2071, https://doi.org/10.5194/gmd-13-2051-2020, https://doi.org/10.5194/gmd-13-2051-2020, 2020
Short summary
Short summary
Modelling of mineral dust is often done using one single mean species. In this study, differentiated mineral species with their chemical composition are implemented in the CHIMERE regional chemistry-transport model by using global databases. Simulations are carried out to quantify the realism and gain of such mineralogy.
Pavlos Kalabokas, Niels Roland Jensen, Mauro Roveri, Jens Hjorth, Maxim Eremenko, Juan Cuesta, Gaëlle Dufour, Gilles Foret, and Matthias Beekmann
Atmos. Chem. Phys., 20, 1861–1885, https://doi.org/10.5194/acp-20-1861-2020, https://doi.org/10.5194/acp-20-1861-2020, 2020
Short summary
Short summary
The influence of tropospheric ozone on the surface measurements at a regional air pollution station in the pre-Alpine area of northern Italy is investigated. During such episodes the local air pollution parameters show generally very low values, while the ozone levels reach high values, occasionally exceeding the ozone air quality standards. Better understanding of ozone variability over the examined region will help in the formulation of more effective policies for the environment and climate.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Jianhui Jiang, Sebnem Aksoyoglu, Imad El-Haddad, Giancarlo Ciarelli, Hugo A. C. Denier van der Gon, Francesco Canonaco, Stefania Gilardoni, Marco Paglione, María Cruz Minguillón, Olivier Favez, Yunjiang Zhang, Nicolas Marchand, Liqing Hao, Annele Virtanen, Kalliopi Florou, Colin O'Dowd, Jurgita Ovadnevaite, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 15247–15270, https://doi.org/10.5194/acp-19-15247-2019, https://doi.org/10.5194/acp-19-15247-2019, 2019
Short summary
Short summary
We use an air quality model with a modified organic aerosol (OA) module based on chamber experiments to identify the OA sources and their contributions in Europe. Comparisons with long-term measurements at nine sites in 2011 show an improvement in OA simulation. Our results suggest that the biomass burning and biogenic emissions are the dominant sources in winter and summer, respectively. Contributions of diesel and gasoline vehicles are relatively small compared to a previous study in the US.
Yunjiang Zhang, Olivier Favez, Jean-Eudes Petit, Francesco Canonaco, Francois Truong, Nicolas Bonnaire, Vincent Crenn, Tanguy Amodeo, Andre S. H. Prévôt, Jean Sciare, Valerie Gros, and Alexandre Albinet
Atmos. Chem. Phys., 19, 14755–14776, https://doi.org/10.5194/acp-19-14755-2019, https://doi.org/10.5194/acp-19-14755-2019, 2019
Short summary
Short summary
We present 6-year source apportionment of organic aerosol (OA) achieved with near-continuous online measurements and subsequent receptor model analysis in the Paris region, France. The OA factors presented distinct seasonal patterns, associated with different atmospheric formation processes and roles in air pollution. Limited year-round trends for two primary anthropogenic factors and a biogenic-like secondary factor were observed, while a more oxidized secondary OA showed a decreasing feature.
Sébastien Conil, Julie Helle, Laurent Langrene, Olivier Laurent, Marc Delmotte, and Michel Ramonet
Atmos. Meas. Tech., 12, 6361–6383, https://doi.org/10.5194/amt-12-6361-2019, https://doi.org/10.5194/amt-12-6361-2019, 2019
Short summary
Short summary
Continuous measurements of greenhouse gases using high-precision spectrometers started in 2011 on a tall tower with three sampling inlets at 10 m, 50 m and 120 m above the ground at the OPE station, in the eastern part of France. The measurement strategy for carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO) follows the ICOS recommendations. Over the 2011–2018 period, the CO2 and CH4 data show trends with annual growth rates of 2.4 ppm yr−1 and 8.8 ppb yr−1 at the 120 m level.
Giancarlo Ciarelli, Mark R. Theobald, Marta G. Vivanco, Matthias Beekmann, Wenche Aas, Camilla Andersson, Robert Bergström, Astrid Manders-Groot, Florian Couvidat, Mihaela Mircea, Svetlana Tsyro, Hilde Fagerli, Kathleen Mar, Valentin Raffort, Yelva Roustan, Maria-Teresa Pay, Martijn Schaap, Richard Kranenburg, Mario Adani, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Cornelis Cuvelier, Arineh Cholakian, Bertrand Bessagnet, Peter Wind, and Augustin Colette
Geosci. Model Dev., 12, 4923–4954, https://doi.org/10.5194/gmd-12-4923-2019, https://doi.org/10.5194/gmd-12-4923-2019, 2019
Short summary
Short summary
The novel multi-model EURODELTA-Trends exercise provided 21 years of continuous PM components and their gas-phase precursor concentrations over Europe from the year 1990. The models’ capabilities to reproduce PM components and gas-phase PM precursor trends over the 1990–2010 period is the key focus of this study. The models were able to reproduce the observed trends relatively well, indicating a possible shift in the thermodynamic equilibrium between gas and particle phases.
Marie Boichu, Olivier Favez, Véronique Riffault, Jean-Eudes Petit, Yunjiang Zhang, Colette Brogniez, Jean Sciare, Isabelle Chiapello, Lieven Clarisse, Shouwen Zhang, Nathalie Pujol-Söhne, Emmanuel Tison, Hervé Delbarre, and Philippe Goloub
Atmos. Chem. Phys., 19, 14253–14287, https://doi.org/10.5194/acp-19-14253-2019, https://doi.org/10.5194/acp-19-14253-2019, 2019
Short summary
Short summary
This study, benefiting especially from recently developed mass spectrometry observations of aerosols, highlights unknown properties of volcanic sulfates in the troposphere. It shows their specific chemical fingerprint, distinct from those of freshly emitted industrial sulfates and background aerosols. We also demonstrate the large-scale persistence of the volcanic sulfate pollution over weeks. Hence, these results cast light on the impact of tropospheric eruptions on air quality and climate.
Arineh Cholakian, Matthias Beekmann, Isabelle Coll, Giancarlo Ciarelli, and Augustin Colette
Atmos. Chem. Phys., 19, 13209–13226, https://doi.org/10.5194/acp-19-13209-2019, https://doi.org/10.5194/acp-19-13209-2019, 2019
Short summary
Short summary
Organic aerosol simulation schemes were tested in climatic runs to assess their climate sensitivity. The test for each scheme contains five historic and five future years of simulation. Validation was performed for the three schemes to assess their performance compared to measured data. Results show that the scheme taking into account fragmentation and formation of nonvolatile secondary organic aerosol (SOA) shows higher relative biogenic SOA (BSOA) changes than historic and future scenarios.
Igor B. Konovalov, Matthias Beekmann, Nikolai A. Golovushkin, and Meinrat O. Andreae
Atmos. Chem. Phys., 19, 12091–12119, https://doi.org/10.5194/acp-19-12091-2019, https://doi.org/10.5194/acp-19-12091-2019, 2019
Short summary
Short summary
Biomass burning (BB) aerosol has a strong impact on air quality and climate, but a wide diversity of observed effects of its atmospheric transformations (aging) is not yet sufficiently understood and thus not addressed in models. Based on the results of numerical experiments involving a box model, we show that part of this diversity can be due to the factors associated with the intrinsic nonlinearity of the processes governing the atmospheric evolution of organic components of BB aerosol.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Trishalee Canete, Alexandre Albinet, Aurélie Charron, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Jean-Luc Besombes, Jean M. F. Martins, Nicolas Bonnaire, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 11013–11030, https://doi.org/10.5194/acp-19-11013-2019, https://doi.org/10.5194/acp-19-11013-2019, 2019
Short summary
Short summary
We conducted a large study focusing on the daily (24 h) PM10 sugar compound (SC) concentrations for 16 increasing space-scale sites in France (local to nationwide) over at least 1 complete year. Our main results clearly show distance-dependent covariation patterns, with SC concentrations being highly synchronous at an urban city scale and remaining well correlated throughout the same geographic regions. However, sampling sites located in two distinct geographic areas are poorly correlated.
Andrés Esteban Bedoya-Velásquez, Gloria Titos, Juan Antonio Bravo-Aranda, Martial Haeffelin, Olivier Favez, Jean-Eudes Petit, Juan Andrés Casquero-Vera, Francisco José Olmo-Reyes, Elena Montilla-Rosero, Carlos D. Hoyos, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 19, 7883–7896, https://doi.org/10.5194/acp-19-7883-2019, https://doi.org/10.5194/acp-19-7883-2019, 2019
Short summary
Short summary
This study is related to the first time hygroscopic enhancement factors retrieved directly for ambient aerosols using remote sensing techniques are combined with online chemical composition in situ measurements to evaluate the role of the different aerosol species in aerosol hygroscopicity at ACTRIS SIRTA observatory. The results showed 8 cases that fulfilled strict criteria over 107 cases identified in this study.
Athanasia Vlachou, Anna Tobler, Houssni Lamkaddam, Francesco Canonaco, Kaspar R. Daellenbach, Jean-Luc Jaffrezo, María Cruz Minguillón, Marek Maasikmets, Erik Teinemaa, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 7279–7295, https://doi.org/10.5194/acp-19-7279-2019, https://doi.org/10.5194/acp-19-7279-2019, 2019
Short summary
Short summary
The resolution of rotational ambiguity in positive matrix factorization (PMF) models is a major challenge. Here, we developed a method based on bootstrapping and correlations to extract environmentally meaningful solutions from PMF analysis based on offline aerosol mass spectrometry data. The method has been tested on a dataset that covers 1 full year of filter samples collected at three different sites in Estonia.
Mathieu Lachatre, Audrey Fortems-Cheiney, Gilles Foret, Guillaume Siour, Gaëlle Dufour, Lieven Clarisse, Cathy Clerbaux, Pierre-François Coheur, Martin Van Damme, and Matthias Beekmann
Atmos. Chem. Phys., 19, 6701–6716, https://doi.org/10.5194/acp-19-6701-2019, https://doi.org/10.5194/acp-19-6701-2019, 2019
Short summary
Short summary
It has been observed from satellite-based instruments that ammonia levels strongly increased between 2011 and 2015. We have used the CHIMERE CTM to understand what could explain such an increase. We first focused on meteorological condition variations, and it has been concluded that meteorology did not explain ammonia evolution. Then, we focused on SO2 and NOx emission evolution rates to evaluate their influences on ammonia. It appears that theses decreases were the main explanation.
Kaspar R. Daellenbach, Ivan Kourtchev, Alexander L. Vogel, Emily A. Bruns, Jianhui Jiang, Tuukka Petäjä, Jean-Luc Jaffrezo, Sebnem Aksoyoglu, Markus Kalberer, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 5973–5991, https://doi.org/10.5194/acp-19-5973-2019, https://doi.org/10.5194/acp-19-5973-2019, 2019
Short summary
Short summary
Here we present the molecular composition of the organic aerosol (OA) at an urban site in Central Europe (Zurich, Switzerland) and compare it to smog chamber wood smoke and ambient biogenic secondary OA (SOA) (Orbitrap analyses). Accordingly, we are able to explain the strong seasonality of the molecular composition by aged wood smoke and biogenic SOA during winter and summer. Our results could also explain the predominance of non-fossil organic carbon at European locations throughout the year.
Marwa Majdi, Karine Sartelet, Grazia Maria Lanzafame, Florian Couvidat, Youngseob Kim, Mounir Chrit, and Solene Turquety
Atmos. Chem. Phys., 19, 5543–5569, https://doi.org/10.5194/acp-19-5543-2019, https://doi.org/10.5194/acp-19-5543-2019, 2019
Aurélie Charron, Lucie Polo-Rehn, Jean-Luc Besombes, Benjamin Golly, Christine Buisson, Hervé Chanut, Nicolas Marchand, Géraldine Guillaud, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 19, 5187–5207, https://doi.org/10.5194/acp-19-5187-2019, https://doi.org/10.5194/acp-19-5187-2019, 2019
Short summary
Short summary
This research quantified particulate species that could be used to trace non-exhaust and exhaust traffic emissions. Results showed the important contribution of heavy metals from brake wear to total particulate traffic emissions. In France the traffic largely dominated by diesel vehicles led to important emissions of elemental carbon, as well as significant emissions of low-molecular-weight polycyclic aromatic compounds.
Arineh Cholakian, Augustin Colette, Isabelle Coll, Giancarlo Ciarelli, and Matthias Beekmann
Atmos. Chem. Phys., 19, 4459–4484, https://doi.org/10.5194/acp-19-4459-2019, https://doi.org/10.5194/acp-19-4459-2019, 2019
Short summary
Short summary
Multiple future scenario sets have been compared to reference simulations in order to assess the effects of different climate change drivers (regional climate, anthropogenic emissions, long-range transport) on the concentration of PM10 and its components. The effect of different meteorological parameters has been explored on the concentration of PM components in the case of changes due to regional climate. A cumulative impact study on the three aforementioned drivers has also been included.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Alexandre Albinet, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Nicolas Bonnaire, Jean-Luc Besombes, Jean M. F. Martins, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, https://doi.org/10.5194/acp-19-3357-2019, 2019
Short summary
Short summary
The contribution of primary biogenic organic aerosols to PM is barely documented. This work provides a broad overview of the spatiotemporal evolution of concentrations and contributions to OM of dominant primary sugar alcohols and saccharides for a large selection of environmental conditions in France (28 sites and more than 5 340 samples). These chemicals are ubiquitous, and are associated with coarse aerosols. Their concentrations display site-to-site and clear seasonal variations.
