Articles | Volume 23, issue 14
https://doi.org/10.5194/acp-23-8059-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8059-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India
Mukunda M. Gogoi
CORRESPONDING AUTHOR
Space Physics Laboratory, Vikram Sarabhai Space Centre, Indian Space Research Organisation,
Thiruvananthapuram 695-022, India
S. Suresh Babu
Space Physics Laboratory, Vikram Sarabhai Space Centre, Indian Space Research Organisation,
Thiruvananthapuram 695-022, India
Ryoichi Imasu
CORRESPONDING AUTHOR
Atmosphere and Ocean Research Institute, The University of Tokyo,
Chiba 277-8568, Japan
Makiko Hashimoto
Earth Observation Research Center,
Japan Aerospace Exploration Agency, Ibaraki 305-8505, Japan
Related authors
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Venugopalan Nair Jayachandran, Surendran Nair Suresh Babu, Aditya Vaishya, Mukunda M. Gogoi, Vijayakumar S. Nair, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 561–576, https://doi.org/10.5194/acp-20-561-2020, https://doi.org/10.5194/acp-20-561-2020, 2020
Short summary
Short summary
Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCNs), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the 2016 Indian summer monsoon (ISM). A high CCN concentration is observed up to 2.5 km across the IGP, indicating the significant possibility of aerosol indirect effects.
Aditya Vaishya, Surendran Nair Suresh Babu, Venugopalan Jayachandran, Mukunda M. Gogoi, Naduparambil Bharathan Lakshmi, Krishnaswamy Krishna Moorthy, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, https://doi.org/10.5194/acp-18-17669-2018, 2018
Short summary
Short summary
Aircraft-based measurements of vertical profiles of aerosol properties, across the Indo-Gangetic Plain (IGP), prior to onset of the Indian summer monsoon reveal a highly absorbing aerosol system over the IGP. Aerosols over the west IGP are mostly natural, larger in size and scatter light efficiently. Those over the central and eastern IGP are mostly anthropogenic in origin, smaller in size and absorb more light. Elevated absorbing aerosol layers may modulate regional precipitation patterns.
C. Udayasoorian, R. M. Jayabalakrishnan, A. R. Suguna, Mukunda M. Gogoi, and S. Suresh Babu
Ann. Geophys., 32, 1361–1371, https://doi.org/10.5194/angeo-32-1361-2014, https://doi.org/10.5194/angeo-32-1361-2014, 2014
Sobhan Kumar Kompalli, S. Suresh Babu, K. Krishna Moorthy, Mukunda M Gogoi, Vijayakumar S Nair, and Jai Prakash Chaubey
Ann. Geophys., 32, 817–830, https://doi.org/10.5194/angeo-32-817-2014, https://doi.org/10.5194/angeo-32-817-2014, 2014
Mathew Sebastian, Sobhan Kumar Kompalli, Vasudevan Anil Kumar, Sandhya Jose, S. Suresh Babu, Govindan Pandithurai, Sachchidanand Singh, Rakesh K. Hooda, Vijay K. Soni, Jeffrey R. Pierce, Ville Vakkari, Eija Asmi, Daniel M. Westervelt, Antti-Pekka Hyvärinen, and Vijay P. Kanawade
Atmos. Chem. Phys., 22, 4491–4508, https://doi.org/10.5194/acp-22-4491-2022, https://doi.org/10.5194/acp-22-4491-2022, 2022
Short summary
Short summary
Characteristics of particle number size distributions and new particle formation in six locations in India were analyzed. New particle formation occurred frequently during the pre-monsoon (spring) season and it significantly modulates the shape of the particle number size distributions. The contribution of newly formed particles to cloud condensation nuclei concentrations was ~3 times higher in urban locations than in mountain background locations.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Mukunda Madhab Gogoi, Venugopalan Nair Jayachandran, Aditya Vaishya, Surendran Nair Suresh Babu, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 8593–8610, https://doi.org/10.5194/acp-20-8593-2020, https://doi.org/10.5194/acp-20-8593-2020, 2020
Short summary
Short summary
Extensive airborne measurements of aerosol number–size distribution and black carbon (BC) profiles are carried out for the first time across the IGP prior to the onset of the Indian summer monsoon. These measurements, combined with spaceborne sensors and model results, provided an east–west transect of the role of mineral dust (local and transported) in the aerosol loading across the IGP, with an increase in coarse mode concentration and coarse mode mass fraction with altitude.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, Trupti Das, Ramasamy Boopathy, Dantong Liu, Eoghan Darbyshire, James D. Allan, James Brooks, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 20, 3965–3985, https://doi.org/10.5194/acp-20-3965-2020, https://doi.org/10.5194/acp-20-3965-2020, 2020
Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Sobhan Kumar Kompalli, Mukunda M. Gogoi, and S. Suresh Babu
Atmos. Chem. Phys., 20, 3135–3149, https://doi.org/10.5194/acp-20-3135-2020, https://doi.org/10.5194/acp-20-3135-2020, 2020
Short summary
Short summary
Extensive measurements of the aerosol and cloud condensation nuclei (CCN) properties in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. At high supersaturations, most of the aerosols in the South Asian outflow become activated as CCN, whereas the aerosol system over the equatorial Indian Ocean is less CCN efficient even at higher supersaturations.
Zhe Jiang, Minzheng Duan, Huizheng Che, Wenxing Zhang, Teruyuki Nakajima, Makiko Hashimoto, Bin Chen, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 1195–1212, https://doi.org/10.5194/amt-13-1195-2020, https://doi.org/10.5194/amt-13-1195-2020, 2020
Short summary
Short summary
This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, which are two new sites of SKYNET. The seasonal variability of the aerosol properties over the two sites were investigated based on SKYRAD.pack V5.0. The validation results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.
Yu Someya, Ryoichi Imasu, Kei Shiomi, and Naoko Saitoh
Atmos. Meas. Tech., 13, 309–321, https://doi.org/10.5194/amt-13-309-2020, https://doi.org/10.5194/amt-13-309-2020, 2020
Short summary
Short summary
This study presents a novel ammonia retrieval system we developed GOSAT. This system was used to derive estimates of global atmospheric ammonia concentrations between 2009 and 2014. The results demonstrated significantly high concentrations stemming from six anthropogenic emission source areas and four biomass burning ones. Their horizontal and temporal distributions were compared with those from IASI. They were totally consistent and the causes of the differences were discussed.
Venugopalan Nair Jayachandran, Surendran Nair Suresh Babu, Aditya Vaishya, Mukunda M. Gogoi, Vijayakumar S. Nair, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 561–576, https://doi.org/10.5194/acp-20-561-2020, https://doi.org/10.5194/acp-20-561-2020, 2020
Short summary
Short summary
Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCNs), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the 2016 Indian summer monsoon (ISM). A high CCN concentration is observed up to 2.5 km across the IGP, indicating the significant possibility of aerosol indirect effects.
Mai Ouchi, Yutaka Matsumi, Tomoki Nakayama, Kensaku Shimizu, Takehiko Sawada, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Isamu Morino, Osamu Uchino, Tomoaki Tanaka, and Ryoichi Imasu
Atmos. Meas. Tech., 12, 5639–5653, https://doi.org/10.5194/amt-12-5639-2019, https://doi.org/10.5194/amt-12-5639-2019, 2019
Short summary
Short summary
A novel, practical observation system for measuring tropospheric carbon dioxide (CO2) concentrations carried by a small helium-filled balloon (CO2 sonde) has been developed for the first time. The low-cost CO2 sondes can potentially be used for frequent measurements of vertical profiles of CO2 in any parts of the world, providing useful information to understand the global and regional carbon budgets by replenishing the present sparse observation coverage.
Harshavardhana Sunil Pathak, Sreedharan Krishnakumari Satheesh, Ravi Shankar Nanjundiah, Krishnaswamy Krishna Moorthy, Sivaramakrishnan Lakshmivarahan, and Surendran Nair Suresh Babu
Atmos. Chem. Phys., 19, 11865–11886, https://doi.org/10.5194/acp-19-11865-2019, https://doi.org/10.5194/acp-19-11865-2019, 2019
Short summary
Short summary
We have developed quality-enhanced, gridded datasets for aerosol optical depth (AOD) and absorption AOD by assimilating highly accurate measurements from the dense network of ground-based stations, with respective satellite-retrieved datasets. The assimilated datasets demonstrate improved accuracy and reduced uncertainties as compared to respective satellite products. Thus, these assimilated products emerge as important tools to improve the accuracy of climate impact assessment of aerosols.
