Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6525-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-6525-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of anthropogenic emission, meteorological factors, and carbon dioxide on the surface ozone increase in China from 2008 to 2018 during the East Asia summer monsoon season
Danyang Ma
School of Atmospheric Sciences, Nanjing University, Nanjing 210023,
China
Tijian Wang
CORRESPONDING AUTHOR
School of Atmospheric Sciences, Nanjing University, Nanjing 210023,
China
Hao Wu
Key Laboratory of Transportation Meteorology of China Meteorological
Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing
210000, China
College of Intelligent Science and Control Engineering, Jinling
Institute of Technology, Nanjing 211169, China
Key Laboratory for Virtual Geographic Environment of Ministry of
Education, Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, School of Geography
Science, Nanjing Normal University, Nanjing 210023, China
Department of Geography and Planning, University of Toronto, Toronto
M5S 2E8, Canada
Shu Li
School of Atmospheric Sciences, Nanjing University, Nanjing 210023,
China
Bingliang Zhuang
School of Atmospheric Sciences, Nanjing University, Nanjing 210023,
China
Mengmeng Li
School of Atmospheric Sciences, Nanjing University, Nanjing 210023,
China
School of Atmospheric Sciences, Nanjing University, Nanjing 210023,
China
Related authors
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
Atmos. Chem. Phys., 25, 9905–9935, https://doi.org/10.5194/acp-25-9905-2025, https://doi.org/10.5194/acp-25-9905-2025, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and an air pollutant whose distribution and time variability are mainly governed by anthropogenic emissions and dynamics. In this paper, we assess regional trends of tropospheric ozone column amounts, based on two different approaches of merging or synthesizing ground-based observations and their trends within specific regions. Our findings clearly demonstrate regional trend differences but also consistently higher pre-COVID than post-COVID trends.
Haoran Zhang, Chengchun Shi, Chuanyou Ying, Shengheng Weng, Erling Ni, Lanbu Zhao, Peiheng Yang, Keqin Tang, Xueyu Zhou, Chuanhua Ren, Tengyu Liu, Mengmeng Li, Nan Li, and Xin Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2630, https://doi.org/10.5194/egusphere-2025-2630, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study reports a unique diurnal pattern of nitrous acid (HONO), featuring higher concentrations around noon, based on one-month measurements in coastal Fujian, southeast China. Using an improved chemical transport model, we successfully reproduced the observed HONO levels and temporal variations. Further process analyses and sensitivity experiments quantified the formation mechanisms of HONO in coastal areas and shed light on its impact on the formation of OH radicals and ozone.
Mengzhu Xi, Min Xie, Yi Luo, Danyang Ma, Lingyun Feng, Shitong Chen, and Shuxian Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2466, https://doi.org/10.5194/egusphere-2025-2466, 2025
Short summary
Short summary
Tropical cyclones have a significant impact on ozone in coastal areas by affecting atmospheric circulation and meteorological conditions. We have studied the impact and future trends of climate change in the Yangtze River Delta region and found that the intensification of climate change will exacerbate the impact of TC on O3 in the Yangtze River Delta, requiring strengthened monitoring and early warning.
Danyang Ma, Min Xie, Huan He, Tijian Wang, Mengzhu Xi, Lingyun Feng, Shuxian Zhang, and Shitong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-10, https://doi.org/10.5194/egusphere-2025-10, 2025
Short summary
Short summary
The PM2.5 concentration in China underwent significant changes in 2013. We examined the underlying causes from three perspectives: anthropogenic pollutant emissions, meteorological conditions, and CO2 concentration variations. Our study highlighted the importance of considering the role of CO2 on vegetation when predicting PM2.5 concentrations and developing corresponding control strategies.
Hua Lu, Min Xie, Nan Wang, Bojun Liu, Jinyue Jiang, Bingliang Zhuang, Jianfeng Yang, Kunqin Lv, and Danyang Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-598, https://doi.org/10.5194/egusphere-2025-598, 2025
Short summary
Short summary
Fires are important sources of air pollution in many regions. This study isolates fire-specific PM2.5 from observations, showing its increasing proportion in recent years. Our findings indicate that fire-specific PM2.5 disproportionately affects impoverished populations in Asia Pacific. Furthermore, we suggest that, under future climate change, fire-specific PM2.5 will likely continue rising. This highlights the need for interventions to reduce fire-related air pollution and its health impacts.
Xin Zeng, Tijian Wang, Congwu Huang, Bingliang Zhuang, Shu Li, Mengmeng Li, Min Xie, Qian Zhang, and Nanhong Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-608, https://doi.org/10.5194/egusphere-2025-608, 2025
Short summary
Short summary
In this study, we enhanced the regional climate-chemistry-ecology model to reveal the seasonal and spatial variations of N2O levels. The lowest concentration was recorded in June (334.01 ppb), while the highest occurred in December (335.42 ppb). Certain regions, such as the North China Plain and the Ganges Basin, exhibited higher nitrous oxide levels. We also gained deeper insights into the complex interactions between N2O emissions and atmospheric processes.
Beiyao Xu, Steven Dobbie, Huiyi Yang, Lianxin Yang, Yu Jiang, Andrew Challinor, Karina Williams, Yunxia Wang, and Tijian Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4077, https://doi.org/10.5194/egusphere-2024-4077, 2025
Short summary
Short summary
Ozone (O3) pollution harms rice production and threatens food security. To understand these impacts, we calibrated a crop model using unique data from experiments where rice was grown in open fields under controlled O3 exposure (free air). This is the first time such data has been used to improve a model’s ability to predict how rice responds to O3 pollution. Our work provides a more accurate tool to study O3’s effects and guide strategies to protect agriculture.
Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Chem. Phys., 24, 13889–13912, https://doi.org/10.5194/acp-24-13889-2024, https://doi.org/10.5194/acp-24-13889-2024, 2024
Short summary
Short summary
The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally and vertically resolved. In this study, we improved, updated and validated TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant lower stratospheric ozone variation since the late 1990s.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Hua Lu, Min Xie, Wei Zhao, Bojun Liu, Tijian Wang, and Bingliang Zhuang
Atmos. Meas. Tech., 17, 167–179, https://doi.org/10.5194/amt-17-167-2024, https://doi.org/10.5194/amt-17-167-2024, 2024
Short summary
Short summary
Observations of vertical wind in regions with complex terrain are essential, but they are always sparse and have poor representation. Data verification and quality control are conducted on the wind profile radar and Aeolus wind products in this study, trying to compensate for the limitations of wind field observations. The results shed light on the comprehensive applications of multi-source wind profile data in complicated terrain regions with sparse ground-based wind observations.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Yangzhihao Zhan, Min Xie, Wei Zhao, Tijian Wang, Da Gao, Pulong Chen, Jun Tian, Kuanguang Zhu, Shu Li, Bingliang Zhuang, Mengmeng Li, Yi Luo, and Runqi Zhao
Atmos. Chem. Phys., 23, 9837–9852, https://doi.org/10.5194/acp-23-9837-2023, https://doi.org/10.5194/acp-23-9837-2023, 2023
Short summary
Short summary
Although the main source contribution of pollution is secondary inorganic aerosols in Nanjing, health risks mainly come from industry sources and vehicle emissions. Therefore, the development of megacities should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes. This study provides new insight into assessing the relationship between source apportionment and health risks and can provide valuable insight into air pollution strategies.
Hongyue Zhang, Jesper Sjolte, Zhengyao Lu, Jian Liu, Weiyi Sun, and Lingfeng Wan
Clim. Past, 19, 665–680, https://doi.org/10.5194/cp-19-665-2023, https://doi.org/10.5194/cp-19-665-2023, 2023
Short summary
Short summary
Based on proxy data and modeling, the Arctic temperature has an asymmetric cooling trend with more cooling over the Atlantic Arctic than the Pacific Arctic during the Holocene, dominated by orbital forcing. There is a seasonal difference in the asymmetric cooling trend, which is dominated by the DJF (December, January, and February) temperature variability. The Arctic dipole mode of sea level pressure and sea ice play a major role in asymmetric temperature changes.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Shiyue Zhang, Gang Zeng, Tijian Wang, Xiaoye Yang, and Vedaste Iyakaremye
Atmos. Chem. Phys., 22, 16017–16030, https://doi.org/10.5194/acp-22-16017-2022, https://doi.org/10.5194/acp-22-16017-2022, 2022
Short summary
Short summary
Severe haze days in eastern China (HDEC) are affected by the atmospheric circulation variations on a synoptic scale, while the dominant atmospheric circulation patterns influencing HDEC and the differences between them are still unclear. This study obtains three dominant circulation types that could lead to severe HDEC and investigates the differences between them. The results provide a basis for establishing applicable haze prediction and management policies.
Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu
Atmos. Chem. Phys., 22, 8221–8240, https://doi.org/10.5194/acp-22-8221-2022, https://doi.org/10.5194/acp-22-8221-2022, 2022
Short summary
Short summary
A vigorous surface ozone surge event of stratospheric origin occurred in the North China Plain at night. Surface ozone concentrations were 40–50 ppbv higher than the corresponding monthly mean, whereas surface carbon monoxide concentrations declined abruptly, which confirmed the direct stratospheric intrusions to the surface. We further addressed the notion that a combined effect of the dying typhoon and mesoscale convective systems was responsible for this vigorous ozone surge.
Chenchao Zhan and Min Xie
Atmos. Chem. Phys., 22, 1351–1371, https://doi.org/10.5194/acp-22-1351-2022, https://doi.org/10.5194/acp-22-1351-2022, 2022
Short summary
Short summary
The changes of land use and anthropogenic heat (AH) derived from urbanization can affect meteorology and in turn O3 evolution. In this study, we briefly describe the general features of O3 pollution in the Yangtze River Delta (YRD) based on in situ observational data. Then, the impacts of land use and anthropogenic heat on O3 via changing the meteorological factors and local circulations are investigated in this region using the WRF-Chem model.
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, https://doi.org/10.5194/acp-21-16911-2021, 2021
Short summary
Short summary
Using a large ensemble of typhoons, we investigate the impacts of evolving typhoons on tropospheric ozone and address the linkages between typhoon-affected meteorological conditions and ozone variations. The influences of typhoon-induced stratospheric intrusions on lower-troposphere ozone are also quantified. Thus, the results obtained in this study have important implications for a full understanding of the multifaced roles of typhoons in modulating tropospheric ozone variation.
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Short summary
We establish the nonlinear responses between nitrate and NOx in China. Reduction of NOx results in linearly lower nitrate in summer–autumn whereas an increase of winter nitrate until an inflexion point at 40–50 % reduction due to the excess oxidants. NH3 and VOCs are effective in controlling nitrate pollution, whereas decreasing the SO2 and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedback.
Da Gao, Min Xie, Jane Liu, Tijian Wang, Chaoqun Ma, Haokun Bai, Xing Chen, Mengmeng Li, Bingliang Zhuang, and Shu Li
Atmos. Chem. Phys., 21, 5847–5864, https://doi.org/10.5194/acp-21-5847-2021, https://doi.org/10.5194/acp-21-5847-2021, 2021
Short summary
Short summary
O3 has been increasing in recent years over the Yangtze River Delta region of China and is closely associated with dominant weather systems. Still, the study on the impact of changes in synoptic weather patterns (SWPs) on O3 variation is quite limited. This work aims to reveal the unique features of changes in each SWP under O3 variation and quantifies the effects of meteorological conditions on O3 variation. Our findings could be helpful in strategy planning for O3 pollution control.
Yawei Qu, Apostolos Voulgarakis, Tijian Wang, Matthew Kasoar, Chris Wells, Cheng Yuan, Sunil Varma, and Laura Mansfield
Atmos. Chem. Phys., 21, 5705–5718, https://doi.org/10.5194/acp-21-5705-2021, https://doi.org/10.5194/acp-21-5705-2021, 2021
Short summary
Short summary
The meteorological effect of aerosols on tropospheric ozone is investigated using global atmospheric modelling. We found that aerosol-induced meteorological effects act to reduce modelled ozone concentrations over China, which brings the simulation closer to observed levels. Our work sheds light on understudied processes affecting the levels of tropospheric gaseous pollutants and provides a basis for evaluating such processes using a combination of observations and model sensitivity experiments.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Chenchao Zhan, Min Xie, Chongwu Huang, Jane Liu, Tijian Wang, Meng Xu, Chaoqun Ma, Jianwei Yu, Yumeng Jiao, Mengmeng Li, Shu Li, Bingliang Zhuang, Ming Zhao, and Dongyang Nie
Atmos. Chem. Phys., 20, 13781–13799, https://doi.org/10.5194/acp-20-13781-2020, https://doi.org/10.5194/acp-20-13781-2020, 2020
Short summary
Short summary
The Yangtze River Delta (YRD) region has been suffering from severe ozone (O3) pollution in recent years. Synoptic systems, like typhoons, can have a significant effect on O3 episodes. However, research on landfall typhoons affecting O3 in the YRD is limited. This work aims to reveal the main processes of landfall typhoons affecting surface O3 and estimate health impacts of O3 during the study period in the YRD, which can be useful for taking reasonable pollution control measures in this area.
