Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-5517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Rapid decline of aerosol absorption coefficient and aerosol optical property effects on radiative forcing in an urban area of Beijing from 2018 to 2021
Xinyao Hu
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Junying Sun
CORRESPONDING AUTHOR
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
State Key Laboratory of Cryospheric Science, Northwest Institute of
Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000,
China
Can Xia
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Xiaojing Shen
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Yangmei Zhang
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Zhaodong Liu
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
Sinan Zhang
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Jialing Wang
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Aoyuan Yu
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Jiayuan Lu
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Shuo Liu
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Xiaoye Zhang
State Key Laboratory of Severe Weather and Key Laboratory of
Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Related authors
Xiaojing Shen, Junying Sun, Huizheng Che, Yangmei Zhang, Chunhong Zhou, Ke Gui, Wanyun Xu, Quan Liu, Junting Zhong, Can Xia, Xinyao Hu, Sinan Zhang, Jialing Wang, Shuo Liu, Jiayuan Lu, Aoyuan Yu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 8241–8257, https://doi.org/10.5194/acp-23-8241-2023, https://doi.org/10.5194/acp-23-8241-2023, 2023
Short summary
Short summary
New particle formation (NPF) events occur when the dust episodes' fade is analysed based on long-term measurement of particle number size distribution. Analysis shows that the observed formation and growth rates are approximately 50 % of and 30 % lower than those of other NPF events. As a consequence of the uptake of precursor gases on mineral dust, the physical and chemical properties of submicron particles, as well as the ability to be cloud condensation nuclei, can be changed.
Xiaojing Shen, Junying Sun, Fangqun Yu, Ying Wang, Junting Zhong, Yangmei Zhang, Xinyao Hu, Can Xia, Sinan Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 7039–7052, https://doi.org/10.5194/acp-21-7039-2021, https://doi.org/10.5194/acp-21-7039-2021, 2021
Short summary
Short summary
In this work, we revealed the changes of PNSD and NPF events during the COVID-19 lockdown period in Beijing, China, to illustrate the impact of reduced primary emission and elavated atmospheric oxidized capicity on the nucleation and growth processes. The subsequent growth of nucleated particles and their contribution to the aerosol pollution formation were also explored, to highlight the necessity of controlling the nanoparticles in the future air quality management.
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
Atmos. Chem. Phys., 24, 9355–9368, https://doi.org/10.5194/acp-24-9355-2024, https://doi.org/10.5194/acp-24-9355-2024, 2024
Short summary
Short summary
Our study examined the long-term trends of atmospheric ammonia in urban Beijing from 2009 to 2020. We found that the trends did not match satellite data or emission estimates, revealing complexities in ammonia sources. While seasonal variations in ammonia were temperature-dependent, daily variations were correlated with water vapor. We also found an increasing contribution of ammonia reduction, emphasizing its importance in mitigating the effects of fine particulate matter in Beijing.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-51, https://doi.org/10.5194/gmd-2024-51, 2024
Preprint under review for GMD
Short summary
Short summary
An AI-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of aerosol direct radiation effect (DRE). The AI-NAOS scheme considers BC as fractal aggregates and SD as super-spheroids, encapsulated with hygroscopic aerosols. The AI-NAOS scheme was coupled online with a chemical weather model. Real-case simulations emphasize the necessity of accurately representing nonpsherical and inhomogeneous aerosols in chemical weather models.
Jianzhong Xu, Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, and Shichang Kang
Earth Syst. Sci. Data, 16, 1875–1900, https://doi.org/10.5194/essd-16-1875-2024, https://doi.org/10.5194/essd-16-1875-2024, 2024
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) and its surroundings in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple intensive field observations. The release of this dataset can provide basic and systematic data for related research in the atmospheric, cryospheric, and environmental sciences in this unique region.
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6833–6856, https://doi.org/10.5194/gmd-16-6833-2023, https://doi.org/10.5194/gmd-16-6833-2023, 2023
Short summary
Short summary
In addition to the dominant role of the PBL scheme on the results of the meteorological field, many factors in the model are influenced by large uncertainties. This study focuses on the uncertainties that influence numerical simulation results (including horizontal resolution, vertical resolution, near-surface scheme, initial and boundary conditions, underlying surface update, and update of model version), hoping to provide a reference for scholars conducting research on the model.
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6635–6670, https://doi.org/10.5194/gmd-16-6635-2023, https://doi.org/10.5194/gmd-16-6635-2023, 2023
Short summary
Short summary
Most current studies on planetary boundary layer (PBL) parameterization schemes are relatively fragmented and lack systematic in-depth analysis and discussion. In this study, we comprehensively evaluate the performance capability of the PBL scheme in five typical regions of China in different seasons from the mechanism of the scheme and the effects of PBL schemes on the near-surface meteorological parameters, vertical structures of the PBL, PBL height, and turbulent diffusion.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2023-2319, https://doi.org/10.5194/egusphere-2023-2319, 2023
Short summary
Short summary
Our study examined the interaction between atmospheric particles and moisture over the south-eastern Atlantic Ocean during the biomass burning seasons in Africa. We found that organic components of these particles play a more important role in aerosol-moisture interactions than previously expected. This discovery is important as such interactions impact radiation and climate. Current climate models might need better representations of the moisture-absorbing properties of organic aerosols.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven Howell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2199, https://doi.org/10.5194/egusphere-2023-2199, 2023
Short summary
Short summary
Using airborne measurements over the South-East Atlantic, our study explored how aerosols—tiny atmospheric particles—interact with moisture over the ocean, especially during the biomass burning season. We noticed unique patterns in their behavior at different altitudes and introduced a predictive model for this moisture interaction. Our results aid our understanding of aerosol-moisture interactions and benefit the research of aerosol radiative effect in this climatically significant region.
Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
Short summary
Short summary
New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
Qian Li, Dantong Liu, Xiaotong Jiang, Ping Tian, Yangzhou Wu, Siyuan Li, Kang Hu, Quan Liu, Mengyu Huang, Ruijie Li, Kai Bi, Shaofei Kong, Deping Ding, and Chenjie Yu
Atmos. Chem. Phys., 23, 9439–9453, https://doi.org/10.5194/acp-23-9439-2023, https://doi.org/10.5194/acp-23-9439-2023, 2023
Short summary
Short summary
By attributing the shortwave absorption from black carbon, primary organic aerosol and secondary organic aerosol in a suburban environment, we firstly observed that the photochemically produced nitrogen-containing secondary organic aerosol may contribute to the enhancement of brown carbon absorption, partly compensating for some bleaching effect on the absorption of primary organic aerosol, hereby exerting radiative impacts.
Yue Peng, Hong Wang, Xiaoye Zhang, Zhaodong Liu, Wenjie Zhang, Siting Li, Chen Han, and Huizheng Che
Atmos. Chem. Phys., 23, 8325–8339, https://doi.org/10.5194/acp-23-8325-2023, https://doi.org/10.5194/acp-23-8325-2023, 2023
Short summary
Short summary
This study demonstrates a strong link between local circulation, aerosol–radiation interaction (ARI), and haze pollution. Under the weak weather-scale systems, the typical local circulation driven by mountainous topography is the main cause of pollutant distribution in the Beijing–Tianjin–Hebei region, and the ARI mechanism amplifies this influence of local circulation on pollutants, making haze pollution aggravated by the superposition of both.
Siting Li, Ping Wang, Hong Wang, Yue Peng, Zhaodong Liu, Wenjie Zhang, Hongli Liu, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 16, 4171–4191, https://doi.org/10.5194/gmd-16-4171-2023, https://doi.org/10.5194/gmd-16-4171-2023, 2023
Short summary
Short summary
Optimizing the initial state of atmospheric chemistry model input is one of the most essential methods to improve forecast accuracy. Considering the large computational load of the model, we introduce an ensemble optimal interpolation scheme (EnOI) for operational use and efficient updating of the initial fields of chemical components. The results suggest that EnOI provides a practical and cost-effective technique for improving the accuracy of chemical weather numerical forecasts.
Xiaojing Shen, Junying Sun, Huizheng Che, Yangmei Zhang, Chunhong Zhou, Ke Gui, Wanyun Xu, Quan Liu, Junting Zhong, Can Xia, Xinyao Hu, Sinan Zhang, Jialing Wang, Shuo Liu, Jiayuan Lu, Aoyuan Yu, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 8241–8257, https://doi.org/10.5194/acp-23-8241-2023, https://doi.org/10.5194/acp-23-8241-2023, 2023
Short summary
Short summary
New particle formation (NPF) events occur when the dust episodes' fade is analysed based on long-term measurement of particle number size distribution. Analysis shows that the observed formation and growth rates are approximately 50 % of and 30 % lower than those of other NPF events. As a consequence of the uptake of precursor gases on mineral dust, the physical and chemical properties of submicron particles, as well as the ability to be cloud condensation nuclei, can be changed.
Yifang Gu, Ru-Jin Huang, Jing Duan, Wei Xu, Chunshui Lin, Haobin Zhong, Ying Wang, Haiyan Ni, Quan Liu, Ruiguang Xu, Litao Wang, and Yong Jie Li
Atmos. Chem. Phys., 23, 5419–5433, https://doi.org/10.5194/acp-23-5419-2023, https://doi.org/10.5194/acp-23-5419-2023, 2023
Short summary
Short summary
Secondary organic aerosol (SOA) can be produced by various pathways, but its formation mechanisms are unclear. Observations were conducted in the North China Plain during a highly oxidizing atmosphere in summer. We found that fast photochemistry dominated SOA formation during daytime. Two types of aqueous-phase chemistry (nocturnal and daytime processing) take place at high relative humidity. The potential transformation from primary organic aerosol (POA) to SOA was also an important pathway.