Chong Shi, Makiko Hashimoto, and Teruyuki Nakajima
Atmos. Chem. Phys., 19, 2461–2475, https://doi.org/10.5194/acp-19-2461-2019, https://doi.org/10.5194/acp-19-2461-2019, 2019
Short summary
Short summary
This paper presents a new technique for retrieving aerosol optical properties using multi-wavelength and multi-pixel information over the ocean. Different from the traditional satellite aerosol retrievals conducted pixel by pixel, we derive the aerosol optical properties of multiple pixels simultaneously by adding a smoothness constraint on the spatial variation of aerosols and oceanic substances. The technique asserts that the multi-pixel scheme is conducive to aerosol retrieval over the ocean.
Aditya Vaishya, Surendran Nair Suresh Babu, Venugopalan Jayachandran, Mukunda M. Gogoi, Naduparambil Bharathan Lakshmi, Krishnaswamy Krishna Moorthy, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, https://doi.org/10.5194/acp-18-17669-2018, 2018
Short summary
Short summary
Aircraft-based measurements of vertical profiles of aerosol properties, across the Indo-Gangetic Plain (IGP), prior to onset of the Indian summer monsoon reveal a highly absorbing aerosol system over the IGP. Aerosols over the west IGP are mostly natural, larger in size and scatter light efficiently. Those over the central and eastern IGP are mostly anthropogenic in origin, smaller in size and absorb more light. Elevated absorbing aerosol layers may modulate regional precipitation patterns.
Tomohiro O. Sato, Takao M. Sato, Hideo Sagawa, Katsuyuki Noguchi, Naoko Saitoh, Hitoshi Irie, Kazuyuki Kita, Mona E. Mahani, Koji Zettsu, Ryoichi Imasu, Sachiko Hayashida, and Yasuko Kasai
Atmos. Meas. Tech., 11, 1653–1668, https://doi.org/10.5194/amt-11-1653-2018, https://doi.org/10.5194/amt-11-1653-2018, 2018
Short summary
Short summary
Air pollution is one of the world's greatest environmental health risks. Ozone adversely affects human health and agricultural production, and the tropospheric ozone has been increasing globally over the past few decades. We report an advanced method to derive the ozone amount in the lowermost troposphere using multi-spectral measurements (UV, thermal infrared and microwave). Combining the MW measurement with the UV and thermal infrared measurements certainly increased the sensitivity.
Naoko Saitoh, Shuhei Kimoto, Ryo Sugimura, Ryoichi Imasu, Kei Shiomi, Akihiko Kuze, Yosuke Niwa, Toshinobu Machida, Yousuke Sawa, and Hidekazu Matsueda
Atmos. Meas. Tech., 10, 3877–3892, https://doi.org/10.5194/amt-10-3877-2017, https://doi.org/10.5194/amt-10-3877-2017, 2017
Short summary
Short summary
This study evaluated biases in GOSAT/TANSO-FTS thermal infrared (TIR) V1 CO2 product on 736–287 hPa on the basis of comparisons with CONTRAIL CME CO2 data over airports. TIR V1 CO2 data had consistent negative biases of 1–1.5 %, with the largest negative biases at 541–398 hPa. Global comparisons between TIR CO2 data to which the bias-correction values were applied and CO2 data simulated by NICAM-TM confirmed the validity of the bias-correction values evaluated over airports in limited areas.
Yosuke Niwa, Yosuke Fujii, Yousuke Sawa, Yosuke Iida, Akihiko Ito, Masaki Satoh, Ryoichi Imasu, Kazuhiro Tsuboi, Hidekazu Matsueda, and Nobuko Saigusa
Geosci. Model Dev., 10, 2201–2219, https://doi.org/10.5194/gmd-10-2201-2017, https://doi.org/10.5194/gmd-10-2201-2017, 2017
Short summary
Short summary
A new 4D-Var inversion system based on the icosahedral grid model, NICAM, is introduced and tested. Adding to the offline forward and adjoint models, this study has introduced the optimization method of POpULar; it does not require difficult decomposition of a matrix that establishes the correlation among the prior flux errors. In identical twin experiments of atmospheric CO2 inversion, the system successfully reproduces the spatiotemporal variations of the surface fluxes.
Yosuke Niwa, Hirofumi Tomita, Masaki Satoh, Ryoichi Imasu, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Toshinobu Machida, Motoki Sasakawa, Boris Belan, and Nobuko Saigusa
Geosci. Model Dev., 10, 1157–1174, https://doi.org/10.5194/gmd-10-1157-2017, https://doi.org/10.5194/gmd-10-1157-2017, 2017
Short summary
Short summary
We have developed forward and adjoint models based on NICAM-TM, as part of the 4D-Var system for atmospheric GHGs inversions. The models are computationally efficient enough to make the 4D-Var iterative calculation feasible. Trajectory analysis for high-CO2 concentration events are performed to test adjoint sensitivities; we also demonstrate the potential usefulness of our adjoint model for diagnosing tracer transport.
Naoko Saitoh, Shuhei Kimoto, Ryo Sugimura, Ryoichi Imasu, Shuji Kawakami, Kei Shiomi, Akihiko Kuze, Toshinobu Machida, Yousuke Sawa, and Hidekazu Matsueda
Atmos. Meas. Tech., 9, 2119–2134, https://doi.org/10.5194/amt-9-2119-2016, https://doi.org/10.5194/amt-9-2119-2016, 2016
Short summary
Short summary
This study compared GOSAT/TANSO-FTS thermal infrared (TIR) V1 and CONTRAIL CME CO2 data in the upper troposphere and lower stratosphere. The TIR CO2 averages agreed with the CME CO2 averages within 0.1 and 0.5 % in the Southern and Northern Hemisphere. At northern low and middle latitudes, their agreements were worse in spring and summer. The negative bias there made the maximum of TIR data being lower than that of CME data, which leads to underestimating the amplitude of CO2 seasonal variation.
Yu Someya, Ryoichi Imasu, Naoko Saitoh, Yoshifumi Ota, and Kei Shiomi
Atmos. Meas. Tech., 9, 1981–1992, https://doi.org/10.5194/amt-9-1981-2016, https://doi.org/10.5194/amt-9-1981-2016, 2016
Short summary
Short summary
This article presents an algorithm for cloud detection using TIR radiance spectra based on the CO2 slicing technique for improvement of GHG observation from space. The key techniques of the algorithm are channel reconstruction and their optimization for increasing sensitivity and accuracy. The analysis results using GOSAT data show general agreement with those from CALIPSO. It can be expected that this algorithm would improve the accuracy of cloud screening and gas retrievals from GOSAT data.
R. Kumar, M. C. Barth, V. S. Nair, G. G. Pfister, S. Suresh Babu, S. K. Satheesh, K. Krishna Moorthy, G. R. Carmichael, Z. Lu, and D. G. Streets
Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, https://doi.org/10.5194/acp-15-5415-2015, 2015
Short summary
Short summary
We examine differences in the surface BC between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identify dominant sources of BC in South Asia during ICARB. Anthropogenic emissions were the main source of BC during ICARB and had about 5 times stronger influence on the BoB compared to the AS. Regional-scale transport contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions.
