Articles | Volume 23, issue 11
https://doi.org/10.5194/acp-23-6339-2023
https://doi.org/10.5194/acp-23-6339-2023
Research article
 | 
09 Jun 2023
Research article |  | 09 Jun 2023

Antarctic atmospheric Richardson number from radiosonde measurements and AMPS

Qike Yang, Xiaoqing Wu, Xiaodan Hu, Zhiyuan Wang, Chun Qing, Tao Luo, Pengfei Wu, Xianmei Qian, and Yiming Guo

Related authors

A novel method for detecting tropopause structures based on the bi-Gaussian function
Kun Zhang, Tao Luo, Xuebin Li, Shengcheng Cui, Ningquan Weng, Yinbo Huang, and Yingjian Wang
Atmos. Chem. Phys., 24, 11157–11173, https://doi.org/10.5194/acp-24-11157-2024,https://doi.org/10.5194/acp-24-11157-2024, 2024
Short summary
Understanding processes that control dust spatial distributions with global climate models and satellite observations
Mingxuan Wu, Xiaohong Liu, Hongbin Yu, Hailong Wang, Yang Shi, Kang Yang, Anton Darmenov, Chenglai Wu, Zhien Wang, Tao Luo, Yan Feng, and Ziming Ke
Atmos. Chem. Phys., 20, 13835–13855, https://doi.org/10.5194/acp-20-13835-2020,https://doi.org/10.5194/acp-20-13835-2020, 2020
Short summary
Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements
Damao Zhang, Zhien Wang, Pavlos Kollias, Andrew M. Vogelmann, Kang Yang, and Tao Luo
Atmos. Chem. Phys., 18, 4317–4327, https://doi.org/10.5194/acp-18-4317-2018,https://doi.org/10.5194/acp-18-4317-2018, 2018
Short summary
Marine boundary layer structure as observed by A-train satellites
Tao Luo, Zhien Wang, Damao Zhang, and Bing Chen
Atmos. Chem. Phys., 16, 5891–5903, https://doi.org/10.5194/acp-16-5891-2016,https://doi.org/10.5194/acp-16-5891-2016, 2016
Short summary
A new method for estimating aerosol mass flux in the urban surface layer using LAS technology
Renmin Yuan, Tao Luo, Jianning Sun, Hao Liu, Yunfei Fu, and Zhien Wang
Atmos. Meas. Tech., 9, 1925–1937, https://doi.org/10.5194/amt-9-1925-2016,https://doi.org/10.5194/amt-9-1925-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The marinada fall wind in the eastern Ebro sub-basin: physical mechanisms and role of the sea, orography and irrigation
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024,https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
The influences of El Niño–Southern Oscillation on tropospheric ozone in CMIP6 models
Thanh Le, Seon-Ho Kim, Jae-Yeong Heo, and Deg-Hyo Bae
Atmos. Chem. Phys., 24, 6555–6566, https://doi.org/10.5194/acp-24-6555-2024,https://doi.org/10.5194/acp-24-6555-2024, 2024
Short summary
Technical note: Exploring parameter and meteorological uncertainty via emulation in volcanic ash atmospheric dispersion modelling
James M. Salter, Helen N. Webster, and Cameron Saint
Atmos. Chem. Phys., 24, 6251–6274, https://doi.org/10.5194/acp-24-6251-2024,https://doi.org/10.5194/acp-24-6251-2024, 2024
Short summary
To what extent is the description of streets important in estimating local air-quality? A case study over Paris
Alexis Squarcioni, Yelva Roustan, Myrto Valari, Youngseob Kim, Karine Sartelet, Lya Lugon, Fabrice Dugay, and Robin Voitot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1043,https://doi.org/10.5194/egusphere-2024-1043, 2024
Short summary
Role of the Indian Ocean basin mode in driving the interdecadal variations of summer precipitation over the East Asian monsoon boundary zone
Jing Wang, Yanju Liu, Fei Cheng, Chengyu Song, Qiaoping Li, Yihui Ding, and Xiangde Xu
Atmos. Chem. Phys., 24, 5099–5115, https://doi.org/10.5194/acp-24-5099-2024,https://doi.org/10.5194/acp-24-5099-2024, 2024
Short summary

Cited articles

Agabi, A., Aristidi, E., Azouit, M., Fossat, E., Martin, F., Sadibekova, T., Vernin, J., and Ziad, A.: First Whole Atmosphere Nighttime Seeing Measurements at Dome C, Antarctica, Publ. Astron. Soc. Pac., 118, 344–348, https://doi.org/10.1086/498728, 2006. a
AMPS: AMPS full model (WRF) output files in NetCDF format, https://www2.mmm.ucar.edu/rt/amps/information/amps_esg_data_info.html, last access: 1 March 2022. a
AMRC, SSEC, and UW-Madison: Antarctic Meteorological Research Center data sets, ftp://amrc.ssec.wisc.edu/pub, last access: 1 March 2022. a
Argentini, S., Pietroni, I., Mastrantonio, G., Viola, A. P., Dargaud, G., and Petenko, I.: Observations of near surface wind speed, temperature and radiative budget at Dome C, Antarctic Plateau during 2005, Antarct. Sci., 26, 104–112, https://doi.org/10.1017/s0954102013000382, 2013. a
Aristidi, E., Agabi, K., Azouit, M., Fossat, E., Vernin, J., Travouillon, T., Lawrence, J. S., Meyer, C., Storey, J. W. V., Halter, B., Roth, W. L., and Walden, V.: An analysis of temperatures and wind speeds above Dome C, Antarctica, Astron. Astrophys., 430, 739–746, https://doi.org/10.1051/0004-6361:20041876, 2005. a
Download
Short summary
The AMPS-forecasted Richardson number was first comprehensively validated over the Antarctic continent. Some potential underlying reasons for the discrepancies between the forecasts and observations were analyzed. The underlying physical processes of triggering atmospheric turbulence in Antarctica were investigated. Our results suggest that the estimated Richardson number by the AMPS is reasonable and the turbulence conditions in Antarctica are well revealed.
Altmetrics
Final-revised paper
Preprint