Yingfang Li, Zhili Wang, Yadong Lei, Huizheng Che, and Xiaoye Zhang
Atmos. Chem. Phys., 23, 2499–2523, https://doi.org/10.5194/acp-23-2499-2023, https://doi.org/10.5194/acp-23-2499-2023, 2023
Short summary
Short summary
Since few studies have assessed the impacts of future combined reductions in aerosols, ozone, and their precursors on future climate change, we use models with an interactive representation of tropospheric aerosols and atmospheric chemistry schemes to quantify the impact of their reductions on the Asian climate. Our results suggest that their reductions will exacerbate the warming effect caused by greenhouse gases, increasing future climate extremes and associated population exposure risk.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Liping Huang, Yue Peng, Zhaodong Liu, Xiao Zhang, and Huizheng Che
Atmos. Chem. Phys., 22, 15207–15221, https://doi.org/10.5194/acp-22-15207-2022, https://doi.org/10.5194/acp-22-15207-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction (ACI) is first implemented in the atmospheric chemistry system GRAPES_Meso5.1/CUACE. ACI can improve the simulated cloud, temperature, and precipitation under haze pollution conditions in Jing-Jin-Ji in China. This paper demonstrates the critical role of ACI in current numerical weather prediction over the severely polluted region.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Jing Duan, Ru-Jin Huang, Yifang Gu, Chunshui Lin, Haobin Zhong, Wei Xu, Quan Liu, Yan You, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin O'Dowd
Atmos. Chem. Phys., 22, 10139–10153, https://doi.org/10.5194/acp-22-10139-2022, https://doi.org/10.5194/acp-22-10139-2022, 2022
Short summary
Short summary
Biomass-burning-influenced oxygenated organic aerosol (OOA-BB), formed from the photochemical oxidation and aging of biomass burning OA (BBOA), was resolved in urban Xi’an. The aqueous-phase processed oxygenated OA (aq-OOA) concentration was more dependent on secondary inorganic aerosol (SIA) content and aerosol liquid water content (ALWC). The increased aq-OOA contribution during SIA-enhanced periods likely reflects OA evolution due to the addition of alcohol or peroxide groups
Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022, https://doi.org/10.5194/essd-14-3439-2022, 2022
Short summary
Short summary
A climatology of aerosol composition concentration derived from POLDER-3 observations using GRASP/Component is presented. The conceptual specifics of the GRASP/Component approach are in the direct retrieval of aerosol speciation without intermediate retrievals of aerosol optical characteristics. The dataset of satellite-derived components represents scarce but imperative information for validation and potential adjustment of chemical transport models.
Junting Zhong, Xiaoye Zhang, Ke Gui, Jie Liao, Ye Fei, Lipeng Jiang, Lifeng Guo, Liangke Liu, Huizheng Che, Yaqiang Wang, Deying Wang, and Zijiang Zhou
Earth Syst. Sci. Data, 14, 3197–3211, https://doi.org/10.5194/essd-14-3197-2022, https://doi.org/10.5194/essd-14-3197-2022, 2022
Short summary
Short summary
Historical long-term PM2.5 records with high temporal resolution are essential but lacking for research and environmental management. Here, we reconstruct site-based and gridded PM2.5 datasets at 6-hour intervals from 1960 to 2020 that combine visibility, meteorological data, and emissions based on a machine learning model with extracted spatial features. These two PM2.5 datasets will lay the foundation of research studies associated with air pollution, climate change, and aerosol reanalysis.
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
Atmos. Chem. Phys., 22, 8767–8785, https://doi.org/10.5194/acp-22-8767-2022, https://doi.org/10.5194/acp-22-8767-2022, 2022
Short summary
Short summary
A 17-month in situ study on Ascension Island found low single-scattering albedo and strong absorption enhancement of the marine boundary layer aerosols during biomass burnings on the African continent, along with apparent patterns of regular monthly variability. We further discuss the characteristics and drivers behind these changes and find that biomass burning conditions in Africa may be the main factor influencing the optical properties of marine boundary aerosols.
Xinghua Zhang, Wenhui Zhao, Lixiang Zhai, Miao Zhong, Jinsen Shi, Junying Sun, Yanmei Liu, Conghui Xie, Yulong Tan, Kemei Li, Xinlei Ge, Qi Zhang, Shichang Kang, and Jianzhong Xu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-211, https://doi.org/10.5194/essd-2022-211, 2022
Manuscript not accepted for further review
Short summary
Short summary
A comprehensive aerosol observation project was carried out in the Tibetan Plateau (TP) in recent years to investigate the properties and sources of atmospheric aerosols as well as their regional differences by performing multiple short-term intensive field observations. The real-time online high-time-resolution (hourly) data of aerosol properties in the different TP region are integrated in a new dataset and can provide supporting for related studies in in the TP.
Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, https://doi.org/10.5194/acp-22-7905-2022, 2022
Short summary
Short summary
This study investigates the aerosol optical and radiative properties and meteorological drivers during two mega SDS events over Northern China in March 2021. The MODIS-retrieved DOD data registered these two events as the most intense episode in the same period in history over the past 20 years. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favor enhanced dust emissions in the Gobi Desert.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Yu Zheng, Huizheng Che, Yupeng Wang, Xiangao Xia, Xiuqing Hu, Xiaochun Zhang, Jun Zhu, Jibiao Zhu, Hujia Zhao, Lei Li, Ke Gui, and Xiaoye Zhang
Atmos. Meas. Tech., 15, 2139–2158, https://doi.org/10.5194/amt-15-2139-2022, https://doi.org/10.5194/amt-15-2139-2022, 2022
Short summary
Short summary
Ground-based observations of aerosols and aerosol data verification is important for satellite and climate model modification. Here we present an evaluation of aerosol microphysical, optical and radiative properties measured using a multiwavelength photometer with a highly integrated design and smart control performance. The validation of this product is discussed in detail using AERONET as a reference. This work contributes to reducing AOD uncertainties in China and combating climate change.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Wenxing Jia and Xiaoye Zhang
Atmos. Chem. Phys., 21, 16827–16841, https://doi.org/10.5194/acp-21-16827-2021, https://doi.org/10.5194/acp-21-16827-2021, 2021
Short summary
Short summary
Heavy aerosol pollution incidents have attracted much attention since 2013, but the temporal and spatial limitations of observations and the inaccuracy of simulation are a stumbling block to assessing pollution mechanisms. The correct simulation of boundary layer mixing process of pollutant is a challenge for mesoscale numerical models. We add the turbulent diffusion term of aerosol to the WRF-Chem model to prove the impact of turbulent diffusion on pollutant concentration.
Ke Gui, Huizheng Che, Yu Zheng, Hujia Zhao, Wenrui Yao, Lei Li, Lei Zhang, Hong Wang, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 15309–15336, https://doi.org/10.5194/acp-21-15309-2021, https://doi.org/10.5194/acp-21-15309-2021, 2021
Short summary
Short summary
This study utilized the globally gridded aerosol extinction data from CALIOP during 2007–2019 to investigate the 3D climatology, trends, and meteorological drivers of tropospheric type-dependent aerosols. Results revealed that the planetary boundary layer (PBL) and the free troposphere contribute 62.08 % and 37.92 %, respectively, of the global tropospheric TAOD. Trends in
CALIOP-derived aerosol loading, in particular those partitioned in the PBL, can be explained to a large extent by meteorology.
Quan Liu, Dantong Liu, Yangzhou Wu, Kai Bi, Wenkang Gao, Ping Tian, Delong Zhao, Siyuan Li, Chenjie Yu, Guiqian Tang, Yunfei Wu, Kang Hu, Shuo Ding, Qian Gao, Fei Wang, Shaofei Kong, Hui He, Mengyu Huang, and Deping Ding
Atmos. Chem. Phys., 21, 14749–14760, https://doi.org/10.5194/acp-21-14749-2021, https://doi.org/10.5194/acp-21-14749-2021, 2021
Short summary
Short summary
Through simultaneous online measurements of detailed aerosol compositions at both surface and surface-influenced mountain sites, the evolution of aerosol composition during daytime vertical transport was investigated. The results show that, from surface to the top of the planetary boundary layer, the oxidation state of organic aerosol had been significantly enhanced due to evaporation and further oxidation of these evaporated gases.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Xiaojing Shen, Junying Sun, Fangqun Yu, Ying Wang, Junting Zhong, Yangmei Zhang, Xinyao Hu, Can Xia, Sinan Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 7039–7052, https://doi.org/10.5194/acp-21-7039-2021, https://doi.org/10.5194/acp-21-7039-2021, 2021
Short summary
Short summary
In this work, we revealed the changes of PNSD and NPF events during the COVID-19 lockdown period in Beijing, China, to illustrate the impact of reduced primary emission and elavated atmospheric oxidized capicity on the nucleation and growth processes. The subsequent growth of nucleated particles and their contribution to the aerosol pollution formation were also explored, to highlight the necessity of controlling the nanoparticles in the future air quality management.
Linlin Liang, Guenter Engling, Chang Liu, Wanyun Xu, Xuyan Liu, Yuan Cheng, Zhenyu Du, Gen Zhang, Junying Sun, and Xiaoye Zhang
Atmos. Chem. Phys., 21, 3181–3192, https://doi.org/10.5194/acp-21-3181-2021, https://doi.org/10.5194/acp-21-3181-2021, 2021
Short summary
Short summary
A unique episode with extreme biomass burning (BB) impact, with daily concentration of levoglucosan as high as 4.37 µg m-3, was captured at an area upwind of Beijing. How this extreme BB pollution event was generated and what were the chemical properties of PM2.5 under this kind severe BB pollution level in the real atmospheric environment were both presented in this measurement report. Moreover, the variation of the ratios of BB tracers during different BB pollution periods was also exhibited.
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021, https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Jia Sun, Wolfram Birmili, Markus Hermann, Thomas Tuch, Kay Weinhold, Maik Merkel, Fabian Rasch, Thomas Müller, Alexander Schladitz, Susanne Bastian, Gunter Löschau, Josef Cyrys, Jianwei Gu, Harald Flentje, Björn Briel, Christoph Asbach, Heinz Kaminski, Ludwig Ries, Ralf Sohmer, Holger Gerwig, Klaus Wirtz, Frank Meinhardt, Andreas Schwerin, Olaf Bath, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 7049–7068, https://doi.org/10.5194/acp-20-7049-2020, https://doi.org/10.5194/acp-20-7049-2020, 2020
Short summary
Short summary
To evaluate the effectiveness of emission mitigation policies, we evaluated the trends of the size-resolved particle number concentrations and equivalent black carbon mass concentration at 16 observational sites for various environments in Germany (2009–2018). Overall, significant decrease trends are found for most of the parameters and sites. This study suggests that a combination of emission mitigation policies can effectively improve the air quality on large spatial scales such as in Germany.