C. Udayasoorian, R. M. Jayabalakrishnan, A. R. Suguna, Mukunda M. Gogoi, and S. Suresh Babu
Ann. Geophys., 32, 1361–1371, https://doi.org/10.5194/angeo-32-1361-2014, https://doi.org/10.5194/angeo-32-1361-2014, 2014
P. Ricaud, B. Sič, L. El Amraoui, J.-L. Attié, R. Zbinden, P. Huszar, S. Szopa, J. Parmentier, N. Jaidan, M. Michou, R. Abida, F. Carminati, D. Hauglustaine, T. August, J. Warner, R. Imasu, N. Saitoh, and V.-H. Peuch
Atmos. Chem. Phys., 14, 11427–11446, https://doi.org/10.5194/acp-14-11427-2014, https://doi.org/10.5194/acp-14-11427-2014, 2014
N. V. Rokotyan, V. I. Zakharov, K. G. Gribanov, M. Schneider, F.-M. Bréon, J. Jouzel, R. Imasu, M. Werner, M. Butzin, C. Petri, T. Warneke, and J. Notholt
Atmos. Meas. Tech., 7, 2567–2580, https://doi.org/10.5194/amt-7-2567-2014, https://doi.org/10.5194/amt-7-2567-2014, 2014
Sobhan Kumar Kompalli, S. Suresh Babu, K. Krishna Moorthy, Mukunda M Gogoi, Vijayakumar S Nair, and Jai Prakash Chaubey
Ann. Geophys., 32, 817–830, https://doi.org/10.5194/angeo-32-817-2014, https://doi.org/10.5194/angeo-32-817-2014, 2014
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and Central Africa
Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Opinion: Aerosol remote sensing over the next 20 years
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Thermal infrared observations of a western United States biomass burning aerosol plume
A new look into the impacts of dust radiative effects on the energetics of tropical easterly waves
Wind-driven emissions of coarse-mode particles in an urban environment
The Emission, Transport, and Impacts of the Extreme Saharan Dust Storm in 2015
Measurement report: Dust and anthropogenic aerosols' vertical distributions over northern China dense aerosols gathered at the top of the mixing layer
Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona
Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments
Impact of assimilating NOAA VIIRS aerosol optical depth (AOD) observations on global AOD analysis from the Copernicus Atmosphere Monitoring Service (CAMS)
Spectral dependence of birch and pine pollen optical properties using a synergy of lidar instruments
Validation activities of Aeolus wind products on the southeastern Iberian Peninsula
Thermal infrared dust optical depth and coarse-mode effective diameter over oceans retrieved from collocated MODIS and CALIOP observations
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Spatiotemporal variation characteristics of global fires and their emissions
The (mis)identification of high-latitude dust events using remote sensing methods in the Yukon, Canada: a sub-daily variability analysis
Comparison of dust optical depth from multi-sensor products and MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHemistry) dust reanalysis over North Africa, the Middle East, and Europe
Understanding day–night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia
Satellite observations of smoke–cloud–radiation interactions over the Amazon rainforest
Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions
Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars
Vertical characterization of fine and coarse dust particles during an intense Saharan dust outbreak over the Iberian Peninsula in springtime 2021
Aerosol optical depth regime over megacities of the world
South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season
Circular polarization in atmospheric aerosols
Spatiotemporal continuous estimates of daily 1 km PM2.5 from 2000 to present under the Tracking Air Pollution in China (TAP) framework
Robust evidence for reversal of the trend in aerosol effective climate forcing
Simultaneous retrievals of biomass burning aerosols and trace gases from the ultraviolet to near-infrared over northern Thailand during the 2019 pre-monsoon season
A decadal assessment of the climatology of aerosol and cloud properties over South Africa
Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements
Long-range transport of Asian dust to the Arctic: identification of transport pathways, evolution of aerosol optical properties, and impact assessment on surface albedo changes
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities
Dust transport and advection measurement with spaceborne lidars ALADIN and CALIOP and model reanalysis data
Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers
Wintertime Saharan dust transport towards the Caribbean: an airborne lidar case study during EUREC4A
Evaluation of aerosol number concentrations from CALIPSO with ATom airborne in situ measurements
Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and the consequent radiative effects
Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024, https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Short summary
Wildfires in California (CA) have grown very large during the past 20 years. These fires emit sunlight-absorbing aerosols. Analyzing observational data, our study finds that aerosols emitted from large fires in northern CA spread throughout CA and Nevada and heat the atmosphere. This heating is consistent with larger-than-normal temperatures and dry conditions. Further study is needed to determine how much the aerosols heat the atmosphere and whether they are drying the atmosphere as well.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1327, https://doi.org/10.5194/egusphere-2024-1327, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke, black carbon and brown carbon, using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and Central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024, https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Short summary
A new method, the geographical detector method (GDM), has been applied to satellite data, in addition to commonly used statistical methods, to study the sensitivity of cloud properties to aerosol over China. Different constraints for aerosol and cloud liquid water path apply over polluted and clean areas. The GDM shows that cloud parameters are more sensitive to combinations of parameters than to individual parameters, but confounding effects due to co-variation of parameters cannot be excluded.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024, https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
Short summary
Increased wildfire intensity has resulted in taller wildfire smoke plumes. We investigate the vertical structure of wildfire smoke plumes using aircraft lidar data and establish two effective smoke plume height metrics. Four novel satellite-based plume height products are evaluated for wildfires in the western US. Our results provide guidance on the strengths and limitations of these satellite products and set the stage for improved plume rise estimates by leveraging satellite products.
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024, https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024, https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Short summary
Smoke particles are typically submicron in size and assumed to have negligible impacts at the thermal infrared spectrum. However, we show that infrared signatures can be observed over dense smoke plumes from satellites. We found that giant particles are unlikely to be the dominant cause. Rather, co-transported water vapor injected to the middle to upper troposphere and surface cooling beneath the plume due to shadowing are significant, with the surface cooling effect being the most dominant.
Farnaz Hosseinpour and Eric M. Wilcox
Atmos. Chem. Phys., 24, 707–724, https://doi.org/10.5194/acp-24-707-2024, https://doi.org/10.5194/acp-24-707-2024, 2024
Short summary
Short summary
This study shows mechanistic relationships between the radiative effect of dust aerosols in the Saharan air layer and the kinetic energy of the African easterly waves across the tropical Atlantic Ocean using 22 years of daily satellite observations and reanalysis data based on satellite assimilation. Our findings suggest that dust aerosols not merely are transported by these waves but also contribute to the growth of waves through the enhancement of diabatic heating induced by dust.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Brian Harr, Bing Pu, and Qinjian Jin
EGUsphere, https://doi.org/10.5194/egusphere-2023-2896, https://doi.org/10.5194/egusphere-2023-2896, 2024
Short summary
Short summary
We found that the formation of the extreme trans-Atlantic African dust event in June 2015 is associated with a brief surge in dust emissions over western North Africa and extreme circulation patterns, such as the greatly intensified easterly jets, that facilitated the westward transport of dust. The dust plume modified radiative flux along its transport pathway but had minor air quality impacts on the U.S. as the record-high Caribbean low-level jet advected part of the plume to the Pacific.
Zhuang Wang, Chune Shi, Hao Zhang, Yujia Chen, Xiyuan Chi, Congzi Xia, Suyao Wang, Yizhi Zhu, Kaidi Zhang, Xintong Chen, Chengzhi Xing, and Cheng Liu
Atmos. Chem. Phys., 23, 14271–14292, https://doi.org/10.5194/acp-23-14271-2023, https://doi.org/10.5194/acp-23-14271-2023, 2023
Short summary
Short summary
The annual cycle of dust and anthropogenic aerosols' vertical distributions was revealed by polarization Raman lidar in Beijing. Anthropogenic aerosols typically accumulate at the top of the mixing layer (ML) due to the hygroscopic growth of atmospheric particles, and this is most significant in summer. There is no significant relationship between bottom dust mass concentration and ML height, while the dust in the upper air tends to be distributed near the mixing layer.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Sebastien Garrigues, Melanie Ades, Samuel Remy, Johannes Flemming, Zak Kipling, Istvan Laszlo, Mark Parrington, Antje Inness, Roberto Ribas, Luke Jones, Richard Engelen, and Vincent-Henri Peuch
Atmos. Chem. Phys., 23, 10473–10487, https://doi.org/10.5194/acp-23-10473-2023, https://doi.org/10.5194/acp-23-10473-2023, 2023
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating the assimilation of the NOAA VIIRS AOD product in the ECMWF model. It shows that the introduction of VIIRS in the CAMS data assimilation system enhances the accuracy of the aerosol analysis, particularly over Europe and desert and maritime sites.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Jesús Abril-Gago, Pablo Ortiz-Amezcua, Diego Bermejo-Pantaleón, Juana Andújar-Maqueda, Juan Antonio Bravo-Aranda, María José Granados-Muñoz, Francisco Navas-Guzmán, Lucas Alados-Arboledas, Inmaculada Foyo-Moreno, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 8453–8471, https://doi.org/10.5194/acp-23-8453-2023, https://doi.org/10.5194/acp-23-8453-2023, 2023
Short summary
Short summary
Validation activities of Aeolus wind products were performed in Granada with different upward-probing instrumentation (Doppler lidar system and radiosondes) and spatiotemporal collocation criteria. Specific advantages and disadvantages of each instrument were identified, and an optimal comparison criterion is proposed. Aeolus was proven to provide reliable wind products, and the upward-probing instruments were proven to be useful for Aeolus wind product validation activities.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Jacob Z. Tindan, Qinjian Jin, and Bing Pu
Atmos. Chem. Phys., 23, 5435–5466, https://doi.org/10.5194/acp-23-5435-2023, https://doi.org/10.5194/acp-23-5435-2023, 2023
Short summary
Short summary
We use the Infrared Atmospheric Sounder Interferometer (IASI) retrievals of dust variables (dust optical depth and dust layer height) and surface observations to understand the day- and nighttime variations in dust aerosols over the dust belt. Our results show that daytime dust aerosols are significantly different from nighttime, and such day–night variations are influenced by meteorological factors such as wind speed, precipitation, and turbulent motions within the atmospheric boundary layer.
Ross Herbert and Philip Stier
Atmos. Chem. Phys., 23, 4595–4616, https://doi.org/10.5194/acp-23-4595-2023, https://doi.org/10.5194/acp-23-4595-2023, 2023
Short summary
Short summary
We provide robust evidence from multiple sources showing that smoke from fires in the Amazon rainforest significantly modifies the diurnal cycle of convection and cools the climate. Low to moderate amounts of smoke increase deep convective clouds and rain, whilst beyond a threshold amount, the smoke starts to suppress the convection and rain. We are currently at this threshold, suggesting increases in fires from agricultural practices or droughts will reduce cloudiness and rain over the region.