Han Han, Yue Wu, Jane Liu, Tianliang Zhao, Bingliang Zhuang, Honglei Wang, Yichen Li, Huimin Chen, Ye Zhu, Hongnian Liu, Qin'geng Wang, Shu Li, Tijian Wang, Min Xie, and Mengmeng Li
Atmos. Chem. Phys., 20, 13591–13610, https://doi.org/10.5194/acp-20-13591-2020, https://doi.org/10.5194/acp-20-13591-2020, 2020
Short summary
Short summary
Combining simulations from a global chemical transport model and a trajectory model, we find that black carbon aerosols from South Asia and East Asia contribute 77 % of the surface black carbon in the Tibetan Plateau. The Asian monsoon largely modulates inter-annual transport of black carbon from non-local regions to the Tibetan Plateau surface in most seasons, while inter-annual fire activities in South Asia influence black carbon concentration over the Tibetan Plateau surface mainly in spring.
Cited articles
Accadia, C., Zecchetto, S., Lavagnini, A., and Speranza, A.: Comparison of
10-m wind forecasts from a regional area model and QuikSCAT Scatterometer
wind observations over the Mediterranean Sea, Mon. Weather Rev., 135,
1945–1960, https://doi.org/10.1175/mwr3370.1, 2007.
Anwar, S. A., Zakey, A. S., Robaa, S. M., and Wahab, M. M. A.: The influence
of two land-surface hydrology schemes on the regional climate of Africa
using the RegCM4 model, Theor. Appl.
Climatol., 136, 1549–1550, https://doi.org/10.1007/s00704-018-2588-0, 2019.
Ashmore, M. R. and Bell, J. N. B.: The role of ozone in global change,
Ann. Bot.-London, 67,
39–48, https://doi.org/10.1093/oxfordjournals.aob.a088207, 1991.
Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P., and White, J.
W. C.: Increase in observed net carbon dioxide uptake by land and oceans
during the past 50 years, Nature, 488,
7409, https://doi.org/10.1038/nature11299, 2012.
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015.
Ban, N., Schmidli, J., and Schar, C.: Evaluation of the convection-resolving
regional climate modeling approach in decade-long simulations, J.
Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014jd021478,
2014.
Bian, H., Han, S. Q., Tie, X. X., Sun, M. L., and Liu, A. X.: Evidence of
impact of aerosols on surface ozone concentration in Tianjin, China,
Atmos. Environ., 41,
4672–4681, https://doi.org/10.1016/j.atmosenv.2007.03.041, 2007.
Borg, I., Groenen, P. J. F., Jehn, K. A., Bilsky, W., and Schwartz, S. H.:
Embedding the Organizational Culture Profile Into Schwartz's Theory of
Universals in Values, J. Pers. Psychol., 10,
1–12, https://doi.org/10.1027/1866-5888/a000028, 2011.
Carvalho, D., Rocha, A., Gomez-Gesteira, M., and Santos, C.: A sensitivity
study of the WRF model in wind simulation for an area of high wind energy,
Environ. Model. Softw., 33,
23–34, https://doi.org/10.1016/j.envsoft.2012.01.019, 2012.
Cassola, F. and Burlando, M.: Wind speed and wind energy forecast through
Kalman filtering of Numerical Weather Prediction model output, Appl.
Energ., 99, 154–166 https://doi.org/10.1016/j.apenergy.2012.03.054, 2012.
Chen, Z., Zhuang, Y., Xie, X., Chen, D., Cheng, N., Yang, L., and Li, R.:
Understanding long-term variations of meteorological influences on ground
ozone concentrations in Beijing During 2006–2016, Environ. Pollut.,
245, 29–37, https://doi.org/10.1016/j.envpol.2018.10.117, 2019.
Cheng, N., Li, R., Xu, C., Chen, Z., Chen, D., Meng, F., Cheng, B., Ma, Z.,
Zhuang, Y., He, B., and Gao, B.: Ground ozone variations at an urban and a
rural station in Beijing from 2006 to 2017: Trend, meteorological influences
and formation regimes, J. Clean. Prod., 235,
11–20, https://doi.org/10.1016/j.jclepro.2019.06.204, 2019.
Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C.
S., Carton, J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B.,
Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., and Smith, R. D.:
The Community Climate System Model version 3 (CCSM3), J. Clim.,
19, 2122–2143, https://doi.org/10.1175/jcli3761.1, 2006.
Dang, R., Liao, H., and Fu, Y.: Quantifying the anthropogenic and
meteorological influences on summertime surface ozone in China over
2012–2017, Sci. Total Environ.,
754, 142394, https://doi.org/10.1016/j.scitotenv.2020.142394, 2021.
Decker, M. and Zeng, X. B.: Impact of Modified Richards Equation on Global
Soil Moisture Simulation in the Community Land Model (CLM3.5), J.
Adv. Model. Earth Syst.,
1, https://doi.org/10.3894/james.2009.1.5, 2009.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kãllberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011 (data available at https://apps.ecmwf.int/datasets/data/interim-full-daily/, last access: 1 April 2022).
Diao, A. Y., Shu, J., Song, C., and Gao, W.: Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements, Front. Earth Sci., 11, 1–10, https://doi.org/10.1007/s11707-016-0573-4, (data available at https://gaw.kishou.go.jp/search/gas_species/co2/latest/, last access: 15 April 2022), 2017.
Duan, X.-T., Cao, N.-W., Wang, X., Zhang, Y.-X., Liang, J.-S., Yang, S.-P.,
and Song, X.-Y.: Characteristics Analysis of the Surface Ozone Concentration
of China in 2015, Huanjing Kexue, 38,
4976–4982, https://doi.org/10.13227/j.hjkx.201703045, 2017.
Fang, Y., Fiore, A. M., Horowitz, L. W., Gnanadesikan, A., Held, I., Chen,
G., Vecchi, G., and Levy, H.: The impacts of changing transport and
precipitation on pollutant distributions in a future climate, J.
Geophys. Res.-Atmos., 116, D18303, https://doi.org/10.1029/2011jd015642,
2011.
Fiore, A. M., Levy II, H., and Jaffe, D. A.: North American isoprene influence on intercontinental ozone pollution, Atmos. Chem. Phys., 11, 1697–1710, https://doi.org/10.5194/acp-11-1697-2011, 2011.
Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang, Z.: Modeling study of the 2010 regional haze event in the North China Plain, Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, 2016.
Gao, M., Gao, J., Zhu, B., Kumar, R., Lu, X., Song, S., Zhang, Y., Jia, B.,
Wang, P., Beig, G., Hu, J., Ying, Q., Zhang, H., Sherman, P., and McElroy,
M. B.: Ozone pollution over China and India: seasonality and sources,
Atmos. Chem. Phy., 20,
4399–4414, https://doi.org/10.5194/acp-20-4399-2020, 2020.
Gauss, M., Myhre, G., Pitari, G., Prather, M. J., Isaksen, I. S. A.,
Berntsen, T. K., Brasseur, G. P., Dentener, F. J., Derwent, R. G.,
Hauglustaine, D. A., Horowitz, L. W., Jacob, D. J., Johnson, M., Law, K. S.,
Mickley, L. J., Muller, J. F., Plantevin, P. H., Pyle, J. A., Rogers, H. L.,
Stevenson, D. S., Sundet, J. K., van Weele, M., and Wild, O.: Radiative
forcing in the 21st century due to ozone changes in the troposphere and the
lower stratosphere, J. Geophys. Res.-Atmos.,
108, 4292, https://doi.org/10.1029/2002jd002624, 2003.
Giorgi, F. and Mearns, L. O.: Introduction to special section: Regional
climate modeling revisited, J. Geophys. Res.-Atmos.,
104, 6335–6352, https://doi.org/10.1029/98jd02072, 1999.
Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X.,
Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U.,
Cozzini, S., Guettler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A.,
Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C.:
RegCM4: model description and preliminary tests over multiple CORDEX
domains, Clim. Res., 52, 7–29, https://doi.org/10.3354/cr01018, 2012.
Gorai, A. K., Tuluri, F., Tchounwou, P. B., and Ambinakudige, S.: Influence
of local meteorology and NO2 conditions on ground-level ozone concentrations
in the eastern part of Texas, USA, Air Qual. Atmos. Hlth., 8,
81–96, https://doi.org/10.1007/s11869-014-0276-5, 2015.
Grell, G. A.: Prognostic evaluation of assumptions used by cumulus
parameterizations, Mon. Weather Rev., 121,
764–787, https://doi.org/10.1175/1520-0493(1993)121<0764:Peoaub>2.0.Co;2, 1993.
Guan, Y. R., Shan, Y. L., Huang, Q., Chen, H. L., Wang, D., and Hubacek, K.:
Assessment to China's Recent Emission Pattern Shifts, Earths Future,
9, e2021EF002241, https://doi.org/10.1029/2021ef002241, 2021.
Guenther, A. B., Monson, R. K., and Fall, R.: Isoprene and monoterpene
emission rate variability – observations with eucalyptus and emission rate
algorithm development, J. Geophys. Res.-Atmos., 96,
10799–10808, https://doi.org/10.1029/91jd00960, 1991.
Guo, J. P., Miao, Y. C., Zhang, Y., Liu, H., Li, Z. Q., Zhang, W. C., He,
J., Lou, M. Y., Yan, Y., Bian, L. G., and Zhai, P.: The climatology of
planetary boundary layer height in China derived from radiosonde and
reanalysis data, Atmos. Chem. Phys., 16,
13309–13319, https://doi.org/10.5194/acp-16-13309-2016, 2016.
Haman, C. L., Couzo, E., Flynn, J. H., Vizuete, W., Heffron, B., and Lefer,
B. L.: Relationship between boundary layer heights and growth rates with
ground-level ozone in Houston, Texas, J. Geophys.
Res.-Atmos., 119, 6230–6245, https://doi.org/10.1002/2013jd020473,
2014.
Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic
meteorological influences on daily variability in summertime surface ozone
in eastern China, Atmos. Chem. Phys., 20,
203–222, https://doi.org/10.5194/acp-20-203-2020, 2020.
He, J. W., Wang, Y. X., Hao, J. M., Shen, L. L., and Wang, L.: Variations of
surface O-3 in August at a rural site near Shanghai: influences from the
West Pacific subtropical high and anthropogenic emissions, Environ.
Sci. Pollut. Res., 19,
4016–4029, https://doi.org/10.1007/s11356-012-0970-5, 2012.
Heald, C. L., Wilkinson, M. J., Monson, R. K., Alo, C. A., Wang, G. L., and
Guenther, A.: Response of isoprene emission to ambient CO2 changes and
implications for global budgets, Glob. Change Biol., 15,
1127–1140, https://doi.org/10.1111/j.1365-2486.2008.01802.x, 2009.
Hoffmann, L., Gunther, G., Li, D., Stein, O., Wu, X., Griessbach, S., Heng,
Y., Konopka, P., Muller, R., Vogel, B., and Wright, J. S.: From ERA-Interim
to ERA5: the considerable impact of ECMWF's next-generation reanalysis on
Lagrangian transport simulations, Atmos. Chem. Phys., 19,
3097–3124, https://doi.org/10.5194/acp-19-3097-2019, 2019.
Hong, C. P., Zhang, Q., He, K. B., Guan, D. B., Li, M., Liu, F., and Zheng,
B.: Variations of China's emission estimates: response to uncertainties in
energy statistics, Atmos. Chem. Phys., 17,
1227–1239, https://doi.org/10.5194/acp-17-1227-2017, 2017.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, in press, https://doi.org/10.1017/9781009157896, 2021.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43,
51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009.
Jacobs, N., Simpson, W. R., Graham, K. A., Holmes, C., Hase, F.,
Blumenstock, T., Tu, Q., Frey, M., Dubey, M. K., Parker, H. A., Wunch, D.,
Kivi, R., Heikkinen, P., Notholt, J., Petri, C., and Warneke, T.: Spatial
distributions of X-CO2 seasonal cycle amplitude and phase over northern
high-latitude regions, Atmos. Chem. Phys., 21,
16661–16687, https://doi.org/10.5194/acp-21-16661-2021, 2021.
Jiang, X., Wiedinmyer, C., and Carlton, A. G.: Aerosols from Fires: An
Examination of the Effects on Ozone Photochemistry in the Western United
States, Environ. Sci. Technol., 46,
11878–11886, https://doi.org/10.1021/es301541k, 2012.
KhayatianYazdi, F., Kamali, G., Mirrokni, S. M., and Memarian, M. H.:
Sensitivity evaluation of the different physical parameterizations schemes
in regional climate model RegCM4.5 for simulation of air temperature and
precipitation over North and West of Iran, Dynam. Atmos.