Youngseob Kim, Karine Sartelet, and Florian Couvidat
Atmos. Chem. Phys., 19, 1241–1261, https://doi.org/10.5194/acp-19-1241-2019, https://doi.org/10.5194/acp-19-1241-2019, 2019
Short summary
Short summary
Assumptions (ideality and thermodynamic equilibrium) commonly made in 3-dimensional air quality models were reconsidered to evaluate their impacts on secondary organic aerosol (SOA) formation. Non-ideality (short-, medium- and long-range interactions of organics and inorganics) influences SOA concentrations by about 30 % over Europe. If SOA are highly viscous rather than inviscid, hydrophobic SOA concentrations increase by 6 % but can increase by an order of magnitude for volatile compounds.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Joel Brito, Cyrielle Denjean, Volker Dreiling, Andreas Fink, Corinne Jambert, Norbert Kalthoff, Peter Knippertz, Russ Ladkin, Sylvain Mailler, Marlon Maranan, Federica Pacifico, Bruno Piguet, Guillaume Siour, and Solène Turquety
Atmos. Chem. Phys., 19, 473–497, https://doi.org/10.5194/acp-19-473-2019, https://doi.org/10.5194/acp-19-473-2019, 2019
Short summary
Short summary
This article presents a detailed analysis of anthropogenic and biomass burning pollutants over the Gulf of Guinea coastal region, using observations from the DACCIWA field campaign and modeling. The novelty is that we focus on how these two pollution sources are mixed and transported further inland. We show that during the day pollutants are accumulated along the coastline and transported northward as soon as the daytime convection in the atmospheric boundary layer ceases (16:00 UTC).
Mark R. Theobald, Marta G. Vivanco, Wenche Aas, Camilla Andersson, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Mihaela Mircea, Maria-Teresa Pay, Svetlana Tsyro, Mario Adani, Robert Bergström, Bertrand Bessagnet, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Hilde Fagerli, Kathleen Mar, Noelia Otero, Valentin Raffort, Yelva Roustan, Martijn Schaap, Peter Wind, and Augustin Colette
Atmos. Chem. Phys., 19, 379–405, https://doi.org/10.5194/acp-19-379-2019, https://doi.org/10.5194/acp-19-379-2019, 2019
Short summary
Short summary
Model estimates of the mean European wet deposition of nitrogen and sulfur for 1990 to 2010 were within 40 % of the observed values. As a result of systematic biases, the models were better at estimating relative trends for the periods 1990–2000 and 2000–2010 than the absolute trends. Although the predominantly decreasing trends were mostly due to emission reductions, they were partially offset by other factors (e.g. changes in precipitation) during the first period, but not the second.
Paola Formenti, Stuart John Piketh, Andreas Namwoonde, Danitza Klopper, Roelof Burger, Mathieu Cazaunau, Anaïs Feron, Cécile Gaimoz, Stephen Broccardo, Nicola Walton, Karine Desboeufs, Guillaume Siour, Mattheus Hanghome, Samuel Mafwila, Edosa Omoregie, Wolfgang Junkermann, and Willy Maenhaut
Atmos. Chem. Phys., 18, 17003–17016, https://doi.org/10.5194/acp-18-17003-2018, https://doi.org/10.5194/acp-18-17003-2018, 2018
Short summary
Short summary
Three-years of continuous measurements at the Henties Bay Aerosol Observatory (HBAO; 22°S, 14°05’E), Namibia, show that during the austral wintertime, long- and medium-range transport of pollution from biomass and fossil fuel burning give rise to peaks of light-absorbing black carbon aerosols into the marine boundary layer ahead of the main biomass burning season. This could affect the cloud properties.
Florian Couvidat, Marta G. Vivanco, and Bertrand Bessagnet
Atmos. Chem. Phys., 18, 15743–15766, https://doi.org/10.5194/acp-18-15743-2018, https://doi.org/10.5194/acp-18-15743-2018, 2018
Short summary
Short summary
Several new parameterizations and mechanisms for SOA formation are developed based on available experimental results. To evaluate the parameterizations, a box model was developed to simulate SOA formation from monoterpenes and aromatics in the environmental chamber EUPHORE. This box model takes oligomerization, nonideality of the aerosol, multiphase partitioning, aging, vapor wall losses and particle-phase diffusion into account. All these phenomena are rarely taken into account together.
Igor B. Konovalov, Daria A. Lvova, Matthias Beekmann, Hiren Jethva, Eugene F. Mikhailov, Jean-Daniel Paris, Boris D. Belan, Valerii S. Kozlov, Philippe Ciais, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 14889–14924, https://doi.org/10.5194/acp-18-14889-2018, https://doi.org/10.5194/acp-18-14889-2018, 2018
Short summary
Short summary
A good knowledge of black carbon (BC) emissions from open biomass burning (BB) is an important prerequisite for reliable climate predictions, especially in the Arctic. This paper introduces a method to constrain a regional budget of BB BC emissions using satellite measurements of the absorption and extinction optical depths and evaluates its potential application in a large Siberian region.
Victor Lannuque, Marie Camredon, Florian Couvidat, Alma Hodzic, Richard Valorso, Sasha Madronich, Bertrand Bessagnet, and Bernard Aumont
Atmos. Chem. Phys., 18, 13411–13428, https://doi.org/10.5194/acp-18-13411-2018, https://doi.org/10.5194/acp-18-13411-2018, 2018
Short summary
Short summary
Large uncertainties remain in understanding the influence of atmospheric environmental conditions on secondary organic aerosol (SOA) formation, evolution and properties. In this article, the GECKO-A modelling tool has been used in a box model under various environmental conditions to (i) explore the sensitivity of SOA formation and properties to changes on physical and chemical conditions and (ii) develop a volatility-basis-set-type parameterization for air quality models.
Noelia Otero, Jana Sillmann, Kathleen A. Mar, Henning W. Rust, Sverre Solberg, Camilla Andersson, Magnuz Engardt, Robert Bergström, Bertrand Bessagnet, Augustin Colette, Florian Couvidat, Cournelius Cuvelier, Svetlana Tsyro, Hilde Fagerli, Martijn Schaap, Astrid Manders, Mihaela Mircea, Gino Briganti, Andrea Cappelletti, Mario Adani, Massimo D'Isidoro, María-Teresa Pay, Mark Theobald, Marta G. Vivanco, Peter Wind, Narendra Ojha, Valentin Raffort, and Tim Butler
Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, https://doi.org/10.5194/acp-18-12269-2018, 2018
Short summary
Short summary
This paper evaluates the capability of air-quality models to capture the observed relationship between surface ozone concentrations and meteorology over Europe. The air-quality models tended to overestimate the influence of maximum temperature and surface solar radiation. None of the air-quality models captured the strength of the observed relationship between ozone and relative humidity appropriately, underestimating the effect of relative humidity, a key factor in the ozone removal processes.
Marta G. Vivanco, Mark R. Theobald, Héctor García-Gómez, Juan Luis Garrido, Marje Prank, Wenche Aas, Mario Adani, Ummugulsum Alyuz, Camilla Andersson, Roberto Bellasio, Bertrand Bessagnet, Roberto Bianconi, Johannes Bieser, Jørgen Brandt, Gino Briganti, Andrea Cappelletti, Gabriele Curci, Jesper H. Christensen, Augustin Colette, Florian Couvidat, Cornelis Cuvelier, Massimo D'Isidoro, Johannes Flemming, Andrea Fraser, Camilla Geels, Kaj M. Hansen, Christian Hogrefe, Ulas Im, Oriol Jorba, Nutthida Kitwiroon, Astrid Manders, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Luca Pozzoli, Efisio Solazzo, Svetlana Tsyro, Alper Unal, Peter Wind, and Stefano Galmarini
Atmos. Chem. Phys., 18, 10199–10218, https://doi.org/10.5194/acp-18-10199-2018, https://doi.org/10.5194/acp-18-10199-2018, 2018
Short summary
Short summary
European wet and dry atmospheric deposition of N and S estimated by 14 air quality models was found to vary substantially. An ensemble of models meeting acceptability criteria was used to estimate the exceedances of the critical loads for N in habitats within the Natura 2000 network, as well as their lower and upper limits. Scenarios with 20 % emission reductions in different regions of the world showed that European emissions are responsible for most of the N and S deposition in Europe.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, José B. Nicolas, Nicolas Marchand, Evelyn Freney, Karine Sellegri, Matthias Beekmann, and François Dulac
Atmos. Chem. Phys., 18, 9631–9659, https://doi.org/10.5194/acp-18-9631-2018, https://doi.org/10.5194/acp-18-9631-2018, 2018
Short summary
Short summary
Fine particulate matter (PM) in the atmosphere is of concern due to its effects on health, climate, ecosystems and biological cycles, and visibility.
These effects are especially important in the Mediterranean region. In this study, the air quality model Polyphemus is used to understand the
sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters and hypotheses related to condensation/evaporation in the model.
Samuël Weber, Gaëlle Uzu, Aude Calas, Florie Chevrier, Jean-Luc Besombes, Aurélie Charron, Dalia Salameh, Irena Ježek, Griša Močnik, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 18, 9617–9629, https://doi.org/10.5194/acp-18-9617-2018, https://doi.org/10.5194/acp-18-9617-2018, 2018
Short summary
Short summary
The oxidative potential (OP) of the PM appears to be a relevant proxy of health outcomes from PM exposure. We developed a new statistical model using a coupled approach with positive matrix factorization (PMF) and multiple linear regressions to attribute a redox activity per PM sources. Our results highlight the importance of biomass burning and vehicular sources to explain the observed OP of PM. A different contribution of the sources is observed when considering OP or the mass of the PM10.
Juan Cuesta, Yugo Kanaya, Masayuki Takigawa, Gaëlle Dufour, Maxim Eremenko, Gilles Foret, Kazuyuki Miyazaki, and Matthias Beekmann
Atmos. Chem. Phys., 18, 9499–9525, https://doi.org/10.5194/acp-18-9499-2018, https://doi.org/10.5194/acp-18-9499-2018, 2018
Short summary
Short summary
This paper tackles a major issue for air quality over East Asia: ozone pollution produced over a major source, like the North China Plain, and the contribution of ozone produced while being transported across the continent and the surrounding seas. The main originality of the paper lays in the fact that this photochemical production of ozone is observationally quantified with new multispectral satellite observations offering unique skills to observe the ozone pollution plumes near the surface.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Aude Calas, Gaëlle Uzu, Frank J. Kelly, Stephan Houdier, Jean M. F. Martins, Fabrice Thomas, Florian Molton, Aurélie Charron, Christina Dunster, Ana Oliete, Véronique Jacob, Jean-Luc Besombes, Florie Chevrier, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 18, 7863–7875, https://doi.org/10.5194/acp-18-7863-2018, https://doi.org/10.5194/acp-18-7863-2018, 2018
Short summary
Short summary
This study reports on seasonal variations of five oxidative potential (OP) assays of PM from the city of Chamonix over a 1-year period. A detailed PM10 characterization allowed univariate and multivariate regression analyses in order to obtain further insight into groups of chemical species that drive OP measurements. Evidence is presented of intercorrelation assays and seasonal contrasts.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Evelyn Freney, Karine Sellegri, Mounir Chrit, Kouji Adachi, Joel Brito, Antoine Waked, Agnès Borbon, Aurélie Colomb, Régis Dupuy, Jean-Marc Pichon, Laetitia Bouvier, Claire Delon, Corinne Jambert, Pierre Durand, Thierry Bourianne, Cécile Gaimoz, Sylvain Triquet, Anaïs Féron, Matthias Beekmann, François Dulac, and Karine Sartelet
Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018, https://doi.org/10.5194/acp-18-7041-2018, 2018
Short summary
Short summary
The focus of these experiments, within the ChArMEx project, were to better understand the chemical properties of ambient aerosols over the Mediterranean region. A series of airborne measurements were performed aboard the French research aircraft, the ATR42, during the summer period. Aerosol and gas-phase chemical mass spectrometry allowed us to understand the sources and formation of organic aerosols. Numerical models were incorporated into this study to help interpret our observations.
Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Benjamin Chazeau, Gary A. Salazar, Soenke Szidat, Jean-Luc Jaffrezo, Christoph Hueglin, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 6187–6206, https://doi.org/10.5194/acp-18-6187-2018, https://doi.org/10.5194/acp-18-6187-2018, 2018
Short summary
Short summary
Carbonaceous aerosols are related to adverse human health effects, which depend on the aerosol chemical composition and size. Here, we combine aerosol mass spectrometry and radiocarbon measurements of size-resolved samples collected over a long term to identify the origins of primary and secondary carbonaceous aerosols in the fine and coarse modes.