Yue Huang, Jasper F. Kok, Masanori Saito, and Olga Muñoz
Atmos. Chem. Phys., 23, 2557–2577, https://doi.org/10.5194/acp-23-2557-2023, https://doi.org/10.5194/acp-23-2557-2023, 2023
Short summary
Short summary
Global aerosol models and remote sensing retrievals use dust optical models with inconsistent and inaccurate dust shape approximations. Here, we present a new dust optical model constrained by measured dust shape distributions. This new dust optical model is an improvement on the current dust optical models used in models and retrieval algorithms, as quantified by comparisons against laboratory and field observations of dust optics.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
María Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Diego Bermejo-Pantaleón, Michaël Sicard, Vanda Salgueiro, Francisco Molero, Clara Violeta Carvajal-Pérez, María José Granados-Muñoz, Adolfo Comerón, Flavio T. Couto, Rubén Barragán, María-Paz Zorzano, Juan Antonio Bravo-Aranda, Constantino Muñoz-Porcar, María João Costa, Begoña Artíñano, Alejandro Rodríguez-Gómez, Daniele Bortoli, Manuel Pujadas, Jesús Abril-Gago, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 143–161, https://doi.org/10.5194/acp-23-143-2023, https://doi.org/10.5194/acp-23-143-2023, 2023
Short summary
Short summary
An intense Saharan dust outbreak crossing the Iberian Peninsula in springtime was monitored to determinine the specific contribution of fine and coarse dust particles at five lidar stations, strategically covering its SW–central–NE pathway. Expected dust ageing along the transport started unappreciated. A different fine-dust impact on optical (~30 %) and mass (~10 %) properties was found. Use of polarized lidar measurements (mainly in elastic systems) for fine/coarse dust separation is crucial.
Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Antonis Gkikas, Ilias Fountoulakis, Akriti Masoom, and Stelios Kazadzis
Atmos. Chem. Phys., 22, 15703–15727, https://doi.org/10.5194/acp-22-15703-2022, https://doi.org/10.5194/acp-22-15703-2022, 2022
Short summary
Short summary
Megacities' air quality is determined by atmospheric aerosols. We focus on changes over the last two decades in the 81 largest cities, using satellite data. European and American cities have lower aerosol compared to African and Asian cities. For European, North American and East Asian cities, aerosols are decreasing over time, especially in China and the US. In the remaining cities, aerosol loads are increasing, particularly in India.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Santiago Gassó and Kirk D. Knobelspiesse
Atmos. Chem. Phys., 22, 13581–13605, https://doi.org/10.5194/acp-22-13581-2022, https://doi.org/10.5194/acp-22-13581-2022, 2022
Short summary
Short summary
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we can learn about their composition from space. New satellite sensor technology measures full polarization of reflected sunlight. This paper considers circular polarization, an overlooked category of polarization with distinctive features that could bring new insights. We review existing literature and make novel computations to consider this previously underappreciated category of polarization.
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022, https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Short summary
We provided complete coverage PM2.5 concentrations at a 1-km resolution from 2000 to the present, carefully considering the significant changes in land use characteristics in China. This high-resolution PM2.5 data successfully revealed the local-scale PM2.5 variations. We noticed changes in PM2.5 spatial patterns in association with the clean air policies, with the pollution hotspots having transferred from urban centers to rural regions with limited air quality monitoring.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Abdulaziz Tunde Yakubu and Naven Chetty
Atmos. Chem. Phys., 22, 11065–11087, https://doi.org/10.5194/acp-22-11065-2022, https://doi.org/10.5194/acp-22-11065-2022, 2022
Short summary
Short summary
This study examined the source of atmospheric aerosols and their role in forming clouds and rainfall over South Africa. The research provided answers to the cause of low precipitation, mainly linked to drought and water shortages experienced over the region. Further insight into the cause of occasional flooding that occurs in other parts of the area is provided. Finally, the study described the relationship between aerosol–cloud precipitation based on observation over the region.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022, https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out in this paper using long-term ground AERONET photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m height on the island of Tenerife. This is a region that can be considered a key location to study the seasonal dependence of dust transport from the Sahel-Sahara.
Xiaoxi Zhao, Kan Huang, Joshua S. Fu, and Sabur F. Abdullaev
Atmos. Chem. Phys., 22, 10389–10407, https://doi.org/10.5194/acp-22-10389-2022, https://doi.org/10.5194/acp-22-10389-2022, 2022
Short summary
Short summary
Long-range transport of Asian dust to the Arctic was considered an important source of Arctic air pollution. Different transport routes to the Arctic had divergent effects on the evolution of aerosol properties. Depositions of long-range-transported dust particles can reduce the Arctic surface albedo considerably. This study implied that the ubiquitous long-transport dust from China exerted considerable aerosol indirect effects on the Arctic and may have potential biogeochemical significance.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
David W. Fillmore, David A. Rutan, Seiji Kato, Fred G. Rose, and Thomas E. Caldwell
Atmos. Chem. Phys., 22, 10115–10137, https://doi.org/10.5194/acp-22-10115-2022, https://doi.org/10.5194/acp-22-10115-2022, 2022
Short summary
Short summary
This paper presents an evaluation of the aerosol analysis incorporated into the Clouds and the Earth's Radiant Energy System (CERES) data products as well as the aerosols' impact on solar radiation reaching the surface. CERES is a NASA Earth observation mission with instruments flying on various polar-orbiting satellites. Its primary objective is the study of the radiative energy balance of the climate system as well as examination of the influence of clouds and aerosols on this balance.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022, https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Short summary
The evolution of aerosol in biomass burning smoke plumes that travel over marine clouds off the Atlantic coast of central Africa was studied using measurements made by a lidar deployed on a high-altitude aircraft. The main finding was that the physical properties of aerosol do not change appreciably once the plume has left land and travels over the ocean over a timescale of 1 to 2 d. Almost all particles in the plume are of radius less than 1 micrometer and spherical in shape.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022, https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Sudip Chakraborty, Bin Guan, Duane E. Waliser, and Arlindo M. da Silva
Atmos. Chem. Phys., 22, 8175–8195, https://doi.org/10.5194/acp-22-8175-2022, https://doi.org/10.5194/acp-22-8175-2022, 2022
Short summary
Short summary
This study explores extreme aerosol transport events by aerosol atmospheric rivers (AARs) and shows the characteristics of individual AARs such as length, width, length-to-width ratio, transport strength, and dominant transport direction, the seasonal variations, the relationship to the spatial distribution of surface emissions, the vertical profiles of wind, aerosol mixing ratio, and aerosol mass fluxes, and the major planetary-scale aerosol transport pathways.
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys., 22, 7975–7993, https://doi.org/10.5194/acp-22-7975-2022, https://doi.org/10.5194/acp-22-7975-2022, 2022
Short summary
Short summary
In this paper, a Sahara dust event is tracked with the spaceborne lidars ALADIN and CALIOP and the models ECMWF and HYSPLIT. The performance of ALADIN and CALIOP on tracking the dust event and on the observations of dust optical properties and wind fields during the dust transport is evaluated. The dust mass advection is defined, which is calculated with the combination of data from ALADIN and CALIOP coupled with the products from models to describe the dust transport quantitatively.
Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, https://doi.org/10.5194/acp-22-7905-2022, 2022
Short summary
Short summary
This study investigates the aerosol optical and radiative properties and meteorological drivers during two mega SDS events over Northern China in March 2021. The MODIS-retrieved DOD data registered these two events as the most intense episode in the same period in history over the past 20 years. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favor enhanced dust emissions in the Gobi Desert.
Manuel Gutleben, Silke Groß, Christian Heske, and Martin Wirth
Atmos. Chem. Phys., 22, 7319–7330, https://doi.org/10.5194/acp-22-7319-2022, https://doi.org/10.5194/acp-22-7319-2022, 2022
Short summary
Short summary
The main transportation route of Saharan mineral dust particles leads over the subtropical Atlantic Ocean and is subject to a seasonal variation. This study investigates the characteristics of wintertime transatlantic dust transport towards the Caribbean by means of airborne lidar measurements. It is found that dust particles are transported at low atmospheric altitudes (<3.5 km) embedded in a relatively moist mixture with two other particle types, namely marine and biomass-burning particles.
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022, https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Short summary
Lidars provide height-resolved type-specific aerosol properties and are key in studying vertically collocated aerosols and clouds. In this study, we compare the aerosol number concentrations derived from spaceborne lidar with the in situ flight measurements. Our results show a reasonable agreement between both datasets. Such an agreement has not been achieved yet. It shows the potential of spaceborne lidar in studying aerosol–cloud interactions, which is needed to improve our climate forecasts.