Yucong Miao, Huizheng Che, Xiaoye Zhang, and Shuhua Liu
Atmos. Chem. Phys., 20, 5899–5909, https://doi.org/10.5194/acp-20-5899-2020, https://doi.org/10.5194/acp-20-5899-2020, 2020
Short summary
Short summary
By combining long-term observational data analyses, synoptic classifications, and meteorology–chemistry coupled simulations, the complicated impacts of large-scale synoptic forcing and local boundary layer processes on the aerosol pollution in the Beijing–Tianjin–Hebei region have been investigated. The influences of the aerosol radiative effect on boundary layer structure and pollution were also examined. This study has important implications for better understanding pollution in China.
Quan Liu, Dantong Liu, Qian Gao, Ping Tian, Fei Wang, Delong Zhao, Kai Bi, Yangzhou Wu, Shuo Ding, Kang Hu, Jiale Zhang, Deping Ding, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 3931–3944, https://doi.org/10.5194/acp-20-3931-2020, https://doi.org/10.5194/acp-20-3931-2020, 2020
Short summary
Short summary
We present a series of aircraft-based in situ measurements of aerosol chemical components and size distributions over the North China Plain, and the hygroscopicity is derived from aerosol chemical composition. These results reveal the vertical characteristics of aerosol hygroscopicity, and we investigated their impacts on optical properties and activation under different moisture and pollution conditions over this polluted region.
Ping Tian, Dantong Liu, Delong Zhao, Chenjie Yu, Quan Liu, Mengyu Huang, Zhaoze Deng, Liang Ran, Yunfei Wu, Shuo Ding, Kang Hu, Gang Zhao, Chunsheng Zhao, and Deping Ding
Atmos. Chem. Phys., 20, 2603–2622, https://doi.org/10.5194/acp-20-2603-2020, https://doi.org/10.5194/acp-20-2603-2020, 2020
Short summary
Short summary
This study paints a full picture of the evolution of vertical characteristics of aerosol optical properties and shortwave heating impacts of carbonaceous aerosols during different stages of pollution events over the Beijing region and highlights the increased contribution of brown carbon absorption, especially at higher levels, during pollution.
Linlin Liang, Guenter Engling, Chang Liu, Wanyun Xu, Xuyan Liu, Yuan Cheng, Zhenyu Du, Gen Zhang, Junying Sun, and Xiaoye Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-19, https://doi.org/10.5194/acp-2020-19, 2020
Revised manuscript not accepted
Short summary
Short summary
Our study captured an episode with extreme biomass burning tracer level at an agricultural site in North China, with concentrations of levoglucosan as high as 4.37 μg m−3. Based on comparison of the chemical composition between different biomass burning periods, it appeared that biomass burning can obviously elevate the levels of organic components, but seems to have no significant effect on the production of secondary inorganic ions, although their precursors increased during the episode.
Renmin Yuan, Xiaoye Zhang, Hao Liu, Yu Gui, Bohao Shao, Xiaoping Tao, Yaqiang Wang, Junting Zhong, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 19, 12857–12874, https://doi.org/10.5194/acp-19-12857-2019, https://doi.org/10.5194/acp-19-12857-2019, 2019
Short summary
Short summary
To understand the contribution of ground emission during heavy pollution in Beijing, Tianjin and Hebei, aerosol fluxes were estimated in Beijing and Gucheng areas. The results show that in the three stages of a heavy pollution process (transport, accumulative and removal stages: TS, AS and RS), the ground emissions in the TS and RS stages are stronger, while the ground discharge in the AS stage is weak. The weakened mass flux indicates that the already weak turbulence would be further weakened.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Xianyi Yang, Huizheng Che, Hitoshi Irie, Quanliang Chen, Ke Gui, Ying Cai, Yu Zheng, Linchang An, Hujia Zhao, Lei Li, Yuanxin Liang, Yaqiang Wang, Hong Wang, and Xiaoye Zhang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-339, https://doi.org/10.5194/amt-2019-339, 2019
Preprint withdrawn
Short summary
Short summary
This study assesses the performance of SKYNET in comparison to AERONET (Aerosol Robotic Network) for retrieving aerosol optical properties (AOPs) in Beijing, China. SKYNET data retrieved by SR-CEReS analysis package are used to analyze a serious pollution event in winter over Beijing. The AOPs under three weather conditions (clean, dusty, haze) in Beijing are discussed. Measurements from the SKYNET skyradiometer can be used to analyze the AOPs over Beijing reasonably.
Huizheng Che, Ke Gui, Xiangao Xia, Yaqiang Wang, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Hong Wang, Yu Zheng, Hujia Zhao, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, https://doi.org/10.5194/acp-19-10497-2019, 2019
Short summary
Short summary
A comprehensive assessment of the global and regional AOD trends over the past 37 years (1980–2016) is presented. AOD observations from both AERONET and CARSNET were used for the first time to assess the performance of the MERRA-2 AOD dataset on a global scale. Based on statistical models, we found the meteorological parameters explained a larger proportion of the regional AOD variability (20.4 %–2.8 %) when compared with emission factors (0 %%–56 %).