Ocean., 93, 101199, https://doi.org/10.1016/j.dynatmoce.2020.101199, 2021.
Kong, L., Tang, X., Zhu, J., Wang, Z., Li, J., Wu, H., Wu, Q., Chen, H.,
Zhu, L., Wang, W., Liu, B., Wang, Q., Chen, D., Pan, Y., Song, T., Li, F.,
Zheng, H., Jia, G., Lu, M., Wu, L., and Carmichael, G. R.: A 6-year-long
(2013–2018) high-resolution air quality reanalysis dataset in China based on
the assimilation of surface observations from CNEMC, Earth Syst. Sci.
Data, 13, 529–570, https://doi.org/10.5194/essd-13-529-2021, 2021.
Lee, Y. C., Shindell, D. T., Faluvegi, G., Wenig, M., Lam, Y. F., Ning, Z.,
Hao, S., and Lai, C. S.: Increase of ozone concentrations, its temperature
sensitivity and the precursor factor in South China, Tellus
B,
66, 23455, https://doi.org/10.3402/tellusb.v66.23455, 2014.
Lefer, B. L., Shetter, R. E., Hall, S. R., Crawford, J. H., and Olson, J.
R.: Impact of clouds and aerosols on photolysis frequencies and
photochemistry during TRACE-P: 1. Analysis using radiative transfer and
photochemical box models, J. Geophys. Res.-Atmos.,
108, 8821, https://doi.org/10.1029/2002jd003171, 2003.
Lelieveld, J. and Crutzen, P. J.: Influences of cloud photochemical
processes on tropospheric ozone, Nature, 343,
227–233, https://doi.org/10.1038/343227a0, 1990.
Li, J., Chen, X. S., Wang, Z. F., Du, H. Y., Yang, W. Y., Sun, Y. L., Hu,
B., Li, J. J., Wang, W., Wang, T., Fu, P. Q., and Huang, H. L.: Radiative
and heterogeneous chemical effects of aerosols on ozone and inorganic
aerosols over East Asia, Sci. Total Environ., 622,
1327–1342, https://doi.org/10.1016/j.scitotenv.2017.12.041, 2018.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:
Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China,
P. Natl. Acad. Sci. USA, 116, 422–427, https://doi.org/10.1073/pnas.1812168116, 2019.
Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.:
Increases in surface ozone pollution in China from 2013 to 2019:
anthropogenic and meteorological influences, Atmos. Chem. Phys., 20, 11423–11433, https://doi.org/10.5194/acp-20-11423-2020, 2020.
Li, R., Zhang, M., Chen, L., Kou, X., and Skorokhod, A.: CMAQ simulation of
atmospheric CO2 concentration in East Asia: Comparison with GOSAT
observations and ground measurements, Atmos. Environ., 160,
176–185, https://doi.org/10.1016/j.atmosenv.2017.03.056, 2017.
Li, X. B., Yuan, B., Parrish, D. D., Chen, D. H., Song, Y. X., Yang, S. X.,
Liu, Z. J., and Shao, M.: Long-term trend of ozone in southern China reveals
future mitigation strategy for air pollution, Atmos. Environ.,
269, 118869, https://doi.org/10.1016/j.atmosenv.2021.118869, 2022.
Lin, J.-T., Patten, K. O., Hayhoe, K., Liang, X.-Z., and Wuebbles, D. J.:
Effects of future climate and biogenic emissions changes on surface ozone
over the United States and China, J. Appl. Meteorol.
Climatol., 47, 1888–1909, https://doi.org/10.1175/2007jamc1681.1, 2008.
Liu, C. H., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J., Prein, A.
F., Chen, F., Chen, L., Clark, M., Dai, A. G., Dudhia, J., Eidhammer, T.,
Gochis, D., Gutmann, E., Kurkute, S., Li, Y. P., Thompson, G., and Yates,
D.: Continental-scale convection-permitting modeling of the current and
future climate of North America, Clim. Dynam., 49,
71–95, https://doi.org/10.1007/s00382-016-3327-9, 2017.
Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and
He, K.: Ground-level ozone pollution and its health impacts in China,
Atmos. Environ., 173,
223–230, https://doi.org/10.1016/j.atmosenv.2017.11.014, 2018a.
Liu, L., Zhou, L., Zhang, X., Wen, M., Zhang, F., Yao, B., and Fang, S.: The
characteristics of atmospheric CO2 concentration variation of four national
background stations in China, Science China Ser. D, 52,
1857–1863, https://doi.org/10.1007/s11430-009-0143-7, 2009.
Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to
2017 – Part 1: The complex and varying roles of meteorology, Atmos. Chem. Phys., 20,
6305–6321, https://doi.org/10.5194/acp-20-6305-2020, 2020a.
Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to
2017 – Part 2: The effects of emission changes and implications for
multi-pollutant control, Atmos. Chem. Phys., 20,
6323–6337, https://doi.org/10.5194/acp-20-6323-2020, 2020b.
Liu, Z., Liu, Y., Wang, S., Yang, X., Wang, L., Baig, M. H. A., Chi, W., and
Wang, Z.: Evaluation of Spatial and Temporal Performances of ERA-Interim
Precipitation and Temperature in Mainland China, J. Clim., 31,
4347–4365, https://doi.org/10.1175/jcli-d-17-0212.1, 2018b.
Lu, H., Yi, S., Liu, Z., Mason, J. A., Jiang, D., Cheng, J., Stevens, T.,
Xu, Z., Zhang, E., Jin, L., Zhang, Z., Guo, Z., Wang, Y., and Otto-Bliesner,
B.: Variation of East Asian monsoon precipitation during the past 21 k.y.
and potential CO2 forcing, Geology, 41,
1023–1026, https://doi.org/10.1130/g34488.1, 2013.
Lu, X., Zhang, L., Wang, X. L., Gao, M., Li, K., Zhang, Y. Z., Yue, X., and
Zhang, Y. H.: Rapid Increases in Warm-Season Surface Ozone and Resulting
Health Impact in China Since 2013, Environ. Sci. Technol.
Lett., 7, 240–247, https://doi.org/10.1021/acs.estlett.0c00171, 2020.
Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang,
T., Gao, M., Zhao, Y., and Zhang, Y.: Severe Surface Ozone Pollution in
China: A Global Perspective, Environ. Sci. Technol. Lett.,
5, 487–494, https://doi.org/10.1021/acs.estlett.8b00366, 2018.