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018, https://doi.org/10.5194/amt-11-1599-2018, 2018
Isabelle Pison, Antoine Berchet, Marielle Saunois, Philippe Bousquet, Grégoire Broquet, Sébastien Conil, Marc Delmotte, Anita Ganesan, Olivier Laurent, Damien Martin, Simon O'Doherty, Michel Ramonet, T. Gerard Spain, Alex Vermeulen, and Camille Yver Kwok
Atmos. Chem. Phys., 18, 3779–3798, https://doi.org/10.5194/acp-18-3779-2018, https://doi.org/10.5194/acp-18-3779-2018, 2018
Short summary
Short summary
Methane emissions on the national scale in France in 2012 are inferred by assimilating continuous atmospheric mixing ratio measurements from nine stations of the European network ICOS. Two complementary inversion set-ups are computed and analysed: (i) a regional run correcting for the spatial distribution of fluxes in France and (ii) a sectorial run correcting fluxes for activity sectors on the national scale. The results are compared with existing inventories and other regional inversions.
Kaspar R. Daellenbach, Imad El-Haddad, Lassi Karvonen, Athanasia Vlachou, Joel C. Corbin, Jay G. Slowik, Maarten F. Heringa, Emily A. Bruns, Samuel M. Luedin, Jean-Luc Jaffrezo, Sönke Szidat, Andrea Piazzalunga, Raquel Gonzalez, Paola Fermo, Valentin Pflueger, Guido Vogel, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 2155–2174, https://doi.org/10.5194/acp-18-2155-2018, https://doi.org/10.5194/acp-18-2155-2018, 2018
Short summary
Short summary
A novel offline LDI-MS method was developed to analyse particulate matter (PM) collected at multiple sites in central Europe during the entire year of 2013. PM sources were identified by positive matrix factorization. Wood burning emissions were separated according to the burning conditions; inefficient burns had a larger impact on air quality in southern Alpine valleys than in northern Switzerland. Moreover, primary tailpipe exhaust was distinguished from aged/secondary traffic emissions.
Adrien Deroubaix, Cyrille Flamant, Laurent Menut, Guillaume Siour, Sylvain Mailler, Solène Turquety, Régis Briant, Dmitry Khvorostyanov, and Suzanne Crumeyrolle
Atmos. Chem. Phys., 18, 445–465, https://doi.org/10.5194/acp-18-445-2018, https://doi.org/10.5194/acp-18-445-2018, 2018
Short summary
Short summary
CO and PM2.5 are analyzed over the Guinean Gulf coastal region during the beginning of the 2006 West African monsoon. A biomass burning plume from Central Africa is observed since June at the Guinean coast. In June, the modeled anthropogenic PM2.5 concentrations are higher than in May or July. An important part of the pollution emitted along the coastline is transported to the north at night within the surface layer and within the nocturnal low-level jet.
Florian Couvidat, Bertrand Bessagnet, Marta Garcia-Vivanco, Elsa Real, Laurent Menut, and Augustin Colette
Geosci. Model Dev., 11, 165–194, https://doi.org/10.5194/gmd-11-165-2018, https://doi.org/10.5194/gmd-11-165-2018, 2018
Short summary
Short summary
This paper includes the development of a new aerosol module in the air quality model CHIMERE to improve particulate matter (PM) simulation. The results of the model are compared to numerous measurements over Europe to evaluate the strengths and weaknesses of the model.
Allison N. Schwier, Karine Sellegri, Sébastien Mas, Bruno Charrière, Jorge Pey, Clémence Rose, Brice Temime-Roussel, Jean-Luc Jaffrezo, David Parin, David Picard, Mickael Ribeiro, Greg Roberts, Richard Sempéré, Nicolas Marchand, and Barbara D'Anna
Atmos. Chem. Phys., 17, 14645–14660, https://doi.org/10.5194/acp-17-14645-2017, https://doi.org/10.5194/acp-17-14645-2017, 2017
Short summary
Short summary
In the present paper, we quantify sea-to-air emission fluxes of aerosol to the atmosphere and characterize their physical and chemical properties as a function of the seawater biochemical and physical properties. Fluxes are evaluated with an original approach, a "lab in the field" experiment that preserves the seawater and atmospheric complexity while isolating air-to-sea exchanges from their surroundings. We show different features of the aerosol emission fluxes compared to previous findings.
Yunjiang Zhang, Lili Tang, Philip L. Croteau, Olivier Favez, Yele Sun, Manjula R. Canagaratna, Zhuang Wang, Florian Couvidat, Alexandre Albinet, Hongliang Zhang, Jean Sciare, André S. H. Prévôt, John T. Jayne, and Douglas R. Worsnop
Atmos. Chem. Phys., 17, 14501–14517, https://doi.org/10.5194/acp-17-14501-2017, https://doi.org/10.5194/acp-17-14501-2017, 2017
Short summary
Short summary
We conducted the first field measurements of non-refractory fine aerosols (NR-PM2.5) in a megacity of eastern China using a PM2.5-ACSM along with a PM1-ACSM measurement. Inter-comparisons demonstrated that the NR-PM2.5 components can be characterized. Substantial mass fractions of aerosol species were observed in the size range of 1–2.5 μm, with sulfate and SOA being the two largest contributors. The impacts of aerosol water driven by secondary inorganic aerosols on SOA formation were explored.
Kaspar R. Daellenbach, Giulia Stefenelli, Carlo Bozzetti, Athanasia Vlachou, Paola Fermo, Raquel Gonzalez, Andrea Piazzalunga, Cristina Colombi, Francesco Canonaco, Christoph Hueglin, Anne Kasper-Giebl, Jean-Luc Jaffrezo, Federico Bianchi, Jay G. Slowik, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 13265–13282, https://doi.org/10.5194/acp-17-13265-2017, https://doi.org/10.5194/acp-17-13265-2017, 2017
Short summary
Short summary
We present offline AMS analyses for the organic aerosol (OA) in PM10 at nine sites in central Europe for 2013. Primary OA is separated into traffic, cooking, and wood-burning components. A factor explaining sulfur-containing ions, with an event-driven time series, is also separated. We observe enhanced production of secondary OA (SOA) in summer, following biogenic emissions with temperature. In winter a SOA component is dominant, which correlates with anthropogenic inorganic species.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, Nicolas Marchand, Florian Couvidat, Karine Sellegri, and Matthias Beekmann
Atmos. Chem. Phys., 17, 12509–12531, https://doi.org/10.5194/acp-17-12509-2017, https://doi.org/10.5194/acp-17-12509-2017, 2017
Augustin Colette, Camilla Andersson, Astrid Manders, Kathleen Mar, Mihaela Mircea, Maria-Teresa Pay, Valentin Raffort, Svetlana Tsyro, Cornelius Cuvelier, Mario Adani, Bertrand Bessagnet, Robert Bergström, Gino Briganti, Tim Butler, Andrea Cappelletti, Florian Couvidat, Massimo D'Isidoro, Thierno Doumbia, Hilde Fagerli, Claire Granier, Chris Heyes, Zig Klimont, Narendra Ojha, Noelia Otero, Martijn Schaap, Katarina Sindelarova, Annemiek I. Stegehuis, Yelva Roustan, Robert Vautard, Erik van Meijgaard, Marta Garcia Vivanco, and Peter Wind
Geosci. Model Dev., 10, 3255–3276, https://doi.org/10.5194/gmd-10-3255-2017, https://doi.org/10.5194/gmd-10-3255-2017, 2017
Short summary
Short summary
The EURODELTA-Trends numerical experiment has been designed to assess the capability of chemistry-transport models to capture the evolution of surface air quality over the 1990–2010 period in Europe. It also includes sensitivity experiments in order to analyse the relative contribution of (i) emission changes, (ii) meteorological variability, and (iii) boundary conditions to air quality trends. The article is a detailed presentation of the experiment design and participating models.
Kevin Berland, Clémence Rose, Jorge Pey, Anais Culot, Evelyn Freney, Nikolaos Kalivitis, Giorgios Kouvarakis, José Carlos Cerro, Marc Mallet, Karine Sartelet, Matthias Beckmann, Thierry Bourriane, Greg Roberts, Nicolas Marchand, Nikolaos Mihalopoulos, and Karine Sellegri
Atmos. Chem. Phys., 17, 9567–9583, https://doi.org/10.5194/acp-17-9567-2017, https://doi.org/10.5194/acp-17-9567-2017, 2017
Short summary
Short summary
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive the total number concentration of particles in the atmosphere. Here we use measurements performed simultaneously in Corsica, Crete and Mallorca to show that the spatial extent of the NPF events are several hundreds of kilometers large. Airborne measurements additionally show that nanoparticles in the marine atmosphere can either be of marine origin or from higher altitudes above the continent.
Reza Shaiganfar, Steffen Beirle, Hugo Denier van der Gon, Sander Jonkers, Jeroen Kuenen, Herve Petetin, Qijie Zhang, Matthias Beekmann, and Thomas Wagner
Atmos. Chem. Phys., 17, 7853–7890, https://doi.org/10.5194/acp-17-7853-2017, https://doi.org/10.5194/acp-17-7853-2017, 2017
Short summary
Short summary
We determine NOx emissions for Paris in summer 2009 and winter 2009/2010 by combining car MAX-DOAS measurements of NO2 with wind fields. We compare the results with simulations from the CHIMERE model. We derive daily average NOx emissions for Paris of 4.0 × 1025 molecules s−1 for summer and of 6.9 × 1025 molecules s−1 in winter. These values are a factor of about 1.4 and 2.0 larger than the corresponding emissions in the MACC-III emission inventory.
Sylvain Mailler, Laurent Menut, Dmitry Khvorostyanov, Myrto Valari, Florian Couvidat, Guillaume Siour, Solène Turquety, Régis Briant, Paolo Tuccella, Bertrand Bessagnet, Augustin Colette, Laurent Létinois, Kostantinos Markakis, and Frédérik Meleux
Geosci. Model Dev., 10, 2397–2423, https://doi.org/10.5194/gmd-10-2397-2017, https://doi.org/10.5194/gmd-10-2397-2017, 2017
Short summary
Short summary
CHIMERE is a chemistry-transport model initially designed for box-modelling of the regional atmospheric composition. In the recent years, CHIMERE has been extended to be able to model atmospheric composition at all scales from urban to hemispheric scale, which implied major changes on the coordinate systems as well as on physical processes. This study describes how and why these changes have been brought to the model, largely increasing the range of its possible use.
Igor B. Konovalov, Matthias Beekmann, Evgeny V. Berezin, Paola Formenti, and Meinrat O. Andreae
Atmos. Chem. Phys., 17, 4513–4537, https://doi.org/10.5194/acp-17-4513-2017, https://doi.org/10.5194/acp-17-4513-2017, 2017
Short summary
Short summary
A shortage of consistent observational evidence on biomass burning (BB) aerosol aging processes hinders the development of their adequate representations in atmospheric models. Here we show that useful insights into the BB aerosol dynamics can be obtained from analysis of satellite measurements of aerosol optical depth and carbon dioxide. Our results indicate that aging processes strongly affect the evolution of BB aerosol in smoke plumes from wildfires in Siberia.
Lorenzo Costantino, Juan Cuesta, Emanuele Emili, Adriana Coman, Gilles Foret, Gaëlle Dufour, Maxim Eremenko, Yohann Chailleux, Matthias Beekmann, and Jean-Marie Flaud
Atmos. Meas. Tech., 10, 1281–1298, https://doi.org/10.5194/amt-10-1281-2017, https://doi.org/10.5194/amt-10-1281-2017, 2017
Short summary
Short summary
Using current space-borne measurements from one spectral domain (TIR or UV), only ozone down to 3–4 km altitude may be observed with adequate vertical sensitivity. Here, we evaluate the potential of a new multispectral retrieval method that combines the information from TIR and UV measurements provided by the new-generation sensors IASI-NG and UVNS. Both are on board the upcoming EPS-SG satellite. This new IASI-NG+UVNS retrieval approach allows observations of ozone layers down to 2 km a.s.l.
Pavlos Kalabokas, Jens Hjorth, Gilles Foret, Gaëlle Dufour, Maxim Eremenko, Guillaume Siour, Juan Cuesta, and Matthias Beekmann
Atmos. Chem. Phys., 17, 3905–3928, https://doi.org/10.5194/acp-17-3905-2017, https://doi.org/10.5194/acp-17-3905-2017, 2017
Short summary
Short summary
The main atmospheric mechanisms linked with spring surface ozone episodes over the western Mediterranean are examined. It comes out that high surface midday ozone values are usually linked with regional ozone episodes, which are strongly influenced by some specific meteorological conditions. The better understanding of the ozone variability in the lower troposphere and the boundary layer over the examined regions will help in the formulation of more effective policies in environment and climate.
Laurent Menut, Sylvain Mailler, Bertrand Bessagnet, Guillaume Siour, Augustin Colette, Florian Couvidat, and Frédérik Meleux
Geosci. Model Dev., 10, 1199–1208, https://doi.org/10.5194/gmd-10-1199-2017, https://doi.org/10.5194/gmd-10-1199-2017, 2017
Short summary
Short summary
A simple and complementary model evaluation technique for regional chemistry transport is discussed. The methodology is based on the concept that we can learn about model performance by comparing the simulation results with observational data available for time periods other than the period originally targeted.