Hua Yu, Weijun Li, Yangmei Zhang, Peter Tunved, Manuel Dall'Osto, Xiaojing Shen, Junying Sun, Xiaoye Zhang, Jianchao Zhang, and Zongbo Shi
Atmos. Chem. Phys., 19, 10433–10446, https://doi.org/10.5194/acp-19-10433-2019, https://doi.org/10.5194/acp-19-10433-2019, 2019
Short summary
Short summary
Interaction of anthropogenic particles with radiation and clouds plays an important role in Arctic climate change. The mixing state of different aerosols is a key parameter influencing such interactions. However, little is known of this parameter, preventing an accurate representation of this information in global models. Multi-microscopic techniques were used to find one general core–shell structure in which secondary sulfate particles were covered by organic coating in the Arctic atmosphere.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Xinghua Zhang, Jianzhong Xu, Shichang Kang, Qi Zhang, and Junying Sun
Atmos. Chem. Phys., 19, 7897–7911, https://doi.org/10.5194/acp-19-7897-2019, https://doi.org/10.5194/acp-19-7897-2019, 2019
Short summary
Short summary
Highly time resolved chemistry and sources of PM1 were measured by an Aerodyne HR-ToF-AMS at Waliguan Baseline Observatory, a high-altitude background station at the northeastern edge of Qinghai–Tibet Plateau (QTP), during summer 2017. Relatively higher mass concentration of PM1 and dominant sulfate contribution were observed in this site compared to those at other high-elevation sites in the southern or central QTP, indicating the different aerosol sources between them.
Linlin Wang, Junkai Liu, Zhiqiu Gao, Yubin Li, Meng Huang, Sihui Fan, Xiaoye Zhang, Yuanjian Yang, Shiguang Miao, Han Zou, Yele Sun, Yong Chen, and Ting Yang
Atmos. Chem. Phys., 19, 6949–6967, https://doi.org/10.5194/acp-19-6949-2019, https://doi.org/10.5194/acp-19-6949-2019, 2019
Short summary
Short summary
Urban boundary layer (UBL) affects the physical and chemical processes of the pollutants, and UBL structure can also be altered by pollutants. This paper presents the interactions between air pollution and the UBL structure by using the field data mainly collected from a 325 m meteorology tower, as well as from a Doppler wind lidar, during a severe heavy pollution event that occurred during 1–4 December 2016 in Beijing.
Junting Zhong, Xiaoye Zhang, Yaqiang Wang, Jizhi Wang, Xiaojing Shen, Hongsheng Zhang, Tijian Wang, Zhouqing Xie, Cheng Liu, Hengde Zhang, Tianliang Zhao, Junying Sun, Shaojia Fan, Zhiqiu Gao, Yubin Li, and Linlin Wang
Atmos. Chem. Phys., 19, 3287–3306, https://doi.org/10.5194/acp-19-3287-2019, https://doi.org/10.5194/acp-19-3287-2019, 2019
Short summary
Short summary
In various haze regions in China, including the Guanzhong Plain, the middle and lower reaches of the Yangtze River, the Pearl River Delta, the Sichuan Basin, and the Northeast China Plain, heavy aerosol pollution episodes include inter-/trans-regional transport stages and cumulative stages (CSs). During CSs a two-way feedback mechanism exists between unfavorable meteorological conditions and cumulative aerosol pollution. This two-way feedback is further quantified and its magnitude is compared.
Angela Benedetti, Francesca Di Giuseppe, Luke Jones, Vincent-Henri Peuch, Samuel Rémy, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 987–998, https://doi.org/10.5194/acp-19-987-2019, https://doi.org/10.5194/acp-19-987-2019, 2019
Hong Wang, Yue Peng, Xiaoye Zhang, Hongli Liu, Meng Zhang, Huizheng Che, Yanli Cheng, and Yu Zheng
Atmos. Chem. Phys., 18, 17717–17733, https://doi.org/10.5194/acp-18-17717-2018, https://doi.org/10.5194/acp-18-17717-2018, 2018
Short summary
Short summary
The explosive growth (EG) of PM2.5 resulted in a PM2.5 maximum, which was generally underestimated by atmospheric chemical models due to the deficient description of the local
turbulence intermittent. The aerosol–radiation feedback (AF) and decrease in turbulence diffusion (DTD) may reduce the underestimation of PM2.5 EG by 20–25% and 14–20%, respectively. The modeled EG stage PM2.5 error was decreased from −40 to −51% to −11 to 2% by the combined effects of AF and DTD in Jing–Jin–Ji.