Lu, X., Zhang, L., Chen, Y. F., Zhou, M., Zheng, B., Li, K., Liu, Y. M.,
Lin, J. T., Fu, T. M., and Zhang, Q.: Exploring 2016–2017 surface ozone
pollution over China: source contributions and meteorological influences,
Atmos. Chem. Phys., 19,
8339–8361, https://doi.org/10.5194/acp-19-8339-2019, 2019.
Lv, Q., Liu, H. B., Wang, J. T., Liu, H., and Shang, Y.: Multiscale analysis
on spatiotemporal dynamics of energy consumption CO2 emissions in China:
Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets,
Sci. Total Environ.,
703, ,134394, https://doi.org/10.1016/j.scitotenv.2019.134394, 2020.
Ma, D., Wang, T., Xu, B., Song, R., Gao, L., Chen, H., Ren, X., Li, S.,
Zhuang, B., and Li, M.: The mutual interactions among ozone, fine
particulate matter, and carbon dioxide on summer monsoon climate in East
Asia, Atmos. Environ., 299, 119668, https://doi.org/10.1016/j.atmosenv.2023.119668, 2023.
Ma, Z., Xu, J., Quan, W., Zhang, Z., Lin, W., and Xu, X.: Significant
increase of surface ozone at a rural site, north of eastern China,
Atmos. Chem. Phys., 16,
3969–3977, https://doi.org/10.5194/acp-16-3969-2016, 2016.
Marullo, S., Buongiorno Nardelli, B., Guarracino, M., and Santoleri, R.: Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): re-analysis and validation, Ocean Sci., 3, 299–310, https://doi.org/10.5194/os-3-299-2007, 2007 (data available at https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2/, last access: 10 April 2022).
MEIC Team: The Multi-resolution Emission Inventory Model for Climate and Air Pollution Research, MEIC Model [data set], http://meicmodel.org/?page_id=560 (last access: 14 April 2022), 2012.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent,
R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S.,
Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O.,
and Williams, M. L.: Tropospheric ozone and its precursors from the urban to
the global scale from air quality to short-lived climate forcer, Atmos.
Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Monson, R. K. and Fall, R.: Isoprene emission from aspen leaves – influence
of environment and relation to photosynthesis and photorespiration, Plant
Physiol., 90, 267–274, https://doi.org/10.1104/pp.90.1.267, 1989.
Mousavinezhad, S., Choi, Y., Pouyaei, A., Ghahremanloo, M., and Nelson, D.
L.: A comprehensive investigation of surface ozone pollution in China,
2015–2019: Separating the contributions from meteorology and precursor
emissions, Atmos. Res.,
257, 105599, https://doi.org/10.1016/j.atmosres.2021.105599, 2021.
Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Petron, G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Randerson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, P. Natl. Acad. Sci. USA, 104, 18925–18930, https://doi.org/10.1073/pnas.0708986104, 2007 (data available at https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019/, last access: 5 April 2022).
Pfister, G. G., Walters, S., Lamarque, J. F., Fast, J., Barth, M. C., Wong,
J., Done, J., Holland, G., and Bruyere, C. L.: Projections of future
summertime ozone over the US, J. Geophys. Res.-Atmos.,
119, 5559–5582, https://doi.org/10.1002/2013jd020932, 2014.
Possell, M., Hewitt, C. N., and Beerling, D. J.: The effects of glacial
atmospheric CO2 concentrations and climate on isoprene emissions by vascular
plants, Glob. Change Biol., 11,
60–69, https://doi.org/10.1111/j.1365-2486.2004.00889.x, 2005.
Pu, X., Wang, T. J., Huang, X., Melas, D., Zanis, P., Papanastasiou, D. K.,
and Poupkou, A.: Enhanced surface ozone during the heat wave of 2013 in
Yangtze River Delta region, China, Sci. Total Environ., 603,
807–816, https://doi.org/10.1016/j.scitotenv.2017.03.056, 2017.
Rapparini, F., Baraldi, R., Miglietta, F., and Loreto, F.: Isoprenoid
emission in trees of Quercus pubescens and Quercus ilex with lifetime
exposure to naturally high CO2 environment, Plant Cell Environ., 27,
381–391, https://doi.org/10.1111/j.1365-3040.2003.01151.x, 2004.
Ren, S. G., Yuan, B. L., Ma, X., and Chen, X. H.: International trade, FDI
(foreign direct investment) and embodied CO2 emissions: A case study of
Chinas industrial sectors, China Econ. Rev., 28,
123–134, https://doi.org/10.1016/j.chieco.2014.01.003, 2014.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.
Q.: An improved in situ and satellite SST analysis for climate, J.
Clim., 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:Aiisas>2.0.Co;2, 2002.
Rosenstiel, T. N., Potosnak, M. J., Griffin, K. L., Fall, R., and Monson, R.
K.: Increased CO2 uncouples growth from isoprene emission in an agriforest
ecosystem, Nature, 421, 256–259, https://doi.org/10.1038/nature01312, 2003.
Sanchez-Ccoyllo, O. R., Ynoue, R. Y., Martins, L. D., and Andrade, M. D. F.:
Impacts of ozone precursor limitation and meteorological variables on ozone
concentration in Sao Paulo, Brazil, Atmos. Environ., 40,
552–562, https://doi.org/10.1016/j.atmosenv.2006.04.069, 2006.
Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on
the terrestrial carbon cycle, P. Natl. Acad.
Sci. USA, 112,
436–441, https://doi.org/10.1073/pnas.1407302112, 2015.
Shalaby, A., Zakey, A. S., Tawfik, A. B., Solmon, F., Giorgi, F., Stordal,
F., Sillman, S., Zaveri, R. A., and Steiner, A. L.: Implementation and
evaluation of online gas-phase chemistry within a regional climate model
(RegCM-CHEM4), Geosci. Model Dev., 5,
741–760, https://doi.org/10.5194/gmd-5-741-2012, 2012.
Sharkey, T. D., Loreto, F., and Delwiche, C. F.: High-carbon dioxide and sun
shade effects on isoprene emission from oak and aspen tree leaves, Plant
Cell Environ., 14,
333–338, https://doi.org/10.1111/j.1365-3040.1991.tb01509.x, 1991.
Shen, L., Mickley, L. J., and Gilleland, E.: Impact of increasing heat waves
on US ozone episodes in the 2050s: Results from a multimodel analysis using
extreme value theory, Geophys. Res. Lett., 43,
4017–4025, https://doi.org/10.1002/2016gl068432, 2016.