Luka Drinovec, Asta Gregorič, Peter Zotter, Robert Wolf, Emily Anne Bruns, André S. H. Prévôt, Jean-Eudes Petit, Olivier Favez, Jean Sciare, Ian J. Arnold, Rajan K. Chakrabarty, Hans Moosmüller, Agnes Filep, and Griša Močnik
Atmos. Meas. Tech., 10, 1043–1059, https://doi.org/10.5194/amt-10-1043-2017, https://doi.org/10.5194/amt-10-1043-2017, 2017
Short summary
Short summary
Black carbon measurements are usually conducted with absorption filter photometers, which are prone to the filter-loading effect – a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we conducted several field campaigns to investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the coating of black carbon particles.
Carlo Bozzetti, Yuliya Sosedova, Mao Xiao, Kaspar R. Daellenbach, Vidmantas Ulevicius, Vadimas Dudoitis, Genrik Mordas, Steigvilė Byčenkienė, Kristina Plauškaitė, Athanasia Vlachou, Benjamin Golly, Benjamin Chazeau, Jean-Luc Besombes, Urs Baltensperger, Jean-Luc Jaffrezo, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 117–141, https://doi.org/10.5194/acp-17-117-2017, https://doi.org/10.5194/acp-17-117-2017, 2017
Short summary
Short summary
In this study we present the offline-AMS source apportionment of the submicron organic aerosol (OA) sources conducted over 1 year at three locations in the south east Baltic region, which has so far received small attention. Offline-AMS enabled broadening the AMS spatial and temporal coverage, and provided a full characterization of the OA sources. Source apportionment results revealed that biomass burning and biogenic secondary emissions were the major OA sources during winter and summer.
Laurent Menut, Guillaume Siour, Sylvain Mailler, Florian Couvidat, and Bertrand Bessagnet
Atmos. Chem. Phys., 16, 12961–12982, https://doi.org/10.5194/acp-16-12961-2016, https://doi.org/10.5194/acp-16-12961-2016, 2016
Short summary
Short summary
The aerosol is modelled during the summer 2013 with the WRF and CHIMERE models and over a large area encompassing Africa, Mediterranean sea and west Europe. The modelled aerosol is compared to available measurements such as the AERONET and EMEP networks. The model ability to estimate the aerosol speciation and size distribution is quantified.
Bertrand Bessagnet, Guido Pirovano, Mihaela Mircea, Cornelius Cuvelier, Armin Aulinger, Giuseppe Calori, Giancarlo Ciarelli, Astrid Manders, Rainer Stern, Svetlana Tsyro, Marta García Vivanco, Philippe Thunis, Maria-Teresa Pay, Augustin Colette, Florian Couvidat, Frédérik Meleux, Laurence Rouïl, Anthony Ung, Sebnem Aksoyoglu, José María Baldasano, Johannes Bieser, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Sandro Finardi, Richard Kranenburg, Camillo Silibello, Claudio Carnevale, Wenche Aas, Jean-Charles Dupont, Hilde Fagerli, Lucia Gonzalez, Laurent Menut, André S. H. Prévôt, Pete Roberts, and Les White
Atmos. Chem. Phys., 16, 12667–12701, https://doi.org/10.5194/acp-16-12667-2016, https://doi.org/10.5194/acp-16-12667-2016, 2016
Short summary
Short summary
The EURODELTA III exercise allows a very comprehensive intercomparison and evaluation of air quality models' performance. On average, the models provide a rather good picture of the particulate matter (PM) concentrations over Europe even if the highest concentrations are underestimated. The meteorology is responsible for model discrepancies, while the lack of emissions, particularly in winter, is mentioned as the main reason for the underestimations of PM.
Alexia Baudic, Valérie Gros, Stéphane Sauvage, Nadine Locoge, Olivier Sanchez, Roland Sarda-Estève, Cerise Kalogridis, Jean-Eudes Petit, Nicolas Bonnaire, Dominique Baisnée, Olivier Favez, Alexandre Albinet, Jean Sciare, and Bernard Bonsang
Atmos. Chem. Phys., 16, 11961–11989, https://doi.org/10.5194/acp-16-11961-2016, https://doi.org/10.5194/acp-16-11961-2016, 2016
Short summary
Short summary
This article presents ambient air VOC measurements performed in Paris during the MEGAPOLI and FRANCIPOL campaigns (2010). For the first time, we report (O)VOC concentration levels, their temporal variations and their main emission sources. The originality of this study stands in using near-field observations to help strengthen the identification of apportioned sources derived from PMF. An important finding of this work is the high contribution of the wood burning source (50 %) in winter.
Hervé Petetin, Jean Sciare, Michael Bressi, Valérie Gros, Amandine Rosso, Olivier Sanchez, Roland Sarda-Estève, Jean-Eudes Petit, and Matthias Beekmann
Atmos. Chem. Phys., 16, 10419–10440, https://doi.org/10.5194/acp-16-10419-2016, https://doi.org/10.5194/acp-16-10419-2016, 2016
Short summary
Short summary
This paper presents the first combined measurements of both ammonium nitrate aerosols and their gaseous precursors (HNO3, NH3) in the Paris megacity, obtained during the FRANCIPOL and PARTICULES campaigns. This data set is used to investigate the nitrate formation regime within the city, which is particularly important considering the high contribution of nitrates in the fine aerosol pollution of Paris. In addition, it is also used to evaluate the CHIMERE chemistry-transport model.
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Vincent Lemaire, Isabelle Coll, Florian Couvidat, Camille Mouchel-Vallon, Christian Seigneur, and Guillaume Siour
Geosci. Model Dev., 9, 1361–1382, https://doi.org/10.5194/gmd-9-1361-2016, https://doi.org/10.5194/gmd-9-1361-2016, 2016
Short summary
Short summary
Oligomerization is one of the most important identified processes of secondary organic aerosol evolution. We have simulated the formation of oligomers from biogenic precursors, using two different parameterizations implemented in the air quality model CHIMERE. This study shows that oligomer concentration fields are quite sensitive to the way the competition between local formation, evaporation and transport is restituted. The benefits and disadvantages of each approach are discussed in details.
Benjamin Lebegue, Martina Schmidt, Michel Ramonet, Benoit Wastine, Camille Yver Kwok, Olivier Laurent, Sauveur Belviso, Ali Guemri, Carole Philippon, Jeremiah Smith, and Sebastien Conil
Atmos. Meas. Tech., 9, 1221–1238, https://doi.org/10.5194/amt-9-1221-2016, https://doi.org/10.5194/amt-9-1221-2016, 2016
Short summary
Short summary
In this study, we tested seven N2O analyzers from five different companies and compared the results with established techniques. The test protocols included the characterization of the short-term and long-term repeatability, drift, temperature dependence, linearity and sensitivity to water vapor. All of the analyzers showed a standard deviation better than 0.1 ppb for the 10-min averages. Some analyzers would benefit from improvements in temperature stability and water vapour correction.
S. Mailler, L. Menut, A. G. di Sarra, S. Becagli, T. Di Iorio, B. Bessagnet, R. Briant, P. Formenti, J.-F. Doussin, J. L. Gómez-Amo, M. Mallet, G. Rea, G. Siour, D. M. Sferlazzo, R. Traversi, R. Udisti, and S. Turquety
Atmos. Chem. Phys., 16, 1219–1244, https://doi.org/10.5194/acp-16-1219-2016, https://doi.org/10.5194/acp-16-1219-2016, 2016
Short summary
Short summary
We studied the impact of aerosols on tropospheric photolysis rates at Lampedusa during the CharMEx/ADRIMED campaign in June 2013. It is shown by using the CHIMERE chemistry-transport model (CTM) as well as in situ and remote-sensing measurements that taking into account the radiative effect of the tropospheric aerosols improves the ability of the model to reproduce the observed photolysis rates. It is hence important for CTMs to include the radiative effect of aerosols on photochemistry.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
I. B. Konovalov, M. Beekmann, E. V. Berezin, H. Petetin, T. Mielonen, I. N. Kuznetsova, and M. O. Andreae
Atmos. Chem. Phys., 15, 13269–13297, https://doi.org/10.5194/acp-15-13269-2015, https://doi.org/10.5194/acp-15-13269-2015, 2015
Short summary
Short summary
(1) The mesoscale evolution of aerosol from open biomass burning (BB) has been successfully simulated using the volatility basis set (VBS) framework. (2) The simulations disregarding semivolatile nature of organic compounds forming BB aerosol are found to be inconsistent with measurements in the region and period affected by the Russian 2010 wildfires. (3) The VBS method enables one to improve the consistency of "top-down" and "bottom-up" estimates of BB aerosol emissions.
A. Karanasiou, M. C. Minguillón, M. Viana, A. Alastuey, J.-P. Putaud, W. Maenhaut, P. Panteliadis, G. Močnik, O. Favez, and T. A. J. Kuhlbusch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-9649-2015, https://doi.org/10.5194/amtd-8-9649-2015, 2015
Revised manuscript not accepted
M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis
Atmos. Chem. Phys., 15, 10219–10237, https://doi.org/10.5194/acp-15-10219-2015, https://doi.org/10.5194/acp-15-10219-2015, 2015
Short summary
Short summary
Aerosol size distribution measurements from three ground sites, two mobile laboratories, and one airplane are combined to investigate the spatial and temporal variability of ultrafine particles in and around Paris during the summer and winter MEGAPOLI campaigns. The role of nucleation as a particle source and the influence of Paris emissions on their surroundings are examined.
V. Marécal, V.-H. Peuch, C. Andersson, S. Andersson, J. Arteta, M. Beekmann, A. Benedictow, R. Bergström, B. Bessagnet, A. Cansado, F. Chéroux, A. Colette, A. Coman, R. L. Curier, H. A. C. Denier van der Gon, A. Drouin, H. Elbern, E. Emili, R. J. Engelen, H. J. Eskes, G. Foret, E. Friese, M. Gauss, C. Giannaros, J. Guth, M. Joly, E. Jaumouillé, B. Josse, N. Kadygrov, J. W. Kaiser, K. Krajsek, J. Kuenen, U. Kumar, N. Liora, E. Lopez, L. Malherbe, I. Martinez, D. Melas, F. Meleux, L. Menut, P. Moinat, T. Morales, J. Parmentier, A. Piacentini, M. Plu, A. Poupkou, S. Queguiner, L. Robertson, L. Rouïl, M. Schaap, A. Segers, M. Sofiev, L. Tarasson, M. Thomas, R. Timmermans, Á. Valdebenito, P. van Velthoven, R. van Versendaal, J. Vira, and A. Ung
Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, https://doi.org/10.5194/gmd-8-2777-2015, 2015
Short summary
Short summary
This paper describes the air quality forecasting system over Europe put in place in the Monitoring Atmospheric Composition and Climate projects. It provides daily and 4-day forecasts and analyses for the previous day for major gas and particulate pollutants and their main precursors. These products are based on a multi-model approach using seven state-of-the-art models developed in Europe. An evaluation of the performance of the system is discussed in the paper.
H. Petetin, M. Beekmann, A. Colomb, H. A. C. Denier van der Gon, J.-C. Dupont, C. Honoré, V. Michoud, Y. Morille, O. Perrussel, A. Schwarzenboeck, J. Sciare, A. Wiedensohler, and Q. J. Zhang
Atmos. Chem. Phys., 15, 9799–9818, https://doi.org/10.5194/acp-15-9799-2015, https://doi.org/10.5194/acp-15-9799-2015, 2015
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
C. Di Biagio, L. Doppler, C. Gaimoz, N. Grand, G. Ancellet, J.-C. Raut, M. Beekmann, A. Borbon, K. Sartelet, J.-L. Attié, F. Ravetta, and P. Formenti
Atmos. Chem. Phys., 15, 9611–9630, https://doi.org/10.5194/acp-15-9611-2015, https://doi.org/10.5194/acp-15-9611-2015, 2015
Short summary
Short summary
Observations from this study indicate that continental pollution largely affects the atmospheric composition and structure of the western Mediterranean basin. Pollution plumes reach 3000-4000 m in altitude and present a very complex and highly stratified structure, characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Also we report the observations of high levels of ultrafine particles over the basin, possibly linked to new particle formation events.
G. Rea, S. Turquety, L. Menut, R. Briant, S. Mailler, and G. Siour
Atmos. Chem. Phys., 15, 8013–8036, https://doi.org/10.5194/acp-15-8013-2015, https://doi.org/10.5194/acp-15-8013-2015, 2015
R. Shaiganfar, S. Beirle, H. Petetin, Q. Zhang, M. Beekmann, and T. Wagner
Atmos. Meas. Tech., 8, 2827–2852, https://doi.org/10.5194/amt-8-2827-2015, https://doi.org/10.5194/amt-8-2827-2015, 2015
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
F. Hourdin, M. Gueye, B. Diallo, J.-L. Dufresne, J. Escribano, L. Menut, B. Marticoréna, G. Siour, and F. Guichard
Atmos. Chem. Phys., 15, 6775–6788, https://doi.org/10.5194/acp-15-6775-2015, https://doi.org/10.5194/acp-15-6775-2015, 2015
Short summary
Short summary
New parameterizations of the convective boundary layer are used to better represent the diurnal cycle of near-surface wind over Sahara and Sahel in a climate model and the associated emission of dust.