Yue Peng, Hong Wang, Yubin Li, Changwei Liu, Tianliang Zhao, Xiaoye Zhang, Zhiqiu Gao, Tong Jiang, Huizheng Che, and Meng Zhang
Atmos. Chem. Phys., 18, 17421–17435, https://doi.org/10.5194/acp-18-17421-2018, https://doi.org/10.5194/acp-18-17421-2018, 2018
Short summary
Short summary
Two surface layer schemes are evaluated in eastern China based on observational flux data. The results indicate that the Li scheme better describes regional atmosphere stratification compared with the MM5 scheme, especially for the transition stage from unstable to stable atmosphere conditions, corresponding to PM2.5 accumulation. Our research suggests the potential improved possibilities for severe haze prediction in eastern China by coupling Li online into atmosphere chemical models.
Martine Collaud Coen, Elisabeth Andrews, Diego Aliaga, Marcos Andrade, Hristo Angelov, Nicolas Bukowiecki, Marina Ealo, Paulo Fialho, Harald Flentje, A. Gannet Hallar, Rakesh Hooda, Ivo Kalapov, Radovan Krejci, Neng-Huei Lin, Angela Marinoni, Jing Ming, Nhat Anh Nguyen, Marco Pandolfi, Véronique Pont, Ludwig Ries, Sergio Rodríguez, Gerhard Schauer, Karine Sellegri, Sangeeta Sharma, Junying Sun, Peter Tunved, Patricio Velasquez, and Dominique Ruffieux
Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, https://doi.org/10.5194/acp-18-12289-2018, 2018
Short summary
Short summary
High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer. An ABL-TopoIndex is defined from a topography analysis around the stations. This new index allows ranking stations as a function of the ABL influence due to topography or help to choose a new site to sample FT. The ABL-TopoIndex is validated by aerosol optical properties and number concentration measured at 29 high altitude stations of five continents.
Xiaoye Zhang, Junting Zhong, Jizhi Wang, Yaqiang Wang, and Yanju Liu
Atmos. Chem. Phys., 18, 5991–5999, https://doi.org/10.5194/acp-18-5991-2018, https://doi.org/10.5194/acp-18-5991-2018, 2018
Short summary
Short summary
The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, the decadal worsening of meteorological conditions since the 1960s in the Beijing area was found to be partly attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening may also partly be related to the impact on the increasing aerosol pollution (particularly after 2010).
Tianze Sun, Huizheng Che, Bing Qi, Yaqiang Wang, Yunsheng Dong, Xiangao Xia, Hong Wang, Ke Gui, Yu Zheng, Hujia Zhao, Qianli Ma, Rongguang Du, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 2949–2971, https://doi.org/10.5194/acp-18-2949-2018, https://doi.org/10.5194/acp-18-2949-2018, 2018
Short summary
Short summary
The Yangtze River Delta (YRD) region is a key hub in China with air pollution problems. We applied various data from observations and satellites, finding particles in summer prefer hygroscopic growth leading to high scatter. Transported scatter particles lead to a cooling effect which lowers the boundary layer, creating positive feedback. Transported pollutants over YRD are from the North China Plain, northwestern deserts, and southern biomass burning. This finding helps air quality control.
Xiaojing Shen, Junying Sun, Niku Kivekäs, Adam Kristensson, Xiaoye Zhang, Yangmei Zhang, Lu Zhang, Ruxia Fan, Xuefei Qi, Qianli Ma, and Huaigang Zhou
Atmos. Chem. Phys., 18, 587–599, https://doi.org/10.5194/acp-18-587-2018, https://doi.org/10.5194/acp-18-587-2018, 2018
Short summary
Short summary
In this study we used the NanoMap method by applying back trajectories and particle number size distribution in different rural sites in China to evaluate the spatial distribution of NPF events and their occurrence probability. We found difference in the horizontal spatial distribution of new particle source areas was connected to typical meteorological conditions. The horizontal extent of NPF reached to larger than 500 km at two sites, favoured by the fast transport of northwesterly air masses.
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Junting Zhong, Xiaoye Zhang, Yunsheng Dong, Yaqiang Wang, Cheng Liu, Jizhi Wang, Yangmei Zhang, and Haochi Che
Atmos. Chem. Phys., 18, 247–258, https://doi.org/10.5194/acp-18-247-2018, https://doi.org/10.5194/acp-18-247-2018, 2018
Short summary
Short summary
Beijing heavy pollution episodes are characterized by the transport stage (TS) and the cumulative stage (CS). PM2.5 pollution formation in the TS is primarily caused by pollutants transported from the south of Beijing. PM2.5 cumulative explosive growth in the CS is dominated by stable atmospheric stratification due to the interaction of particulate matter (PM) and meteorological factors. The positive meteorological feedback on PM2.5 mass noted explains over 70% of cumulative explosive growth.
Delong Zhao, Mengyu Huang, Dantong Liu, Deping Ding, Ping Tian, Quan Liu, Wei Zhou, Jiujiang Sheng, Fei Wang, Kai Bi, Yan Yang, Xia Li, Yaqiong Hu, Xin Guo, Yang Gao, Hui He, Yunbo Chen, Shaofei Kong, and Jiayi Huang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1118, https://doi.org/10.5194/acp-2017-1118, 2018
Preprint withdrawn
Short summary
Short summary
This study for the first time reports the 3D distributions of black carbon and detailed physical properties in the boundary layer over the North China Plain, using intensive aircraft measurements in both hot and cold seasons. The BC mass in the planetary boundary layer (PBL) was found to be largely influenced by meteorology which modulated the local emission and regional transport.