Nair K. Kala, Narayana Sarma Anand, Mohanan R. Manoj, Harshavardhana S. Pathak, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 6067–6085, https://doi.org/10.5194/acp-22-6067-2022, https://doi.org/10.5194/acp-22-6067-2022, 2022
Short summary
Short summary
We present the 3-D distribution of atmospheric aerosols and highlight its variation with respect to longitudes over the Indian mainland and the surrounding oceans using long-term satellite observations and realistic synthesised data. The atmospheric heating due to the 3-D distribution of aerosols is estimated using radiative transfer calculations. We believe that our findings will have strong implications for aerosol–radiation interactions in regional climate simulations.
Archana Devi and Sreedharan K. Satheesh
Atmos. Chem. Phys., 22, 5365–5376, https://doi.org/10.5194/acp-22-5365-2022, https://doi.org/10.5194/acp-22-5365-2022, 2022
Short summary
Short summary
Global maps of aerosol absorption were generated using a multi-satellite retrieval algorithm. The retrieved values were validated with available aircraft-based measurements and compared with other global datasets. Seasonal and spatial distributions of aerosol absorption over various regions are also presented. The global maps of single scattering albedo with improved accuracy provide important input to climate models for assessing the climatic impact of aerosols on regional and global scales.
Cited articles
Babu, S. S. and Moorthy, K. K.: Aerosol black carbon over a tropical coastal
station in India, Geophys. Res. Lett., 29, 13-11–13-14,
https://doi.org/10.1029/2002GL015662, 2002.
Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S.,
Kompalli, S. K., Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P.
K., and Singh, D.: Trends in aerosol optical depth over Indian region:
Potential causes and impact indicators, J. Geophys. Res.-Atmos., 118, 11794–711806, https://doi.org/10.1002/2013JD020507,
2013.
Babu, S. Suresh, Nair, V. S., Gogoi, M. M., and Moorthy, K. K.: Seasonal
variation of vertical distribution of aerosol single scattering albedo over
Indian sub-continent: RAWEX aircraft observations, Atmos. Environ.,
125, 312–323, https://doi.org/10.1016/j.atmosenv.2015.09.041, 2016.
Bao, F., Cheng, T., Li, Y., Gu, X., Guo, H., Wu, Y., Wang, Y., and Gao, J.:
Retrieval of black carbon aerosol surface concentration using satellite
remote sensing observations, Remote Sens. Environ., 226, 93–108,
https://doi.org/10.1016/j.rse.2019.03.036, 2019.
Bao, F., Li, Y., Cheng, T., Gao, J., and Yuan, S.: Estimating the Columnar
Concentrations of Black Carbon Aerosols in China Using MODIS Products.
Environ. Sci. Technol., 54, 11025–11036,
https://doi.org/10.1021/acs.est.0c00816, 2020.
Barkley, A. E., Prospero, J. M., Mahowald, N., Hamilton, D. S., Popendorf,
K. J., Oehlert, A. M., Pourmand, A., Gatineau, A., Panechou-Pulcherie, K.,
Blackwelder, P., and Gaston, C. J.: African biomass burning is a substantial
source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and
Southern Ocean, P. Natl. Acad. Sci. USA, 116,
16216–16221, https://doi.org/10.1073/pnas.1906091116, 2019.
Beegum, S. N., Moorthy, K. K., Babu, S. S., Satheesh, S. K., Vinoj, V.,
Badarinath, K. V. S., Safai, P. D., Devara, P. C. S., Sacchidanand, S.,
Vinod, Dumka, U. C., and Pant, P.: Spatial distribution of aerosol black
carbon over India during pre-monsoon season, Atmos. Environ., 43,
1071–1078, https://doi.org/10.1016/j.atmosenv.2008.11.042, 2009.
Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., and
Klimont, Z.: A technology-based global inventory of black and organic carbon
emissions from combustion, J. Geophys. Res.-Atmos.,
109, D14203, https://doi.org/10.1029/2003JD003697, 2004.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Brooks, J., Allan, J. D., Williams, P. I., Liu, D., Fox, C., Haywood, J., Langridge, J. M., Highwood, E. J., Kompalli, S. K., O'Sullivan, D., Babu, S. S., Satheesh, S. K., Turner, A. G., and Coe, H.: Vertical and horizontal distribution of submicron aerosol chemical composition and physical characteristics across northern India during pre-monsoon and monsoon seasons, Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, 2019.
Ceolato, R., Bedoya-Velásquez, A. E., Fossard, F., Mouysset, V., Paulien, L., Lefebvre, S., Mazzoleni, C., Sorensen, C., Berg, M. J., and Yon, J.: Black carbon
aerosol number and mass concentration measurements by picosecond short-range
elastic backscatter lidar, Sci. Rep., 12, 8443,
https://doi.org/10.1038/s41598-022-11954-7, 2022.
Cheremisin, A. A., Marichev, V. N., Bochkovskii, D. A., Novikov, P. V., and
Romanchenko, I. I.: Stratospheric Aerosol of Siberian Forest Fires According
to Lidar Observations in Tomsk in August 2019, Atmospheric and Oceanic
Optics, 35, 57–64, https://doi.org/10.1134/S1024856022010043, 2022.
Choi, Y. and Ghim, Y. S.: Estimation of columnar concentrations of absorbing
and scattering fine mode aerosol components using AERONET data, J.
Geophys. Res.-Atmos., 121, 13628–13640,
https://doi.org/10.1002/2016JD025080, 2016.
d'Almeida, G. A., Koepke, P., and Shettle, E. P.: Atmospheric aerosols.
Global climatology and radiative characteristics. A. Deepak Publishing, ISBN 0937194220,
1991.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A. W.,
Gordon, H., Muller, J. P., Myneni, R. B., Sellers, P., Pinty, B., and
Verstraete, M.: Multiangle Imaging SptectrRadiometer (MISR) description and
experiment overview, IEEE T. Geosci. Remote,
36, 1072–1087, https://doi.org/10.1109/36.700992, 1998.
Dixon, R. K. and Krankina, O. N.: Forest fires in Russia: carbon dioxide
emissions to the atmosphere, Can. J. Forest Res., 23,
700–705, 1993.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The ”dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dubovik O., Fuertes D., Litvinov P., Lopatin, A., Lapyonok, T., Doubovik, I., Xu, F., Ducos, F., Chen, C., Torres, B., Derimian, Y., Li, L., Herreras-Giralda, M., Herrera, M., Karol, Y., Matar, C., Schuster, G. L., Espinosa, R., Puthukkudy, A., Li, Z., Fischer, J., Preusker, R., Cuesta, J., Kreuter, A., Cede, A., Aspetsberger, M., Marth, D., Bindreiter, L., Hangler, A., Lanzinger, V., Holter, C. and Federspiel, C.: A Comprehensive Description of Multi-Term LSM for Applying Multiple a Priori Constraints in Problems of Atmospheric Remote Sensing: GRASP Algorithm, Concept, and Applications, Front. Remote Sens., 2, 706851, https://doi.org/10.3389/frsen.2021.706851, 2021.
Falah, S., Kizel, F., Banerjee, T., and Broday, D. M.: Accounting for the
aerosol type and additional satellite-borne aerosol products improves the
prediction of PM2.5 concentrations, Environ. Pollut., 320, 121119,
https://doi.org/10.1016/j.envpol.2023.121119, 2023.
Fukuda, S., Nakajima, T., Takenaka, H., Higurashi, A., Kikuchi, N.,
Nakajima, T. Y., and Ishida, H.: New approaches to removing cloud shadows
and evaluating the 380 nm surface reflectance for improved aerosol optical
thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager, J.
Geophys. Res.-Atmos., 118, 13520–513531,
https://doi.org/10.1002/2013JD020090, 2013.
Gautam, R., Hsu, N. C., Lau, K.-M., Tsay, S.-C., and Kafatos, M.: Enhanced
pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007,
Geophys. Res. Lett., 36, L07704, https://doi.org/10.1029/2009GL037641,
2009.
Gautam, R., Hsu, N. C., and Lau, K.-M.: Premonsoon aerosol characterization
and radiative effects over the Indo-Gangetic Plains: Implications for
regional climate warming, J. Geophys. Res.-Atmos., 115, D17208,
https://doi.org/10.1029/2010JD013819, 2010.
Giglio, L., Schroeder, W., Hall, J. V., and Justice, C. O.: MODIS Collection
6 Active Fire Product User's Guide, Revision C, NASA, https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_C.pdf (last access: 25 June 2023), 2020.