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, P. Formenti, and F. Meleux
Atmos. Chem. Phys., 15, 6159–6182, https://doi.org/10.5194/acp-15-6159-2015, https://doi.org/10.5194/acp-15-6159-2015, 2015
Short summary
Short summary
The ozone and aerosol concentration variability is studied over the Euro-Mediterranean area during the months of June and July 2013 and in the framework of the ADRIMED project. A first analysis is performed using meteorological variables, ozone and aerosol concentrations using routine network station, satellite and specific ADRIMED project airborne measurements. This analysis is complemented by modeling using the WRF and CHIMERE regional models.
F. Couvidat and K. Sartelet
Geosci. Model Dev., 8, 1111–1138, https://doi.org/10.5194/gmd-8-1111-2015, https://doi.org/10.5194/gmd-8-1111-2015, 2015
J.-E. Petit, O. Favez, J. Sciare, V. Crenn, R. Sarda-Estève, N. Bonnaire, G. Močnik, J.-C. Dupont, M. Haeffelin, and E. Leoz-Garziandia
Atmos. Chem. Phys., 15, 2985–3005, https://doi.org/10.5194/acp-15-2985-2015, https://doi.org/10.5194/acp-15-2985-2015, 2015
P. Panteliadis, T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer, O. Favez, P. Quincey, M. Viana, R. Hitzenberger, R. Vecchi, D. Saraga, J. Sciare, J. L. Jaffrezo, A. John, J. Schwarz, M. Giannoni, J. Novak, A. Karanasiou, P. Fermo, and W. Maenhaut
Atmos. Meas. Tech., 8, 779–792, https://doi.org/10.5194/amt-8-779-2015, https://doi.org/10.5194/amt-8-779-2015, 2015
J.-E. Petit, O. Favez, J. Sciare, F. Canonaco, P. Croteau, G. Močnik, J. Jayne, D. Worsnop, and E. Leoz-Garziandia
Atmos. Chem. Phys., 14, 13773–13787, https://doi.org/10.5194/acp-14-13773-2014, https://doi.org/10.5194/acp-14-13773-2014, 2014
S.-L. von der Weiden-Reinmüller, F. Drewnick, Q. J. Zhang, F. Freutel, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 14, 12931–12950, https://doi.org/10.5194/acp-14-12931-2014, https://doi.org/10.5194/acp-14-12931-2014, 2014
C. Doche, G. Dufour, G. Foret, M. Eremenko, J. Cuesta, M. Beekmann, and P. Kalabokas
Atmos. Chem. Phys., 14, 10589–10600, https://doi.org/10.5194/acp-14-10589-2014, https://doi.org/10.5194/acp-14-10589-2014, 2014
I. B. Konovalov, E. V. Berezin, P. Ciais, G. Broquet, M. Beekmann, J. Hadji-Lazaro, C. Clerbaux, M. O. Andreae, J. W. Kaiser, and E.-D. Schulze
Atmos. Chem. Phys., 14, 10383–10410, https://doi.org/10.5194/acp-14-10383-2014, https://doi.org/10.5194/acp-14-10383-2014, 2014
W. Ait-Helal, A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel, M. Crippa, C. Afif, U. Baltensperger, M. Beekmann, J.-F. Doussin, R. Durand-Jolibois, I. Fronval, N. Grand, T. Leonardis, M. Lopez, V. Michoud, K. Miet, S. Perrier, A. S. H. Prévôt, J. Schneider, G. Siour, P. Zapf, and N. Locoge
Atmos. Chem. Phys., 14, 10439–10464, https://doi.org/10.5194/acp-14-10439-2014, https://doi.org/10.5194/acp-14-10439-2014, 2014
L. Menut, S. Mailler, G. Siour, B. Bessagnet, S. Turquety, G. Rea, R. Briant, M. Mallet, J. Sciare, and P. Formenti
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-23075-2014, https://doi.org/10.5194/acpd-14-23075-2014, 2014
Revised manuscript not accepted
H. Petetin, M. Beekmann, J. Sciare, M. Bressi, A. Rosso, O. Sanchez, and V. Ghersi
Geosci. Model Dev., 7, 1483–1505, https://doi.org/10.5194/gmd-7-1483-2014, https://doi.org/10.5194/gmd-7-1483-2014, 2014
L. Chiappini, S. Verlhac, R. Aujay, W. Maenhaut, J. P. Putaud, J. Sciare, J. L. Jaffrezo, C. Liousse, C. Galy-Lacaux, L. Y. Alleman, P. Panteliadis, E. Leoz, and O. Favez
Atmos. Meas. Tech., 7, 1649–1661, https://doi.org/10.5194/amt-7-1649-2014, https://doi.org/10.5194/amt-7-1649-2014, 2014
R. Briant, L. Menut, G. Siour, and C. Prigent
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-3441-2014, https://doi.org/10.5194/gmdd-7-3441-2014, 2014
Revised manuscript not accepted
A. Waked, O. Favez, L. Y. Alleman, C. Piot, J.-E. Petit, T. Delaunay, E. Verlinden, B. Golly, J.-L. Besombes, J.-L. Jaffrezo, and E. Leoz-Garziandia
Atmos. Chem. Phys., 14, 3325–3346, https://doi.org/10.5194/acp-14-3325-2014, https://doi.org/10.5194/acp-14-3325-2014, 2014
S.-L. von der Weiden-Reinmüller, F. Drewnick, M. Crippa, A. S. H. Prévôt, F. Meleux, U. Baltensperger, M. Beekmann, and S. Borrmann
Atmos. Meas. Tech., 7, 279–299, https://doi.org/10.5194/amt-7-279-2014, https://doi.org/10.5194/amt-7-279-2014, 2014
I. El Haddad, B. D'Anna, B. Temime-Roussel, M. Nicolas, A. Boreave, O. Favez, D. Voisin, J. Sciare, C. George, J.-L. Jaffrezo, H. Wortham, and N. Marchand
Atmos. Chem. Phys., 13, 7875–7894, https://doi.org/10.5194/acp-13-7875-2013, https://doi.org/10.5194/acp-13-7875-2013, 2013
A. Berchet, I. Pison, F. Chevallier, P. Bousquet, S. Conil, M. Geever, T. Laurila, J. Lavrič, M. Lopez, J. Moncrieff, J. Necki, M. Ramonet, M. Schmidt, M. Steinbacher, and J. Tarniewicz
Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, https://doi.org/10.5194/acp-13-7115-2013, 2013
L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco
Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, https://doi.org/10.5194/gmd-6-981-2013, 2013
S. Hammer, G. Konrad, A. T. Vermeulen, O. Laurent, M. Delmotte, A. Jordan, L. Hazan, S. Conil, and I. Levin
Atmos. Meas. Tech., 6, 1201–1216, https://doi.org/10.5194/amt-6-1201-2013, https://doi.org/10.5194/amt-6-1201-2013, 2013
V. Michoud, A. Kukui, M. Camredon, A. Colomb, A. Borbon, K. Miet, B. Aumont, M. Beekmann, R. Durand-Jolibois, S. Perrier, P. Zapf, G. Siour, W. Ait-Helal, N. Locoge, S. Sauvage, C. Afif, V. Gros, M. Furger, G. Ancellet, and J. F. Doussin
Atmos. Chem. Phys., 12, 11951–11974, https://doi.org/10.5194/acp-12-11951-2012, https://doi.org/10.5194/acp-12-11951-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the impacts of marine aerosols over the southeast Atlantic Ocean using a chemical transport model: implications for aerosol–cloud interactions
Quantifying the impact of global nitrate aerosol on tropospheric composition fields and its production from lightning NOx
Rapid oxidation of phenolic compounds by O3 and HO●: effects of the air–water interface and mineral dust in tropospheric chemical processes
Modeling the contribution of leads to sea spray aerosol in the high Arctic
Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM2.5 and aerosol optical depth
The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe
Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ
Cluster-dynamics-based parameterization for sulfuric acid–dimethylamine nucleation: comparison and selection through box and three-dimensional modeling
The surface tension and CCN activation of sea spray aerosol particles
Impacts of meteorology and emission reductions on haze pollution during the lockdown in the North China Plain: Insights from six-year simulations
Observed and CMIP6-model-simulated organic aerosol response to drought in the contiguous United States during summertime
Cooling radiative forcing effect enhancement of atmospheric amines and mineral particles caused by heterogeneous uptake and oxidation
Exploring the processes controlling secondary inorganic aerosol: Evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns
Source-resolved atmospheric metal emissions, concentrations, and deposition fluxes into the East Asian seas
Predicted impacts of heterogeneous chemical pathways on particulate sulfur over Fairbanks, Alaska, the N. Hemisphere, and the Contiguous United States
Land use change influence on atmospheric organic gases, aerosols, and radiative effects
Analysis of secondary inorganic aerosols over the greater Athens area using the EPISODE–CityChem source dispersion and photochemistry model
Global estimates of ambient reactive nitrogen components during 2000–2100 based on the multi-stage model
Impact of mineral dust on the global nitrate aerosol direct and indirect radiative effect
The role of naphthalene and its derivatives in the formation of secondary organic aerosol in the Yangtze River Delta region, China
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Technical note: Influence of different averaging metrics and temporal resolutions on the aerosol pH calculated by thermodynamic modeling
Dual roles of the inorganic aqueous phase on secondary organic aerosol growth from benzene and phenol
Global source apportionment of aerosols into major emission regions and sectors over 1850–2017
Modeling atmospheric brown carbon in the GISS ModelE Earth system model
Observation-constrained kinetic modeling of isoprene SOA formation in the atmosphere
Significant impact of urban tree biogenic emissions on air quality estimated by a bottom-up inventory and chemistry transport modeling
Secondary organic aerosols derived from intermediate-volatility n-alkanes adopt low-viscous phase state
Modeling the drivers of fine PM pollution over Central Europe: impacts and contributions of emissions from different sources
Reaction of SO3 with H2SO4 and its implications for aerosol particle formation in the gas phase and at the air–water interface
Weakened aerosol–radiation interaction exacerbating ozone pollution in eastern China since China's clean air actions
Uncertainties from biomass burning aerosols in air quality models obscure public health impacts in Southeast Asia
Oxidative potential apportionment of atmospheric PM1: a new approach combining high-sensitive online analysers for chemical composition and offline OP measurement technique
Aqueous-phase chemistry of glyoxal with multifunctional reduced nitrogen compounds: a potential missing route for secondary brown carbon
An updated modeling framework to simulate Los Angeles air quality – Part 1: Model development, evaluation, and source apportionment
Frequent haze events associated with transport and stagnation over the corridor between the North China Plain and Yangtze River Delta
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption
pH regulates the formation of organosulfates and inorganic sulfate from organic peroxide reaction with dissolved SO2 in aquatic media
Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method
Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe
Development of an integrated model framework for multi-air-pollutant exposure assessments in high-density cities
CAMx–UNIPAR simulation of secondary organic aerosol mass formed from multiphase reactions of hydrocarbons under the Central Valley urban atmospheres of California
Impact of urbanization on fine particulate matter concentrations over central Europe
Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia
The Emissions Model Intercomparison Project (Emissions-MIP): quantifying model sensitivity to emission characteristics
Dynamics-based estimates of decline trend with fine temporal variations in China's PM2.5 emissions
Effects of simulated secondary organic aerosol water on PM1 levels and composition over the US
Reactive organic carbon air emissions from mobile sources in the United States
Mashiat Hossain, Rebecca M. Garland, and Hannah M. Horowitz
Atmos. Chem. Phys., 24, 14123–14143, https://doi.org/10.5194/acp-24-14123-2024, https://doi.org/10.5194/acp-24-14123-2024, 2024
Short summary
Short summary
Our research examines aerosol dynamics over the southeast Atlantic, a region with significant uncertainties in aerosol radiative forcings. Using the GEOS-Chem model, we find that at cloud altitudes, organic aerosols dominate during the biomass burning season, while sulfate aerosols, driven by marine emissions, prevail during peak primary production. These findings highlight the need for accurate representation of marine aerosols in models to improve climate predictions and reduce uncertainties.
Ashok K. Luhar, Anthony C. Jones, and Jonathan M. Wilkinson
Atmos. Chem. Phys., 24, 14005–14028, https://doi.org/10.5194/acp-24-14005-2024, https://doi.org/10.5194/acp-24-14005-2024, 2024
Short summary
Short summary
Nitrate aerosol is often omitted in global chemistry–climate models, partly due to the chemical complexity of its formation process. Using a global model, we show that including nitrate aerosol significantly impacts tropospheric composition fields, such as ozone, and radiation. Additionally, lightning-generated oxides of nitrogen influence both nitrate aerosol mass concentrations and aerosol size distribution, which has important implications for radiative fluxes and indirect aerosol effects.