Shen, L., Jacob, D. J., Liu, X., Huang, G., Li, K., Liao, H., and Wang, T.:
An evaluation of the ability of the Ozone Monitoring Instrument (OMI) to
observe boundary layer ozone pollution across China: application to
2005–2017 ozone trends, Atmos. Chem. Phys., 19,
6551–6560, https://doi.org/10.5194/acp-19-6551-2019, 2019.
Shen, L., Liu, J., Zhao, T., Xu, X., Han, H., Wang, H., and Shu, Z.:
Atmospheric transport drives regional interactions of ozone pollution in
China, Sci. Total Environ.,
830, 154634, https://doi.org/10.1016/j.scitotenv.2022.154634, 2022.
Shetter, R. E., Cinquini, L., Lefer, B. L., Hall, S. R., and Madronich, S.:
Comparison of airborne measured and calculated spectral actinic flux and
derived photolysis frequencies during the PEM Tropics B mission, J. Geophys. Res.-Atmos., 108, PEM 6-1–PEM 6-12, https://doi.org/10.1029/2001jd001320,
2002.
Shi, K. F., Chen, Y., Yu, B. L., Xu, T. B., Chen, Z. Q., Liu, R., Li, L. Y.,
and Wu, J. P.: Modeling spatiotemporal CO2 (carbon dioxide) emission
dynamics in China from DMSP-OLS nighttime stable light data using panel data
analysis, Appl. Energ., 168,
523–533, https://doi.org/10.1016/j.apenergy.2015.11.055, 2016.
Singh, S. and Singh, R.: High-altitude clear-sky direct solar ultraviolet
irradiance at Leh and Hanle in the western Himalayas: Observations and model
calculations, J. Geophys. Res.-Atmos.,
109, D19201, https://doi.org/10.1029/2004jd004854, 2004.
Steiner, A. L., Davis, A. J., Sillman, S., Owen, R. C., Michalak, A. M., and
Fiore, A. M.: Observed suppression of ozone formation at extremely high
temperatures due to chemical and biophysical feedbacks, P.
Natl. Acad. Sci. USA, 107,
19685–19690, https://doi.org/10.1073/pnas.1008336107, 2010.
Sun, Z. H., Hve, K., Vislap, V., and Niinemets, U.: Elevated CO2 magnifies
isoprene emissions under heat and improves thermal resistance in hybrid
aspen, J. Exp. Bot., 64,
5509–5523, https://doi.org/10.1093/jxb/ert318, 2013.
Tai, A. P. K., Mickley, L. J., Heald, C. L., and Wu, S. L.: Effect of CO2
inhibition on biogenic isoprene emission: Implications for air quality under
2000 to 2050 changes in climate, vegetation, and land use, Geophys.
Res. Lett., 40, 3479–3483, https://doi.org/10.1002/grl.50650, 2013.
Tie, X. X., Madronich, S., Walters, S., Zhang, R. Y., Rasch, P., and
Collins, W.: Effect of clouds on photolysis and oxidants in the troposphere,
J. Geophys. Res.-Atmos.,
108, 4642, https://doi.org/10.1029/2003jd003659, 2003.
Verstraeten, W. W., Neu, J. L., Williams, J. E., Bowman, K. W., Worden, J.
R., and Boersma, K. F.: Rapid increases in tropospheric ozone production and
export from China, Nat. Geosci., 9,
643–643, https://doi.org/10.1038/ngeo2768, 2016.
Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C.
C., and Zhang, Q.: The 2013 severe haze over southern Hebei, China: model
evaluation, source apportionment, and policy implications, Atmos. Chem. Phys., 14,
3151–3173, https://doi.org/10.5194/acp-14-3151-2014, 2014.
Wang, N., Lyu, X. P., Deng, X. J., Huang, X., Jiang, F., and Ding, A. J.:
Aggravating O-3 pollution due to NOx emission control in eastern China,
Sci. Total Environ., 677,
732–744, https://doi.org/10.1016/j.scitotenv.2019.04.388, 2019a.
Wang, P., Guo, H., Hu, J., Kota, S. H., Ying, Q., and Zhang, H.: Responses
of PM2.5 and O-3 concentrations to changes of meteorology and emissions in
China, Sci. Total Environ., 662,
297–306, https://doi.org/10.1016/j.scitotenv.2019.01.227, 2019b.
Wang, T., Dai, J., Lam, K. S., Nan Poon, C., and Brasseur, G. P.:
Twenty-Five Years of Lower Tropospheric Ozone Observations in Tropical East
Asia: The Influence of Emissions and Weather Patterns, Geophys. Res.
Lett., 46, 11463–11470, https://doi.org/10.1029/2019gl084459, 2019c.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, Sci. Total
Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081,
2017a.
Wang, W. N., Cheng, T. H., Gu, X. F., Chen, H., Guo, H., Wang, Y., Bao, F.
W., Shi, S. Y., Xu, B. R., Zuo, X., Meng, C., and Zhang, X. C.: Assessing
Spatial and Temporal Patterns of Observed Ground-level Ozone in China,
Sci. Rep., 7, 3651, https://doi.org/10.1038/s41598-017-03929-w, 2017b.
Wang, X., Chen, F., Wu, Z., Zhang, M., Tewari, M., Guenther, A., and
Wiedinmyer, C.: Impacts of Weather Conditions Modified by Urban Expansion on
Surface Ozone: Comparison between the Pearl River Delta and Yangtze River
Delta Regions, Adv. Atmos. Sci., 26,
962–972, https://doi.org/10.1007/s00376-009-8001-2, 2009.
Wang, Y., Chen, H., Wu, Q., Chen, X., Wang, H., Gbaguidi, A., Wang, W., and
Wang, Z.: Three-year, 5 km resolution China PM2.5 simulation: Model
performance evaluation, Atmos. Res., 207,
1–13, https://doi.org/10.1016/j.atmosres.2018.02.016, 2018.
Wang, Y., Gao, W., Wang, S., Song, T., Gong, Z., Ji, D., Wang, L., Liu, Z.,
Tang, G., Huo, Y., Tian, S., Li, J., Li, M., Yang, Y., Chu, B., Petaja, T.,
Kerminen, V.-M., He, H., Hao, J., Kulmala, M., Wang, Y., and Zhang, Y.:
Contrasting trends of PM2.5 and surface-ozone concentrations in China from
2013 to 2017, Natl. Sci. Rev., 7,
1331–1339, https://doi.org/10.1093/nsr/nwaa032, 2020.