Gogoi, M. M., Babu, S. S., Moorthy, K. K., Manoj, M. R., and Chaubey, J. P.: Absorption
characteristics of aerosols over the northwestern region of India: Distinct
seasonal signatures of biomass burning aerosols and mineral dust,
Atmos. Environ., 73, 92–102,
https://doi.org/10.1016/j.atmosenv.2013.03.009, 2013.
Gogoi, M. M., Moorthy, K. K., Sobhan Kumar, K., Jai Prakash, C., Babu, S.
S., Manoj, M. R., Vijayakumar, S. N., and Tushar, P. P.: Physical and
optical properties of aerosols in a free tropospheric environment: Results
from long-term observations over western trans-Himalayas, Atmos.
Environ., 84, 262–274, https://doi.org/10.1016/j.atmosenv.2013.11.029,
2014.
Gogoi, M. M., Babu, S. S., Moorthy, K. K., Bhuyan, P. K., Pathak, B., Subba,
T., Chutia, L., Kundu, S. S., Bharali, C., Borgohain, A., Guha, A., De, B.
K., Singh, B., and Chin, M.: Radiative effects of absorbing aerosols over
northeastern India: Observations and model simulations, J.
Geophys. Res.-Atmos., 122, 1132–1157,
https://doi.org/10.1002/2016JD025592, 2017.
Gogoi, M. M., Lakshmi, N. B., Nair, V. S., Kompalli, S. K., Moorthy, K. K.,
and Babu, S. S.: Seasonal contrast in the vertical profiles of aerosol
number concentrations and size distributions over India: Implications from
RAWEX aircraft campaign, J. Earth Syst. Sci., 128, 225,
https://doi.org/10.1007/s12040-019-1246-y, 2019.
Gogoi, M. M., Jayachandran, V. N., Vaishya, A., Babu, S. N. S., Satheesh, S. K., and Moorthy, K. K.: Airborne in situ measurements of aerosol size distributions and black carbon across the Indo-Gangetic Plain during SWAAMI–RAWEX, Atmos. Chem. Phys., 20, 8593–8610, https://doi.org/10.5194/acp-20-8593-2020, 2020.
Gogoi, M. M., Babu, S. S., Arun, B. S., Moorthy, K. K., Ajay, A., Ajay, P., Suryavanshi, A., Borgohain, A., Guha, A., Saikh, A., Pathak, B., Gharai, B., Ramaswamy, B., Balakrishnaiah, G., Menon, H. B., Kuniyal, J. C., Jayabala, K., Kotalu, R. G., Maheswari, M., Naja, M., Kaur, P., Bhuyan, P. K., Gupta, P., Singh, P. R., Srivastava, P., Singh, R. S., Kumar, R., Rastogi, S., Kundu, S. S., Kompalli, S. K., Panda, S., Tendule, C. R., Das, D., and Kant, Y.: Response of ambient BC
concentration across the Indian region to the nation-wide lockdown: Results
from the ARFINET measurements of ISRO-GBP, Curr. Sci., 120, 341–351,
https://doi.org/10.18520/cs/v120/i2/341-351, 2021.
Guha, A., De, B. K., Dhar, P., Banik, T., Chakraborty, M., Roy, R.,
Choudhury, A., Gogoi, M. M., Babu, S. S., and Moorthy, K. K.: Seasonal
Characteristics of Aerosol Black Carbon in Relation to Long Range Transport
over Tripura in Northeast India, Aerosol Air Qual. Res., 15,
786–798, https://doi.org/10.4209/aaqr.2014.02.0029, 2015.
Gustafsson, Ö. and Ramanathan, V.: Convergence on climate warming by
black carbon aerosols, P. Natl. Acad. Sci. USA, 113,
4243–4245, https://doi.org/10.1073/pnas.1603570113, 2016.
Hansen, A. D. A., Rosen, H., and Novakov, T.: The aethalometer – An
instrument for the real-time measurement of optical absorption by aerosol
particles, Sci. Total Environ., 36, 191–196,
https://doi.org/10.1016/0048-9697(84)90265-1, 1984.
Hara, Y., Nishizawa, T., Sugimoto, N., Osada, K., Yumimoto, K., Uno, I.,
Kudo, R., Ishimoto, H.: Retrieval of Aerosol Components Using
Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol
Sampling, Remote Sensing, 10, 937, https://doi.org/10.3390/rs10060937,
2018.
Hashimoto, M. and Shi, C.:
GOSAT-2 TANSO-CAI-2 L2 Pre-processing Algorithm Theoretical Basis Document-ATBD, NIES-GOSAT2-ALG-20191008-008-01, https://prdct.gosat-2.nies.go.jp/documents/pdf/ATBD_CAI-2_L2_C2PR_en_01.pdf (last access: 25 June 2023), 2020.
Hashimoto, M. and Nakajima, T.: Development of a remote sensing algorithm to
retrieve atmospheric aerosol properties using multiwavelength and multipixel
information, J. Geophys. Res.-Atmos., 122, 6347–6378,
https://doi.org/10.1002/2016JD025698, 2017.
Hersbach H., Bell, B., Berrisford P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis.
Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Higurashi, A. and Nakajima, T.: Detection of aerosol types over the East
China Sea near Japan from four-channel satellite data, Geophys. Res. Lett., 29, 17-11–17-14, https://doi.org/10.1029/2002GL015357, 2002.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hsu, N. C., Si-Chee, T., King, M. D., and Herman, J. R.: Aerosol properties
over bright-reflecting source regions, IEEE T. Geosci.
Remote, 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Tsay, S., King, M. D., and Herman, J. R.: Deep Blue Retrievals
of Asian Aerosol Properties During ACE-Asia, IEEE T. Geosci.
Remote, 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540,
2006.
Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R.,
Seftor, C. S., Huang, J., and Tsay, S.-C.: Enhanced Deep Blue aerosol
retrieval algorithm: The second generation, J. Geophys. Res.-Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
IPCC, Climate Change 2021 – The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change: edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA,
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport_small.pdf (last access: 4 July 2023), 2021.
Ishida, H. and Nakajima, T. Y.: Development of an unbiased cloud detection
algorithm for a spaceborne multispectral imager, J. Geophys.
Res.-Atmos., 114, D07206, https://doi.org/10.1029/2008JD010710, 2009.
Ishida, H., Oishi, Y., Morita, K., Moriwaki, K., and Nakajima, T. Y.: Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions, Remote Sens. Environ., 205, 390–407, https://doi.org/10.1016/j.rse.2017.11.003, 2018.
Jayaraman, A., Satheesh, S. K., Mitra, A. P., and Ramanathan, V.: Latitude
gradient in aerosol properties across the Inter Tropical Convergence Zone:
Results from the joint Indo-US study onboard Sagar Kanya, Curr. Sci., 80, 128–137, http://repository.ias.ac.in/13401/1/321.pdf (last access: 4 July 2023), 2001.
Junghenn Noyes, K. T., Kahn, R. A., Limbacher, J. A., and Li, Z.: Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations, Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, 2022.
Justice, C. O., Kendall, J. D., Dowty, P. R., and Scholes, R. J.: Satellite
remote sensing of fires during the SAFARI campaign using NOAA Advanced Very
High Resolution Radiometer data, J. Geophys. Res.-Atmos., 101, 23851–23863, https://doi.org/10.1029/95JD00623, 1996.
Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as
retrieved by MISR, J. Geophys. Res.-Atmos., 120,
4248–4281, https://doi.org/10.1002/2015JD023322, 2015.
Kaufman, Y. J.: Satellite sensing of aerosol absorption, J.
Geophys. Res.-Atmos., 92, 4307–4317,
https://doi.org/10.1029/JD092iD04p04307, 1987.
Kharuk, V. I., Dvinskaya, M. L., Im, S. T., Golyukov, A. S., and Smith, K.
T.: Wildfires in the Siberian Arctic, Fire, 5, 106, https://doi.org/10.3390/fire5040106,
2022.
Kim, J., Lee, J., Lee, H. C., Higurashi, A., Takemura, T., and Song, C. H.:
Consistency of the aerosol type classification from satellite remote sensing
during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign,
J. Geophys. Res.-Atmos., 112, D22S33,
https://doi.org/10.1029/2006JD008201, 2007.
Kim, M., Kim, J., Torres, O., Ahn, C., Kim, W., Jeong, U., Go, S., Liu, X.,
Moon, K. J., and Kim, D.-R.: Optimal Estimation-Based Algorithm to Retrieve
Aerosol Optical Properties for GEMS Measurements over Asia, Remote Sensing,
10, 162, https://doi.org/10.3390/rs10020162, 2018.
Kompalli, S. K., Babu, S. S., Moorthy, K. K., Manoj, M. R., Kumar, N. V.
P. K., Shaeb, K. H. B., and Ashok Kumar, J.: Aerosol black carbon
characteristics over Central India: Temporal variation and its dependence on
mixed layer height, Atmos. Res., 147–148, 27–37,
https://doi.org/10.1016/j.atmosres.2014.04.015, 2014.