Yanru Huo, Mingxue Li, Xueyu Wang, Jianfei Sun, Yuxin Zhou, Yuhui Ma, and Maoxia He
Atmos. Chem. Phys., 24, 12409–12423, https://doi.org/10.5194/acp-24-12409-2024, https://doi.org/10.5194/acp-24-12409-2024, 2024
Short summary
Short summary
This work found that the air–water (A–W) interface and TiO2 clusters promote the oxidation of phenolic compounds (PhCs) to varying degrees compared with the gas phase and bulk water. Some byproducts are more harmful than their parent compounds. This work provides important evidence for the rapid oxidation observed in O3/HO• + PhC experiments at the A–W interface and in mineral dust.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Connor J. Clayton, Daniel R. Marsh, Steven T. Turnock, Ailish M. Graham, Kirsty J. Pringle, Carly L. Reddington, Rajesh Kumar, and James B. McQuaid
Atmos. Chem. Phys., 24, 10717–10740, https://doi.org/10.5194/acp-24-10717-2024, https://doi.org/10.5194/acp-24-10717-2024, 2024
Short summary
Short summary
We demonstrate that strong climate mitigation could improve air quality in Europe; however, less ambitious mitigation does not result in these co-benefits. We use a high-resolution atmospheric chemistry model. This allows us to demonstrate how this varies across European countries and analyse the underlying chemistry. This may help policy-facing researchers understand which sectors and regions need to be prioritised to achieve strong air quality co-benefits of climate mitigation.
Ping-Chieh Huang, Hui-Ming Hung, Hsin-Chih Lai, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 10759–10772, https://doi.org/10.5194/acp-24-10759-2024, https://doi.org/10.5194/acp-24-10759-2024, 2024
Short summary
Short summary
Models were used to study ways to reduce particulate matter (PM) pollution in Taiwan during winter. After considering various factors, such as physical processes and chemical reactions, we found that reducing NOx or NH3 emissions is more effective at mitigating PM2.5 than reducing SO2 emissions. When considering both efficiency and cost, reducing NH3 emissions seems to be a more suitable policy for the studied environment in Taiwan.
Jiewen Shen, Bin Zhao, Shuxiao Wang, An Ning, Yuyang Li, Runlong Cai, Da Gao, Biwu Chu, Yang Gao, Manish Shrivastava, Jingkun Jiang, Xiuhui Zhang, and Hong He
Atmos. Chem. Phys., 24, 10261–10278, https://doi.org/10.5194/acp-24-10261-2024, https://doi.org/10.5194/acp-24-10261-2024, 2024
Short summary
Short summary
We extensively compare various cluster-dynamics-based parameterizations for sulfuric acid–dimethylamine nucleation and identify a newly developed parameterization derived from Atmospheric Cluster Dynamic Code (ACDC) simulations as being the most reliable one. This study offers a valuable reference for developing parameterizations of other nucleation systems and is meaningful for the accurate quantification of the environmental and climate impacts of new particle formation.
Judith Kleinheins, Nadia Shardt, Ulrike Lohmann, and Claudia Marcolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2838, https://doi.org/10.5194/egusphere-2024-2838, 2024
Short summary
Short summary
We model the CCN activation of sea spray aerosol particles with classical Köhler theory and with a new model approach that takes surface tension lowering into account. We categorize organic compounds into weak, intermediate, and strong surfactants and we outline for which composition surface tension lowering is important. The results suggest that surface tension lowering allows sea spray aerosol particles in the Aitken mode to be a source of CCN in marine updrafts.
Lang Liu, Xin Long, Yi Li, Zengliang Zang, Yan Han, Zhier Bao, Yang Chen, Tian Feng, and Jinxin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2704, https://doi.org/10.5194/egusphere-2024-2704, 2024
Short summary
Short summary
This study use the WRF-Chem model to assess how meteorological conditions and unexpected emission reductions affected PM2.5 in the North China Plain (NCP). It highlights regional disparities: in the Northern NCP, adverse weather negated emission reduction effects. In contrast, the Southern NCP with PM2.5 decrease due to favorable weather and emission reductions. The research highlighted the interaction between emissions, meteorology and air quality.
Wei Li and Yuxuan Wang
Atmos. Chem. Phys., 24, 9339–9353, https://doi.org/10.5194/acp-24-9339-2024, https://doi.org/10.5194/acp-24-9339-2024, 2024
Short summary
Short summary
Droughts immensely increased organic aerosol (OA) in the contiguous United States in summer (1998–2019), notably in the Pacific Northwest (PNW) and Southeast (SEUS). The OA rise in the SEUS is driven by the enhanced formation of epoxydiol-derived secondary organic aerosol due to the increase in biogenic volatile organic compounds and sulfate, while in the PNW, it is caused by wildfires. A total of 10 climate models captured the OA increase in the PNW yet greatly underestimated it in the SEUS.
Weina Zhang, Jianhua Mai, Zhichao Fan, Yongpeng Ji, Yuemeng Ji, Guiying Li, Yanpeng Gao, and Taicheng An
Atmos. Chem. Phys., 24, 9019–9030, https://doi.org/10.5194/acp-24-9019-2024, https://doi.org/10.5194/acp-24-9019-2024, 2024
Short summary
Short summary
This study reveals heterogeneous oxidation causes further radiative forcing effect (RFE) enhancement of amine–mineral mixed particles. Note that RFE increment is higher under clean conditions than that under polluted conditions, which is contributed to high-oxygen-content products. The enhanced RFE of amine–mineral particles caused by heterogenous oxidation is expected to alleviate warming effects.
Olivia G. Norman, Colette L. Heald, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2296, https://doi.org/10.5194/egusphere-2024-2296, 2024
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Shenglan Jiang, Yan Zhang, Guangyuan Yu, Zimin Han, Junri Zhao, Tianle Zhang, and Mei Zheng
Atmos. Chem. Phys., 24, 8363–8381, https://doi.org/10.5194/acp-24-8363-2024, https://doi.org/10.5194/acp-24-8363-2024, 2024
Short summary
Short summary
This study aims to provide gridded data on sea-wide concentrations, deposition fluxes, and soluble deposition fluxes with detailed source categories of metals using the modified CMAQ model. We developed a monthly emission inventory of six metals – Fe, Al, V, Ni, Zn, and Cu – from terrestrial anthropogenic, ship, and dust sources in East Asia in 2017. Our results reveal the contribution of each source to the emissions, concentrations, and deposition fluxes of metals in the East Asian seas.
Sara Louise Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, and Kathleen Fahey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1550, https://doi.org/10.5194/egusphere-2024-1550, 2024
Short summary
Short summary
In this work we implement heterogeneous sulfur chemistry into the Community Multiscale Air Quality (CMAQ) model. This new chemistry accounts for the formation of sulfate via aqueous oxidation of SO2 in aerosol liquid water and the formation of hydroxymethanesulfonate (HMS) – often confused by measurement techniques as sulfate. Model performance in predicting sulfur PM2.5 in Fairbanks, Alaska, and other places that experience dark and cold winters, is improved.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2024-2014, https://doi.org/10.5194/egusphere-2024-2014, 2024
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry-climate/vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation, and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Rui Li, Yining Gao, Lijia Zhang, Yubing Shen, Tianzhao Xu, Wenwen Sun, and Gehui Wang
Atmos. Chem. Phys., 24, 7623–7636, https://doi.org/10.5194/acp-24-7623-2024, https://doi.org/10.5194/acp-24-7623-2024, 2024
Short summary
Short summary
A three-stage model was developed to obtain the global maps of reactive nitrogen components during 2000–2100. The results implied that cross-validation R2 values of four species showed satisfactory performance (R2 > 0.55). Most reactive nitrogen components, except NH3, in China showed increases during 2000–2013. In the future scenarios, SSP3-7.0 (traditional-energy scenario) and SSP1-2.6 (carbon neutrality scenario) showed the highest and lowest reactive nitrogen component concentrations.
Alexandros Milousis, Klaus Klingmüller, Alexandra P. Tsimpidi, Jasper F. Kok, Maria Kanakidou, Athanasios Nenes, and Vlassis A. Karydis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1579, https://doi.org/10.5194/egusphere-2024-1579, 2024
Short summary
Short summary
This study investigates the impact of dust on the global radiative effect of nitrate aerosols. The results indicate both positive and negative regional shortwave and longwave radiative effects due to aerosol-radiation interactions and cloud adjustments. The global average net REari and REaci of nitrate aerosols are -0.11 and +0.17 W/m², respectively, mainly affecting the shortwave spectrum. Sensitivity simulations evaluated the influence of mineral dust composition and emissions on the results.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 7261–7282, https://doi.org/10.5194/acp-24-7261-2024, https://doi.org/10.5194/acp-24-7261-2024, 2024
Short summary
Short summary
The capacity of particulate matter (PM) to generate reactive oxygen species in vivo is represented by oxidative potential (OP). This study focuses on finding the appropriate model to evaluate the oxidative character of PM sources in six sites using the PM sources and OP. Eight regression techniques are introduced to assess the OP of PM. The study highlights the importance of selecting a model according to the input data characteristics and establishes some recommendations for the procedure.
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024, https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary
Short summary
We used a 20-bin WRF-Chem model to simulate NPF events in the NCP during a three-week observational period in the summer of 2019. The model was able to reproduce the observations during June 29–July 6, which was characterized by a high frequency of NPF occurrence.
Haoqi Wang, Xiao Tian, Wanting Zhao, Jiacheng Li, Haoyu Yu, Yinchang Feng, and Shaojie Song
Atmos. Chem. Phys., 24, 6583–6592, https://doi.org/10.5194/acp-24-6583-2024, https://doi.org/10.5194/acp-24-6583-2024, 2024
Short summary
Short summary
pH is a key property of ambient aerosols, which affect many atmospheric processes. As aerosol pH is a non-conservative parameter, diverse averaging metrics and temporal resolutions may influence the pH values calculated by thermodynamic models. This technical note seeks to quantitatively evaluate the average pH using varied metrics and resolutions. The ultimate goal is to establish standardized reporting practices in future research endeavors.
Jiwon Choi, Myoseon Jang, and Spencer Blau
Atmos. Chem. Phys., 24, 6567–6582, https://doi.org/10.5194/acp-24-6567-2024, https://doi.org/10.5194/acp-24-6567-2024, 2024
Short summary
Short summary
Persistent phenoxy radical (PPR), formed by phenol gas oxidation and its aqueous reaction, catalytically destroys O3 and retards secondary organic aerosol (SOA) growth. Explicit gas mechanisms including the formation of PPR and low-volatility products from the oxidation of phenol or benzene are applied to the UNIPAR model to predict SOA mass via multiphase reactions of precursors. Aqueous reactions of reactive organics increase SOA mass but retard SOA growth via heterogeneously formed PPR.
Yang Yang, Shaoxuan Mou, Hailong Wang, Pinya Wang, Baojie Li, and Hong Liao
Atmos. Chem. Phys., 24, 6509–6523, https://doi.org/10.5194/acp-24-6509-2024, https://doi.org/10.5194/acp-24-6509-2024, 2024
Short summary
Short summary
The variations in anthropogenic aerosol concentrations and source contributions and their subsequent radiative impact in major emission regions during historical periods are quantified based on an aerosol-tagging system in E3SMv1. Due to the industrial development and implementation of economic policies, sources of anthropogenic aerosols show different variations, which has important implications for pollution prevention and control measures and decision-making for global collaboration.
Maegan A. DeLessio, Kostas Tsigaridis, Susanne E. Bauer, Jacek Chowdhary, and Gregory L. Schuster
Atmos. Chem. Phys., 24, 6275–6304, https://doi.org/10.5194/acp-24-6275-2024, https://doi.org/10.5194/acp-24-6275-2024, 2024
Short summary
Short summary
This study presents the first explicit representation of brown carbon aerosols in the GISS ModelE Earth system model (ESM). Model sensitivity to a range of brown carbon parameters and model performance compared to AERONET and MODIS retrievals of total aerosol properties were assessed. A summary of best practices for incorporating brown carbon into ModelE is also included.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Tommaso Galeazzo, Bernard Aumont, Marie Camredon, Richard Valorso, Yong B. Lim, Paul J. Ziemann, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 5549–5565, https://doi.org/10.5194/acp-24-5549-2024, https://doi.org/10.5194/acp-24-5549-2024, 2024
Short summary
Short summary
Secondary organic aerosol (SOA) derived from n-alkanes is a major component of anthropogenic particulate matter. We provide an analysis of n-alkane SOA by chemistry modeling, machine learning, and laboratory experiments, showing that n-alkane SOA adopts low-viscous semi-solid or liquid states. Our results indicate few kinetic limitations of mass accommodation in SOA formation, supporting the application of equilibrium partitioning for simulating n-alkane SOA in large-scale atmospheric models.
Lukáš Bartík, Peter Huszár, Jan Karlický, Ondřej Vlček, and Kryštof Eben
Atmos. Chem. Phys., 24, 4347–4387, https://doi.org/10.5194/acp-24-4347-2024, https://doi.org/10.5194/acp-24-4347-2024, 2024
Short summary
Short summary
The presented study deals with the attribution of fine particulate matter (PM2.5) concentrations to anthropogenic emissions over Central Europe using regional-scale models. It calculates the present-day contributions of different emissions sectors to concentrations of PM2.5 and its secondary components. Moreover, the study investigates the effect of chemical nonlinearities by using multiple source attribution methods and secondary organic aerosol calculation methods.