Wei, J., Li, Z. Q., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu,
X., Sun, L., Xue, W. H., and Cribb, M.: Full-coverage mapping and
spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to
2020 across China, Remote Sens. Environ.,
270, 112775, https://doi.org/10.1016/j.rse.2021.112775, 2022.
Wilkinson, M. J., Monson, R. K., Trahan, N., Lee, S., Brown, E., Jackson, R.
B., Polley, H. W., Fay, P. A., and Fall, R.: Leaf isoprene emission rate as
a function of atmospheric CO2 concentration, Glob. Change Biol., 15,
1189–1200, https://doi.org/10.1111/j.1365-2486.2008.01803.x, 2009.
Wu, W., Xue, W., Lei, Y., and Wang, J.: Sensitivity analysis of ozone in
Beijing-Tianjin-Hebei (BTH) and its surrounding area using OMI satellite
remote sensing data, China Environ. Sci., 38, 1201–1208, 2018.
Xie, X., Huang, X., Wang, T., Li, M., Li, S., and Chen, P.: Simulation of
Non-Homogeneous CO2 and Its Impact on Regional Temperature in East Asia,
J. Meteorol. Res., 32,
456–468, https://doi.org/10.1007/s13351-018-7159-x, 2018.
Xie, X., Wang, T., Yue, X., Li, S., Zhuang, B., and Wang, M.: Effects of
atmospheric aerosols on terrestrial carbon fluxes and CO2 concentrations in
China, Atmos. Res.,
237, 104859, https://doi.org/10.1016/j.atmosres.2020.104859, 2020.
Xie, X., Wang, T., Yue, X., Li, S., Zhuang, B., Wang, M., and Yang, X.:
Numerical modeling of ozone damage to plants and its effects on atmospheric
CO2 in China, Atmos. Environ.,
217, 116970, https://doi.org/10.1016/j.atmosenv.2019.116970, 2019.
Xu, B., Wang, T., Ma, D., Song, R., Zhang, M., Gao, L., Li, S., Zhuang, B.,
Li, M., and Xie, M.: Impacts of regional emission reduction and global
climate change on air quality and temperature to attain carbon neutrality in
China, Atmos. Res.,
279, 106384, https://doi.org/10.1016/j.atmosres.2022.106384, 2022.
Xu, B. Y., Wang, T. J., Gao, L. B., Ma, D. Y., Song, R., Zhao, J., Yang, X. G., Li, S., Zhuang, B. L., Li, M. M., and Xie, M.: Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060, Environ. Pollut., 317, 120715, https://doi.org/10.1016/j.envpol.2022.120715, 2023.
Xu, W., Xu, X., Lin, M., Lin, W., Tarasick, D., Tang, J., Ma, J., and Zheng,
X.: Long-term trends of surface ozone and its influencing factors at the Mt
Waliguan GAW station, China – Part 2: The roles of anthropogenic emissions
and climate variability, Atmos. Chem. Phys., 18,
773–798, https://doi.org/10.5194/acp-18-773-2018, 2018.
Yang, Y., Liao, H., and Li, J.: Impacts of the East Asian summer monsoon on
interannual variations of summertime surface-layer ozone concentrations over
China, Atmos. Chem. Phys., 14,
6867–6879, https://doi.org/10.5194/acp-14-6867-2014, 2014.
Yin, C., Wang, T., Solmon, F., Mallet, M., and Zhuang, B.: Assessment of
direct radiative forcing due to secondary organic aerosol over China with a
regional climate model, Tellus B,
67, 24634, https://doi.org/10.3402/tellusb.v67.24634, 2015.
Yin, Z. and Ma, X.: Meteorological conditions contributed to changes in
dominant patterns of summer ozone pollution in Eastern China, Environ.
Res. Lett., 15, 124062, https://doi.org/10.1088/1748-9326/abc915, 2020.
Yoo, J. M., Lee, Y. R., Kim, D., Jeong, M. J., Stockwell, W. R., Kundu, P.
K., Oh, S. M., Shin, D. B., and Lee, S. J.: New indices for wet scavenging
of air pollutants (O-3, CO, NO2, SO2, and PM10) by summertime rain,
Atmos. Environ., 82,
226–237, https://doi.org/10.1016/j.atmosenv.2013.10.022, 2014.
Yue, X. and Unger, N.: The Yale Interactive terrestrial Biosphere model version 1.0: description, evaluation and implementation into NASA GISS ModelE2, Geosci. Model Dev., 8, 2399–2417, https://doi.org/10.5194/gmd-8-2399-2015, 2015.
Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical
mechanism for large-scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, https://doi.org/10.1029/1999JD900876, 1999.
Zhai, S. X., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y. Z., Gui,
K., Zhao, T. L., and Liao, H.: Fine particulate matter (PM2.5) trends in
China, 2013–2018: separating contributions from anthropogenic emissions and
meteorology, Atmos. Chem. Phys., 19,
11031–11041, https://doi.org/10.5194/acp-19-11031-2019, 2019 (data available at http://www.cnemc.cn/, last access:1 May 2022),.
Zhao, S., Yu, Y., Yin, D., Qin, D., He, J., and Dong, L.: Spatial patterns
and temporal variations of six criteria air pollutants during 2015 to 2017
in the city clusters of Sichuan Basin, China, Sci. Total
Environ., 624, 540–557, https://doi.org/10.1016/j.scitotenv.2017.12.172,
2018.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X.,
Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and
Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the
consequence of clean air actions, Atmos. Chem. Phys., 18,
14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, J., Shao, M., Che, W., Zhang, L., Zhong, L., Zhang, Y., and Streets,
D.: Speciated VOC Emission Inventory and Spatial Patterns of Ozone Formation
Potential in the Pearl River Delta, China, Environ. Sci.
Technol., 43, 8580–8586 https://doi.org/10.1021/es901688e, 2009.
Zheng, S., Cao, C. X., and Singh, R. P.: Comparison of ground based indices
(API and AQI) with satellite based aerosol products, Sci. Total
Environ., 488, 400–414, https://doi.org/10.1016/j.scitotenv.2013.12.074,
2014.
Zhuang, B. L., Li, S., Wang, T. J., Liu, J., Chen, H. M., Chen, P. L., Li,
M. M., and Xie, M.: Interaction between the Black Carbon Aerosol Warming
Effect and East Asian Monsoon Using RegCM4, J. Clim., 31,
9367–9388, https://doi.org/10.1175/jcli-d-17-0767.1, 2018.
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in...
Altmetrics
Final-revised paper
Preprint