Kompalli, S. K., Babu, S. N. S., Moorthy, K. K., Satheesh, S. K., Gogoi, M. M., Nair, V. S., Jayachandran, V. N., Liu, D., Flynn, M. J., and Coe, H.: Mixing state of refractory black carbon aerosol in the South Asian outflow over the northern Indian Ocean during winter, Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, 2021.
Kondo, Y., Sahu, L., Kuwata, M., Miyazaki, Y., Takegawa, N., Moteki, N.,
Imaru, J., Han, S., Nakayama, T., Oanh, N. T. K., Hu, M., Kim, Y. J., and
Kita, K.: Stabilization of the Mass Absorption Cross Section of Black Carbon
for Filter-Based Absorption Photometry by the use of a Heated Inlet, Aerosol
Sci. Tech., 43, 741–756,
https://doi.org/10.1080/02786820902889879, 2009.
Lee, K. H. and Kim, Y. J.: Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days, Atmos. Meas. Tech., 3, 1771–1784, https://doi.org/10.5194/amt-3-1771-2010, 2010.
Lesins, G., Chylek, P., and Lohmann, U.: A study of internal and external mixing
scenarios and its effect on aerosol optical properties and direct radiative
forcing, J. Geophys. Res., 107, 4094,
https://doi.org/10.1029/2001JD000973, 2002.
Leskinen, P., Lindner, M., Verkerk, P. J., Nabuurs, G. J., Van Brusselen, J.,
Kulikova, E., Hassegawa, M., and Lerink, B. (Eds.): Russian forests and
climate change. What Science Can Tell Us 11, European Forest Institute, https://doi.org/10.36333/wsctu11,
2020.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.:
Second-generation operational algorithm: Retrieval of aerosol properties
over land from inversion of Moderate Resolution Imaging Spectroradiometer
spectral reflectance, J. Geophys. Res.-Atmos., 112, D13211,
https://doi.org/10.1029/2006JD007811, 2007.
Li, L., Dubovik, O., Derimian, Y., Schuster, G. L., Lapyonok, T., Litvinov, P., Ducos, F., Fuertes, D., Chen, C., Li, Z., Lopatin, A., Torres, B., and Che, H.: Retrieval of aerosol components directly from satellite and ground-based measurements, Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, 2019.
Li, L., Che, H., Derimian, Y., Dubovik, O., Schuster, G.L., Chen, C., Li,
Q., Wang, Y., Guo, B., and Zhang, X.: Retrievals of fine mode
light-absorbing carbonaceous aerosols from POLDER/PARASOL observations over
East and South Asia, Remote Sens. Environ., 247, 111913, https://doi.org/10.1016/j.rse.2020.111913, 2020.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J. S.: Multiangle implementation of atmospheric correction
(MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos.,
116, D03211, https://doi.org/10.1029/2010JD014986, 2011.
Macias Fauria, M. and Johnson, E. A.: Climate and wildfires in the North
American boreal forest, Philos. T. R. Soc. B, 363, 2317–2329,
https://doi.org/10.1098/rstb.2007.2202, 2008.
Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D. S., Flanner, M. G.: The size distribution of desert dust aerosols and its impact on the Earth system, Aeolian Res., 15, 53–71, https://doi.org/10.1016/j.aeolia.2013.09.002, 2014.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Gogoi, M. M., and Babu, S.
S.: Decreasing Trend in Black Carbon Aerosols Over the Indian Region,
Geophys. Res. Lett., 46, 2903–2910,
https://doi.org/10.1029/2018GL081666, 2019.
Mao, Q., Huang, C., Chen, Q., Zhang, H., and Yuan, Y.: Satellite-based
identification of aerosol particle species using a 2D-space aerosol
classification model, Atmos. Environ., 219, 117057,
https://doi.org/10.1016/j.atmosenv.2019.117057, 2019.
Martins, J. V., Artaxo, P., Liousse, C., Reid, J. S., Hobbs, P. V., and
Kaufman, Y. J.: Effects of black carbon content, particle size, and mixing
on light absorption by aerosols from biomass burning in Brazil, J.
Geophys. Res.-Atmos., 103, 32041–32050,
https://doi.org/10.1029/98JD02593, 1998.
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George,
S., Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N.,
Niranjan, K., Madhavan, B. L., Srikant, V., Dutt, C. B. S., Badarinath, K.
V. S., and Reddy, R. R.: Wintertime aerosol characteristics over the
Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and
long-range transport, J. Geophys. Res.-Atmos., 112, D13205,
https://doi.org/10.1029/2006JD008099, 2007.
Nair, V. S., Moorthy, K. K., Babu, S. S., Narasimhulu, K., Sankara Reddy, L.
S., Ramakrishna Reddy, R., Gopal, K. R., Sreekanth, V., Madhavan, B. L., and
Niranjan, K.: Size segregated aerosol mass concentration measurements over
the Arabian Sea during ICARB, J. Earth Syst. Sci., 117, 315–323,
https://doi.org/10.1007/s12040-008-0034-x, 2008.
Nair, V. S., Babu, S. S., Gogoi, M. M., and Moorthy, K. K.: Large-scale
enhancement in aerosol absorption in the lower free troposphere over
continental India during spring, Geophys. Res. Lett., 43,
11453–411461, https://doi.org/10.1002/2016GL070669, 2016.
Nakajima, T., Yoon, S.-C., Ramanathan, V., Shi, G.-Y., Takemura, T.,
Higurashi, A., Takamura, T., Aoki, K., Sohn, B.-J., Kim, S.-W., Tsuruta, H.,
Sugimoto, N., Shimizu, A., Tanimoto, H., Sawa, Y., Lin, N.-H., Lee, C.-T.,
Goto, D., and Schutgens, N.: Overview of the Atmospheric Brown Cloud East
Asian Regional Experiment 2005 and a study of the aerosol direct radiative
forcing in east Asia, J. Geophys. Res., 112, D24S91,
https://doi.org/10.1029/2007JD009009, 2007.
National Institute for Environmental Studies, GOSAT-2 Project: GOSAT-2 TANSO-CAI-2 L2 Aerosol Property Product, CAI-2 L2 Release note, Product
version 01.03, NIES-GOSAT2-SYS-20210310-019-00, https://fxp.nies.go.jp/gosat-2_document-g/gosat-2_document/CAI-2_L2/ReleaseNote_CAI-2_L2_AERP_ver0103_RA_en_00.pdf (last access: 27 June 2023), 2021.
National Institute for Environmental Studies:
GOSAT-2 product archive,
https://prdct.gosat-2.nies.go.jp/app/searchproduct/display,
last access: 25 June 2023.
Nishizawa, T., Sugimoto, N., Matsui, I., Shimizu, A., Hara, Y., Itsushi, U.,
and Kim, S.-W.: Ground-based network observation using Mie–Raman lidars and
multi-wavelength Raman lidars and algorithm to retrieve distributions of
aerosol components, J. Quant. Spectrosc. Ra., 188, 79–93, 2017.
Oishi, Y., Ishida, H., Nakajima, T. Y., Nakamura, R., and Matsunaga, T.: The
Impact of Different Support Vectors on GOSAT-2 CAI-2 L2 Cloud
Discrimination, Remote Sensing, 9, 1236, https://doi.org/10.3390/rs9121236, 2017.
Oishi, Y., Ishida, H., and Nakajima, T. Y.: GOSAT-2 TANSO-CAI-2 L2 Cloud Discrimination Processing Algorithm Theoretical
Basis Document-ATBD, Release note, NIES-GOSAT2-ALG-20191008-009-00, https://prdct.gosat-2.nies.go.jp/documents/pdf/ATBD_CAI-2_L2_CLDD_en_00.pdf (last access: 25 June 2023), 2020.
Omar, A. H., Won, J.-G., Winker, D. M., Yoon, S.-C., Dubovik, O., and
McCormick, M. P.: Development of global aerosol models using cluster
analysis of Aerosol Robotic Network (AERONET) measurements, J.
Geophys. Res.-Atmos., 110, D10S14,
https://doi.org/10.1029/2004JD004874, 2005.
Park, R. J., Minjoong, J. K., Jaein, I. J., Daeok, Y., and Sangwoo, K.: A
contribution of brown carbon aerosol to the aerosol light absorption and its
radiative forcing in East Asia, Atmos. Environ., 44, 1414–1421,
https://doi.org/10.1016/j.atmosenv.2010.01.042, 2010.
Pathak, B., Kalita, G., Bhuyan, K., Bhuyan, P. K., and Moorthy, K. K.:
Aerosol temporal characteristics and its impact on shortwave radiative
forcing at a location in the northeast of India, J. Geophys.
Res.-Atmos., 115, D19204, https://doi.org/10.1029/2009JD013462, 2010.