Rui Wang, Yang Cheng, Shasha Chen, Rongrong Li, Yue Hu, Xiaokai Guo, Tianlei Zhang, Fengmin Song, and Hao Li
Atmos. Chem. Phys., 24, 4029–4046, https://doi.org/10.5194/acp-24-4029-2024, https://doi.org/10.5194/acp-24-4029-2024, 2024
Short summary
Short summary
We used quantum chemical calculations, Born–Oppenheimer molecular dynamics simulations, and the ACDC kinetic model to characterize SO3–H2SO4 interaction in the gas phase and at the air–water interface and to study the effect of H2S2O7 on H2SO4–NH3-based clusters. The work expands our understanding of new pathways for the loss of SO3 in acidic polluted areas and helps reveal some missing sources of NPF in metropolitan industrial regions and understand the atmospheric organic–sulfur cycle better.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 24, 4001–4015, https://doi.org/10.5194/acp-24-4001-2024, https://doi.org/10.5194/acp-24-4001-2024, 2024
Short summary
Short summary
The present study quantifies the response of aerosol–radiation interaction (ARI) to anthropogenic emission reduction from 2013 to 2017, with the main focus on the contribution to changed O3 concentrations over eastern China both in summer and winter using the WRF-Chem model. The weakened ARI due to decreased anthropogenic emission aggravates the summer (winter) O3 pollution by +0.81 ppb (+0.63 ppb), averaged over eastern China.
Margaret R. Marvin, Paul I. Palmer, Fei Yao, Mohd Talib Latif, and Md Firoz Khan
Atmos. Chem. Phys., 24, 3699–3715, https://doi.org/10.5194/acp-24-3699-2024, https://doi.org/10.5194/acp-24-3699-2024, 2024
Short summary
Short summary
We use an atmospheric chemistry model to investigate aerosols emitted from fire activity across Southeast Asia. We find that the limited nature of measurements in this region leads to large uncertainties that significantly hinder the model representation of these aerosols and their impacts on air quality. As a result, the number of monthly attributable deaths is underestimated by as many as 4500, particularly in March at the peak of the mainland burning season.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
Yuemeng Ji, Zhang Shi, Wenjian Li, Jiaxin Wang, Qiuju Shi, Yixin Li, Lei Gao, Ruize Ma, Weijun Lu, Lulu Xu, Yanpeng Gao, Guiying Li, and Taicheng An
Atmos. Chem. Phys., 24, 3079–3091, https://doi.org/10.5194/acp-24-3079-2024, https://doi.org/10.5194/acp-24-3079-2024, 2024
Short summary
Short summary
The formation mechanisms for secondary brown carbon (SBrC) contributed by multifunctional reduced nitrogen compounds (RNCs) remain unclear. Hence, from combined laboratory experiments and quantum chemical calculations, we investigated the heterogeneous reactions of glyoxal (GL) with multifunctional RNCs, which are driven by four-step indirect nucleophilic addition reactions. Our results show a possible missing source for SBrC formation on urban, regional, and global scales.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
Short summary
Short summary
PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024, https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary
Short summary
Air pollution levels across northern India are amongst some of the worst in the world, with episodic and hazardous haze events. Here, the ability of the WRF-Chem model to predict air quality over northern India is assessed against several datasets. Whilst surface wind speed and particle pollution peaks are over- and underestimated, respectively, meteorology and aerosol trends are adequately captured, and we conclude it is suitable for investigating severe particle pollution events.
George Jordan, Florent Malavelle, Ying Chen, Amy Peace, Eliza Duncan, Daniel G. Partridge, Paul Kim, Duncan Watson-Parris, Toshihiko Takemura, David Neubauer, Gunnar Myhre, Ragnhild Skeie, Anton Laakso, and James Haywood
Atmos. Chem. Phys., 24, 1939–1960, https://doi.org/10.5194/acp-24-1939-2024, https://doi.org/10.5194/acp-24-1939-2024, 2024
Short summary
Short summary
The 2014–15 Holuhraun eruption caused a huge aerosol plume in an otherwise unpolluted region, providing a chance to study how aerosol alters cloud properties. This two-part study uses observations and models to quantify this relationship’s impact on the Earth’s energy budget. Part 1 suggests the models capture the observed spatial and chemical evolution of the plume, yet no model plume is exact. Understanding these differences is key for Part 2, where changes to cloud properties are explored.
Lin Du, Xiaofan Lv, Makroni Lily, Kun Li, and Narcisse Tsona Tchinda
Atmos. Chem. Phys., 24, 1841–1853, https://doi.org/10.5194/acp-24-1841-2024, https://doi.org/10.5194/acp-24-1841-2024, 2024
Short summary
Short summary
This study explores the pH effect on the reaction of dissolved SO2 with selected organic peroxides. Results show that the formation of organic and/or inorganic sulfate from these peroxides strongly depends on their electronic structures, and these processes are likely to alter the chemical composition of dissolved organic matter in different ways. The rate constants of these reactions exhibit positive pH and temperature dependencies within pH 1–10 and 240–340 K ranges.
Angelo Riccio and Elena Chianese
Atmos. Chem. Phys., 24, 1673–1689, https://doi.org/10.5194/acp-24-1673-2024, https://doi.org/10.5194/acp-24-1673-2024, 2024
Short summary
Short summary
Starting from the Copernicus Atmosphere Monitoring Service (CAMS), we provided a novel ensemble statistical post-processing approach to improve their air quality predictions. Our approach is able to provide reliable short-term forecasts of pollutant concentrations, which is a key challenge in supporting national authorities in their tasks related to EU Air Quality Directives, such as planning and reporting the state of air quality to the citizens.
Stella E. I. Manavi and Spyros N. Pandis
Atmos. Chem. Phys., 24, 891–909, https://doi.org/10.5194/acp-24-891-2024, https://doi.org/10.5194/acp-24-891-2024, 2024
Short summary
Short summary
Organic vapors of intermediate volatility have often been neglected as sources of atmospheric organic aerosol. In this work we use a new approach for their simulation and quantify the contribution of these compounds emitted by transportation sources (gasoline and diesel vehicles) to particulate matter over Europe. The estimated secondary organic aerosol levels are on average 60 % higher than predicted by previous approaches. However, these estimates are probably lower limits.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Yujin Jo, Myoseon Jang, Sanghee Han, Azad Madhu, Bonyoung Koo, Yiqin Jia, Zechen Yu, Soontae Kim, and Jinsoo Park
Atmos. Chem. Phys., 24, 487–508, https://doi.org/10.5194/acp-24-487-2024, https://doi.org/10.5194/acp-24-487-2024, 2024
Short summary
Short summary
The CAMx–UNIPAR model simulated the SOA budget formed via multiphase reactions of hydrocarbons and the impact of emissions and climate on SOA characteristics under California’s urban environments during winter 2018. SOA growth was dominated by daytime oxidation of long-chain alkanes and nighttime terpene oxidation with O3 and NO−3 radicals. The spatial distributions of anthropogenic SOA were affected by the northwesterly wind, whereas those of biogenic SOA were insensitive to wind directions.
Peter Huszar, Alvaro Patricio Prieto Perez, Lukáš Bartík, Jan Karlický, and Anahi Villalba-Pradas
Atmos. Chem. Phys., 24, 397–425, https://doi.org/10.5194/acp-24-397-2024, https://doi.org/10.5194/acp-24-397-2024, 2024
Short summary
Short summary
Urbanization transforms rural land into artificial land, while due to human activities, it also introduces a great quantity of emissions. We quantify the impact of urbanization on the final particulate matter pollutant levels by looking not only at these emissions, but also at the way urban land cover influences meteorological conditions, how the removal of pollutants changes due to urban land cover, and how biogenic emissions from vegetation change due to less vegetation in urban areas.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Zhen Peng, Lili Lei, Zhe-Min Tan, Meigen Zhang, Aijun Ding, and Xingxia Kou
Atmos. Chem. Phys., 23, 14505–14520, https://doi.org/10.5194/acp-23-14505-2023, https://doi.org/10.5194/acp-23-14505-2023, 2023
Short summary
Short summary
Annual PM2.5 emissions in China consistently decreased by about 3% to 5% from 2017 to 2020 with spatial variations and seasonal dependencies. High-temporal-resolution and dynamics-based PM2.5 emission estimates provide quantitative diurnal variations for each season. Significant reductions in PM2.5 emissions in the North China Plain and northeast of China in 2020 were caused by COVID-19.
Stylianos Kakavas, Spyros N. Pandis, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13555–13564, https://doi.org/10.5194/acp-23-13555-2023, https://doi.org/10.5194/acp-23-13555-2023, 2023
Short summary
Short summary
Water uptake from organic species in aerosol can affect the partitioning of semi-volatile inorganic compounds but are not considered in global and chemical transport models. We address this with a version of the PM-CAMx model that considers such organic water effects and use it to carry out 1-year aerosol simulations over the continental US. We show that such organic water impacts can increase dry PM1 levels by up to 2 μg m-3 when RH levels and PM1 concentrations are high.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Cited articles
Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., and Puxbaum, H.: The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols, Atmos. Res., 64, 109–119, https://doi.org/10.1016/S0169-8095(02)00084-4, 2002.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H.: Arabitol and mannitol as tracers for the quantification of airborne fungal spores, Atmos. Environ., 42, 588–593, https://doi.org/10.1016/j.atmosenv.2007.10.013, 2008a.
Bauer, H., Schueller, E., Weinke, G., Berger, A., Hitzenberger, R., Marr, I. L., and Puxbaum, H.: Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol, Atmos. Environ., 42, 5542–5549, https://doi.org/10.1016/j.atmosenv.2008.03.019, 2008b.
Belis, C. A., Pernigotti, D., Pirovano, G., Favez, O., Jaffrezo, J. L., Kuenen, J., Denier Van Der Gon, H., Reizer, M., Riffault, V., Alleman, L. Y., Almeida, M., Amato, F., Angyal, A., Argyropoulos, G., Bande, S., Beslic, I., Besombes, J.-L., Bove, M. C., Brotto, P., Calori, G., Cesari, D., Colombi, C., Contini, D., De Gennaro, G., Di Gilio, A., Diapouli, E., El Haddad, I., Elbern, H., Eleftheriadis, K., Ferreira, J., Vivanco, M. G., Gilardoni, S., Golly, B., Hellebust, S., Hopke, P. K., Izadmanesh, Y., Jorquera, H., Krajsek, K., Kranenburg, R., Lazzeri, P., Lenartz, F., Lucarelli, F., Maciejewska, K., Manders, A., Manousakas, M., Masiol, M., Mircea, M., Mooibroek, D., Nava, S., Oliveira, D., Paglione, M., Pandolfi, M., Perrone, M., Petralia, E., Pietrodangelo, A., Pillon, S., Pokorna, P., Prati, P., Salameh, D., Samara, C., Samek, L., Saraga, D., Sauvage, S., Schaap, M., Scotto, F., Sega, K., Siour, G., Tauler, R., Valli, G., Vecchi, R., Venturini, E., Vestenius, M., Waked, A., and Yubero, E.: Evaluation of receptor and chemical transport models for PM10 source apportionment, Atmos. Environ. X, 5, 100053, https://doi.org/10.1016/j.aeaoa.2019.100053, 2020.
Borlaza, L. J. S., Weber, S., Uzu, G., Jacob, V., Cañete, T., Micallef, S., Trébuchon, C., Slama, R., Favez, O., and Jaffrezo, J.-L.: Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 1: Source apportionment at three neighbouring sites, Atmos. Chem. Phys., 21, 5415–5437, https://doi.org/10.5194/acp-21-5415-2021, 2021.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Cholakian, A., Beekmann, M., Colette, A., Coll, I., Siour, G., Sciare, J., Marchand, N., Couvidat, F., Pey, J., Gros, V., Sauvage, S., Michoud, V., Sellegri, K., Colomb, A., Sartelet, K., Langley DeWitt, H., Elser, M., Prévot, A. S. H., Szidat, S., and Dulac, F.: Simulation of fine organic aerosols in the western Mediterranean area during the ChArMEx 2013 summer campaign, Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, 2018.
Derognat, C., Beekmann, M., Baeumle, M., Martin, D., and Schmidt, H.: Effect of biogenic volatile organic compound emissions on tropospheric chemistry during the Atmospheric Pollution Over the Paris Area (ESQUIF) campaign in the Ile-de-France region, J. Geophys. Res.-Atmos., 108, 8560, https://doi.org/10.1029/2001JD001421, 2003.
Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U., and Jaenicke, R.: Primary biological aerosol particles in the atmosphere: a review, Tellus B, 64, 15598, https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Douwes, J., Thorne, P., Pearce, N., and Heederik, D.: Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects, Ann. Occup. Hyg., 47, 187–200, https://doi.org/10.1093/annhyg/meg032, 2003.