Pathak, B., Subba, T., Dahutia, P., Bhuyan, P. K., Moorthy, K. K., Gogoi, M.
M., Babu, S. S., Chutia, L., Ajay, P., Biswas, J., Bharali, C., Borgohain,
A., Dhar, P., Guha, A., De, B. K., Banik, T., Chakraborty, M., Kundu, S. S.,
Sudhakar, S., and Singh, S. B.: Aerosol characteristics in north-east India
using ARFINET spectral optical depth measurements, Atmos. Environ.,
125, 461–473, https://doi.org/10.1016/j.atmosenv.2015.07.038, 2016.
Prasad, P., Raman, M. R., Ratnam, M. V., Chen, W. N., Rao, S. V. B., Gogoi, M. M., Kompalli, S. K., Kumar, S. K., and Babu, S. S.: Characterization of atmospheric Black Carbon over a semi-urban site of
Southeast India: Local sources and long-range transport, Atmos.
Res., 213, 411–421, https://doi.org/10.1016/j.atmosres.2018.06.024,
2018.
Ramnarine, E., Kodros, J. K., Hodshire, A. L., Lonsdale, C. R., Alvarado, M. J., and Pierce, J. R.: Effects of near-source coagulation of biomass burning aerosols on global predictions of aerosol size distributions and implications for aerosol radiative effects, Atmos. Chem. Phys., 19, 6561–6577, https://doi.org/10.5194/acp-19-6561-2019, 2019.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, Series on
Atmospheric, Oceanic and Planetary Physics, Volume 2, World Scientific, 256 pp., https://doi.org/10.1142/3171, 2000.
Sahu, S. K., Mangaraj, P., Beig, G., Samal, A., Pradhan, C., Dash, S., and
Tyagi, B.: Quantifying the high-resolution seasonal emission of air
pollutants from crop residue burning in India, Environ. Pollut., 286,
117165, https://doi.org/10.1016/j.envpol.2021.117165, 2021.
Sand, M., Samset, B. H., Myhre, G., Gliß, J., Bauer, S. E., Bian, H., Chin, M., Checa-Garcia, R., Ginoux, P., Kipling, Z., Kirkevåg, A., Kokkola, H., Le Sager, P., Lund, M. T., Matsui, H., van Noije, T., Olivié, D. J. L., Remy, S., Schulz, M., Stier, P., Stjern, C. W., Takemura, T., Tsigaridis, K., Tsyro, S. G., and Watson-Parris, D.: Aerosol absorption in global models from AeroCom phase III, Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, 2021.
Schuster, G. L., Dubovik, O., Holben, B. N., and Clothiaux, E. E.: Inferring
black carbon content and specific absorption from Aerosol Robotic Network
(AERONET) aerosol retrievals, J. Geophys. Res.-Atmos.,
110, D10S17, https://doi.org/10.1029/2004JD004548, 2005.
Shin, S.-K., Tesche, M., Noh, Y., and Müller, D.: Aerosol-type classification based on AERONET version 3 inversion products, Atmos. Meas. Tech., 12, 3789–3803, https://doi.org/10.5194/amt-12-3789-2019, 2019.
Singh, A., Rajput, P., Sharma, D., Sarin, M. M., and Singh, D.: Black Carbon
and Elemental Carbon from Postharvest Agricultural-Waste Burning Emissions
in the Indo-Gangetic Plain, Adv. Meteorol., 2014, 179301,
https://doi.org/10.1155/2014/179301, 2014.
Soni, V.K., Pandithurai, G., and Pai, D. S.: Evaluation of long-term changes of
solar radiation in India, Int. J. Climatol., 32,
540–551, https://doi.org/10.1002/joc.2294, 2012.
Subba, T., Gogoi, M. M., Moorthy, K. K., Bhuyan, P. K., Pathak, B., Guha,
A., Srivastava, M. K., Vyas, B. M., Singh, K., Krishnan, J., Lakshmikumar,
T. V. S., and Babu, S. S.: Aerosol Radiative Effects over India from Direct
Radiation Measurements and Model Estimates, Atmos. Res., 276,
106254, https://doi.org/10.1016/j.atmosres.2022.106254, 2022.
Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason, J.:
Derivation of aerosol properties from satellite measurements of
backscattered ultraviolet radiation: Theoretical basis, J.
Geophys. Res.-Atmos., 103, 17099–17110,
https://doi.org/10.1029/98JD00900, 1998.
Torres, O., Bhartia, P. K., Herman, J. R., Sinyuk, A., Ginoux, P., and
Holben, B.: A Long-Term Record of Aerosol Optical Depth from TOMS
Observations and Comparison to AERONET Measurements, J.
Atmos. Sci., 59, 398–413,
https://doi.org/10.1175/1520-0469(2002)059<0398:Altroa>2.0.Co;2, 2002.
Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.
K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products from
Ozone Monitoring Instrument observations: An overview, J.
Geophys. Res.-Atmos., 112, D24S47,
https://doi.org/10.1029/2007JD008809, 2007.
Torres, O., Ahn, C., and Chen, Z.: Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations, Atmos. Meas. Tech., 6, 3257–3270, https://doi.org/10.5194/amt-6-3257-2013, 2013.
Vaishya, A., Prayagraj, S., Shantanu, R., and Babu, S. S.: Aerosol black
carbon quantification in the central Indo-Gangetic Plain: Seasonal
heterogeneity and source apportionment, Atmos. Res., 185, 13–21,
https://doi.org/10.1016/j.atmosres.2016.10.001, 2017.
Vaishya, A., Babu, S. N. S., Jayachandran, V., Gogoi, M. M., Lakshmi, N. B., Moorthy, K. K., and Satheesh, S. K.: Large contrast in the vertical distribution of aerosol optical properties and radiative effects across the Indo-Gangetic Plain during the SWAAMI–RAWEX campaign, Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, 2018.
Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., and Morcette, J. J.:
Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an
overview, IEEE T. Geosci. Remote, 35,
675–686, https://doi.org/10.1109/36.581987, 1997.
Vignati, E., Karl, M., Krol, M., Wilson, J., Stier, P., and Cavalli, F.: Sources of uncertainties in modelling black carbon at the global scale, Atmos. Chem. Phys., 10, 2595–2611, https://doi.org/10.5194/acp-10-2595-2010, 2010.
Voronova, O. S., Zimaa, A. L., Kladova, V. L., and Cherepanova, E. V.:
Anomalous Wildfires in Siberia in Summer 2019, Izv. Atmos. Ocean. Phys., 56,
1042–1052, https://doi.org/10.1134/S000143382009025X, 2020.
Wang, L., Li, Z., Tian, Q., Ma, Y., Zhang, F., Zhang, Y., Li, D., Li, K.,
and Li, L.: Estimate of aerosol absorbing components of black carbon, brown
carbon, and dust from ground-based remote sensing data of sun-sky
radiometers, J. Geophys. Res.-Atmos., 118, 6534–6543,
https://doi.org/10.1002/jgrd.50356, 2013.
Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Schuster, G. L.,
Chevallier, F., Samset, B. H., Liu, J., Piao, S., Valari, M., and Tao, S.:
Estimation of global black carbon direct radiative forcing and its
uncertainty constrained by observations, J. Geophys. Res.-Atmos., 121, 5948–5971, https://doi.org/10.1002/2015JD024326, 2016.
Wooster, M. J., Zhukov, B., and Oertel, D.: Fire radiative energy for
quantitative study of biomass burning: derivation from the BIRD experimental
satellite and comparison to MODIS fire products, Remote Sens.
Environ., 86, 83–107, https://doi.org/10.1016/S0034-4257(03)00070-1,
2003.
Wurl, D., Grainger, R. G., McDonald, A. J., and Deshler, T.: Optimal estimation retrieval of aerosol microphysical properties from SAGE II satellite observations in the volcanically unperturbed lower stratosphere, Atmos. Chem. Phys., 10, 4295–4317, https://doi.org/10.5194/acp-10-4295-2010, 2010.
Xu, W., Scholten, R. C., Hessilt, T. D., Liu, Y., and Veraverbeke, S.:
Overwintering fires rising in eastern Siberia, Environ. Res.
Lett., 17, 045005, https://doi.org/10.1088/1748-9326/ac59aa, 2022.
Short summary
Considering the climate warming potential of atmospheric black carbon (BC), satellite-based retrieval is a novel idea. This study highlights the regional distribution of BC based on observations by the Cloud and Aerosol Imager-2 on board the GOSAT-2 satellite and near-surface measurements of BC in ARFINET. The satellite retrieval fairly depicts the regional and seasonal features of BC over the Indian region, which are similar to those recorded by surface observations.
Considering the climate warming potential of atmospheric black carbon (BC), satellite-based...
Altmetrics
Final-revised paper
Preprint