Eduard, W., Heederik, D., Duchaine, C., and Green, B. J.: Bioaerosol exposure assessment in the workplace: the past, present and recent advances, J. Environ. Monitor., 14, 334, https://doi.org/10.1039/c2em10717a, 2012.
Elbert, W., Taylor, P. E., Andreae, M. O., and Pöschl, U.: Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmos. Chem. Phys., 7, 4569–4588, https://doi.org/10.5194/acp-7-4569-2007, 2007.
Favez, O., El Haddad, I., Piot, C., Boréave, A., Abidi, E., Marchand, N., Jaffrezo, J.-L., Besombes, J.-L., Personnaz, M.-B., Sciare, J., Wortham, H., George, C., and D'Anna, B.: Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France), Atmos. Chem. Phys., 10, 5295–5314, https://doi.org/10.5194/acp-10-5295-2010, 2010.
Favez, O., Weber, S., Petit, J.-E., Alleman, L. Y., Albinet, A., Riffault, V., Chazeau, B., Amodeo, T., Salameh, D., Zhang, Y., Srivastava, D., Samaké, A., Aujay-Plouzeau, R., Papin, A., Bonnaire, N., Boullanger, C., Chatain, M., Chevrier, F., Detournay, A., Dominik-Sègue, M., Falhun, R., Garbin, C., Ghersi, V., Grignion, G., Levigoureux, G., Pontet, S., Rangognio, J., Zhang, S., Besombes, J.-L., Conil, S., Uzu, G., Savarino, J., Marchand, N., Gros, V., Marchand, C., Jaffrezo, J.-L., and Leoz-Garziandia, E.: Overview of the French Operational Network for In Situ Observation of PM Chemical Composition and Sources in Urban Environments (CARA Program), Atmosphere, 12, 207, https://doi.org/10.3390/atmos12020207, 2021.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+– –Na+– – –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S. S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V. R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health, and ecosystem interactions, Atmos. Res., 182, 346–376, https://doi.org/10.1016/j.atmosres.2016.07.018, 2016.
Fu, P. Q., Kawamura, K., Chen, J., Charrière, B., and Sempéré, R.: Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation, Biogeosciences, 10, 653–667, https://doi.org/10.5194/bg-10-653-2013, 2013.
Ghosh, B., Lal, H., and Srivastava, A.: Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms, Environ. Int., 85, 254–272, https://doi.org/10.1016/j.envint.2015.09.018, 2015.
Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pöhlker, C., Fröhlich-Nowoisky, J., Schmer, B., Després, V. R., Engling, G., Gallagher, M., Stone, E., Pöschl, U., and Huffman, J. A.: Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest, Atmos. Chem. Phys., 16, 15165–15184, https://doi.org/10.5194/acp-16-15165-2016, 2016.
Groisillier, A., Labourel, A., Michel, G., and Tonon, T.: The Mannitol Utilization System of the Marine Bacterium Zobellia galactanivorans, Appl. Environ. Microb., 81, 1799–1812, https://doi.org/10.1128/AEM.02808-14, 2015.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Heald, C. L. and Spracklen, D. V.: Atmospheric budget of primary biological aerosol particles from fungal spores, Geophys. Res. Lett., 36, 2009GL037493, https://doi.org/10.1029/2009GL037493, 2009.
Hoose, C., Kristjánsson, J. E., and Burrows, S. M.: How important is biological ice nucleation in clouds on a global scale?, Environ. Res. Lett., 5, 024009, https://doi.org/10.1088/1748-9326/5/2/024009, 2010.
Hopke, P. K., Dai, Q., Li, L., and Feng, Y.: Global review of recent source apportionments for airborne particulate matter, Sci. Total Environ., 740, 140091, https://doi.org/10.1016/j.scitotenv.2020.140091, 2020.
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013.
Hummel, M., Hoose, C., Gallagher, M., Healy, D. A., Huffman, J. A., O'Connor, D., Pöschl, U., Pöhlker, C., Robinson, N. H., Schnaiter, M., Sodeau, J. R., Stengel, M., Toprak, E., and Vogel, H.: Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles, Atmos. Chem. Phys., 15, 6127–6146, https://doi.org/10.5194/acp-15-6127-2015, 2015.
Jaenicke, R., Matthias-Maser, S., and Gruber, S.: Omnipresence of biological material in the atmosphere, Environ. Chem., 4, 217, https://doi.org/10.1071/EN07021, 2007.
Janssen, R. H. H., Heald, C. L., Steiner, A. L., Perring, A. E., Huffman, J. A., Robinson, E. S., Twohy, C. H., and Ziemba, L. D.: Drivers of the fungal spore bioaerosol budget: observational analysis and global modeling, Atmos. Chem. Phys., 21, 4381–4401, https://doi.org/10.5194/acp-21-4381-2021, 2021.
Jones, A. M. and Harrison, R. M.: The effects of meteorological factors on atmospheric bioaerosol concentrations, a review, Sci. Total Environ., 326, 151–180, https://doi.org/10.1016/j.scitotenv.2003.11.021, 2004.
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., and Amann, M.: Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level, Atmos. Environ., 120, 475–483, https://doi.org/10.1016/j.atmosenv.2015.08.087, 2015.
Lin, W., Yuan, H., Dong, W., Zhang, S., Liu, S., Wei, N., Lu, X., Wei, Z., Hu, Y., and Dai, Y.: Reprocessed MODIS Version 6.1 Leaf Area Index Dataset and Its Evaluation for Land Surface and Climate Modeling, Remote Sens., 15, 1780, https://doi.org/10.3390/rs15071780, 2023.
Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., Denier van der Gon, H. A. C., Drouin, A., Elbern, H., Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M., Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production, Geosci. Model Dev., 8, 2777–2813, https://doi.org/10.5194/gmd-8-2777-2015, 2015.
Menut, L., Bessagnet, B., Briant, R., Cholakian, A., Couvidat, F., Mailler, S., Pennel, R., Siour, G., Tuccella, P., Turquety, S., and Valari, M.: The CHIMERE v2020r1 online chemistry-transport model, Geosci. Model Dev., 14, 6781–6811, https://doi.org/10.5194/gmd-14-6781-2021, 2021.
Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.
Patade, S., Phillips, V. T. J., Amato, P., Bingemer, H. G., Burrows, S. M., DeMott, P. J., Goncalves, F. L. T., Knopf, D. A., Morris, C. E., Alwmark, C., Artaxo, P., Pöhlker, C., Schrod, J., and Weber, B.: Empirical formulation for multiple groups of primary biological ice nucleating particles from field observations over Amazonia, J. Atmos. Sci., 78, 2195–2220, https://doi.org/10.1175/JAS-D-20-0096.1, 2021.
Pearson, C., Littlewood, E., Douglas, P., Robertson, S., Gant, T. W., and Hansell, A. L.: Exposures and Health Outcomes in Relation to Bioaerosol Emissions From Composting Facilities: A Systematic Review of Occupational and Community Studies, J. Toxicol. Env. Heal. B, 18, 43–69, https://doi.org/10.1080/10937404.2015.1009961, 2015.
Petit, J.-E., Favez, O., Sciare, J., Crenn, V., Sarda-Estève, R., Bonnaire, N., Močnik, G., Dupont, J.-C., Haeffelin, M., and Leoz-Garziandia, E.: Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer, Atmos. Chem. Phys., 15, 2985–3005, https://doi.org/10.5194/acp-15-2985-2015, 2015.
Rouil, L., Honoré, C., Vautard, R., Beekmann, M., Bessagnet, B., Malherbe, L., Meleux, F., Dufour, A., Elichegaray, C., Flaud, J.-M., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., and Poisson, N.: Prev'air: An Operational Forecasting and Mapping System for Air Quality in Europe, B. Am. Meteorol. Soc., 90, 73–84, https://doi.org/10.1175/2008BAMS2390.1, 2009.
Samaké, A., Uzu, G., Martins, J. M. F., Calas, A., Vince, E., Parat, S., and Jaffrezo, J. L.: The unexpected role of bioaerosols in the Oxidative Potential of PM, Sci. Rep.-UK, 7, 10978, https://doi.org/10.1038/s41598-017-11178-0, 2017.
Samaké, A., Jaffrezo, J.-L., Favez, O., Weber, S., Jacob, V., Canete, T., Albinet, A., Charron, A., Riffault, V., Perdrix, E., Waked, A., Golly, B., Salameh, D., Chevrier, F., Oliveira, D. M., Besombes, J.-L., Martins, J. M. F., Bonnaire, N., Conil, S., Guillaud, G., Mesbah, B., Rocq, B., Robic, P.-Y., Hulin, A., Le Meur, S., Descheemaecker, M., Chretien, E., Marchand, N., and Uzu, G.: Arabitol, mannitol, and glucose as tracers of primary biogenic organic aerosol: the influence of environmental factors on ambient air concentrations and spatial distribution over France, Atmos. Chem. Phys., 19, 11013–11030, https://doi.org/10.5194/acp-19-11013-2019, 2019a.
Samaké, A., Jaffrezo, J.-L., Favez, O., Weber, S., Jacob, V., Albinet, A., Riffault, V., Perdrix, E., Waked, A., Golly, B., Salameh, D., Chevrier, F., Oliveira, D. M., Bonnaire, N., Besombes, J.-L., Martins, J. M. F., Conil, S., Guillaud, G., Mesbah, B., Rocq, B., Robic, P.-Y., Hulin, A., Le Meur, S., Descheemaecker, M., Chretien, E., Marchand, N., and Uzu, G.: Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites, Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, 2019b.
Samaké, A., Bonin, A., Jaffrezo, J.-L., Taberlet, P., Weber, S., Uzu, G., Jacob, V., Conil, S., and Martins, J. M. F.: High levels of primary biogenic organic aerosols are driven by only a few plant-associated microbial taxa, Atmos. Chem. Phys., 20, 5609–5628, https://doi.org/10.5194/acp-20-5609-2020, 2020.
Sesartic, A. and Dallafior, T. N.: Global fungal spore emissions, review and synthesis of literature data, Biogeosciences, 8, 1181–1192, https://doi.org/10.5194/bg-8-1181-2011, 2011.
Shaffer, B. T. and Lighthart, B.: Survey of Culturable Airborne Bacteria at Four Diverse Locations in Oregon: Urban, Rural, Forest, and Coastal, Microb. Ecol., 34, 167–177, https://doi.org/10.1007/s002489900046, 1997.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the Advanced Research WRF Version 3, National Center for Atmospheric Research Boulder, Colorado, USA, 2008.
Verlhac, S., Favez, O., and Albinet, A.: Interlaboratory comparison organized for the European laboratories involved in the analysis of levoglucosan and its isomers, LCSQA, Verneuil-en-Halatte, 2013.
Vestreng, V.: Review and Revision, Emission Data Reported to CLRTAP, MSC-W Status Report, Norwegian Meteorological Institute, Oslo, Norway, 2003.
Von Storch, H., Langenberg, H., and Feser, F.: A Spectral Nudging Technique for Dynamical Downscaling Purposes, Mon. Weather Rev., 128, 3664–3673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2, 2000.
Waked, A., Favez, O., Alleman, L. Y., Piot, C., Petit, J.-E., Delaunay, T., Verlinden, E., Golly, B., Besombes, J.-L., Jaffrezo, J.-L., and Leoz-Garziandia, E.: Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions, Atmos. Chem. Phys., 14, 3325–3346, https://doi.org/10.5194/acp-14-3325-2014, 2014.
Weber, S., Uzu, G., Favez, O., Borlaza, L. J. S., Calas, A., Salameh, D., Chevrier, F., Allard, J., Besombes, J.-L., Albinet, A., Pontet, S., Mesbah, B., Gille, G., Zhang, S., Pallares, C., Leoz-Garziandia, E., and Jaffrezo, J.-L.: Source apportionment of atmospheric PM10 oxidative potential: synthesis of 15 year-round urban datasets in France, Atmos. Chem. Phys., 21, 11353–11378, https://doi.org/10.5194/acp-21-11353-2021, 2021.
Yttri, K. E., Schnelle-Kreis, J., Maenhaut, W., Abbaszade, G., Alves, C., Bjerke, A., Bonnier, N., Bossi, R., Claeys, M., Dye, C., Evtyugina, M., García-Gacio, D., Hillamo, R., Hoffer, A., Hyder, M., Iinuma, Y., Jaffrezo, J.-L., Kasper-Giebl, A., Kiss, G., López-Mahia, P. L., Pio, C., Piot, C., Ramirez-Santa-Cruz, C., Sciare, J., Teinilä, K., Vermeylen, R., Vicente, A., and Zimmermann, R.: An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples, Atmos. Meas. Tech., 8, 125–147, https://doi.org/10.5194/amt-8-125-2015, 2015.
Short summary
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and primary biogenic factors from positive matrix factorisation. The representation of emissions taking into account a proxy for vegetation surface and specific humidity enables us to reproduce very accurately the seasonal cycle of fungal spores. Furthermore, we estimate that fungal spores can account for 20 % of PM10 and 40 % of the organic fraction of PM10 over vegetated areas in summer.
We simulate 2 years of atmospheric fungal spores over France and use observations of polyols and...
Altmetrics
Final-revised paper
Preprint