Lauren Schmeisser, Elisabeth Andrews, John A. Ogren, Patrick Sheridan, Anne Jefferson, Sangeeta Sharma, Jeong Eun Kim, James P. Sherman, Mar Sorribas, Ivo Kalapov, Todor Arsov, Christo Angelov, Olga L. Mayol-Bracero, Casper Labuschagne, Sang-Woo Kim, András Hoffer, Neng-Huei Lin, Hao-Ping Chia, Michael Bergin, Junying Sun, Peng Liu, and Hao Wu
Atmos. Chem. Phys., 17, 12097–12120, https://doi.org/10.5194/acp-17-12097-2017, https://doi.org/10.5194/acp-17-12097-2017, 2017
Short summary
Short summary
Three methods are used to classify aerosol type from aerosol optical properties measured in situ at 24 surface sites. Classification methods work best at sites with stable, homogenous aerosol at particularly polluted and dust-prone continental and marine sites. Classification methods are poor at remote marine and Arctic sites. Using these methods to extrapolate aerosol type from optical properties can help determine aerosol radiative forcing and improve aerosol satellite retrieval algorithms.
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
Y. Q. Yang, J. Z. Wang, S. L. Gong, X. Y. Zhang, H. Wang, Y. Q. Wang, J. Wang, D. Li, and J. P. Guo
Atmos. Chem. Phys., 16, 1353–1364, https://doi.org/10.5194/acp-16-1353-2016, https://doi.org/10.5194/acp-16-1353-2016, 2016
Short summary
Short summary
A new model, PLAM/h, has been developed and used in near-real-time air quality forecasts by considering both meteorology and pollutant emissions, based on the two-dimensional probability density function diagnosis model for emissions. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the forecasting ability for fog-haze weather in North China.
P. Wang, H. Wang, Y. Q. Wang, X. Y. Zhang, S. L. Gong, M. Xue, C. H. Zhou, H. L. Liu, X. Q. An, T. Niu, and Y. L. Cheng
Atmos. Chem. Phys., 16, 989–1002, https://doi.org/10.5194/acp-16-989-2016, https://doi.org/10.5194/acp-16-989-2016, 2016
Short summary
Short summary
An ensemble optimal interpolation (EnOI) data assimilation technique is used to investigate the possibility of optimally recovering the spatially resolved emissions bias of BC. The inversed emission over China in January is 240.1 Gg, and annual emission is about 2539 Gg. Even though only monthly mean BC measurements are employed to inverse the emissions, the accuracy of the daily model simulation improves. We finds that EnOI is a useful and computation-free method to make top-down estimation.
C. Zhou, X. Zhang, S. Gong, Y. Wang, and M. Xue
Atmos. Chem. Phys., 16, 145–160, https://doi.org/10.5194/acp-16-145-2016, https://doi.org/10.5194/acp-16-145-2016, 2016
Short summary
Short summary
A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme from emissions to precipitation has been developed under the CMA chemical weather modeling system GRAPES/CUACE. The ACI for January 2013 has been studied using this model. The interactive microphysical properties of clouds improve the precipitation, showing 24 to 48 % enhancements of threat score for 6 h precipitation in all regions and reduction of the regional mean bias of temperature by 3 °C in certain precipitation events.
Y. Q. Wang, X. Y. Zhang, J. Y. Sun, X. C. Zhang, H. Z. Che, and Y. Li
Atmos. Chem. Phys., 15, 13585–13598, https://doi.org/10.5194/acp-15-13585-2015, https://doi.org/10.5194/acp-15-13585-2015, 2015
Short summary
Short summary
Concentrations of PM10, PM2.5 and PM1 were monitored at 24 stations of CAWNET from 2006 to 2014. The average levels of particulate matter (PM) concentrations and relationships were investigated. Seasonal, interannual and diurnal variations of the PM were revealed. The effects of meteorological factors on the PM were discussed. The highest PM concentrations were observed at the stations of Xian, Zhengzhou and Gucheng, in Guanzhong and the Huabei Plain.
X. Y. Zhang, J. Z. Wang, Y. Q. Wang, H. L. Liu, J. Y. Sun, and Y. M. Zhang
Atmos. Chem. Phys., 15, 12935–12952, https://doi.org/10.5194/acp-15-12935-2015, https://doi.org/10.5194/acp-15-12935-2015, 2015
Short summary
Short summary
No obvious changes were found in annual mean concentrations of major chemical components and PM10 in 2013, relative to 2012. But wintertime mass were quite different; approximately 60% of the winter mass increase from 2012 to 2013 can be attributed to severe meteorological conditions in the HBP area, and mass of chemical components exhibited a decline during 2006 to 2010, and then a rise till 2013. Coal-combustion was still the largest anthropogenic source of aerosol pollution in 2013 in China.
J. W. Chi, W. J. Li, D. Z. Zhang, J. C. Zhang, Y. T. Lin, X. J. Shen, J. Y. Sun, J. M. Chen, X. Y. Zhang, Y. M. Zhang, and W. X. Wang
Atmos. Chem. Phys., 15, 11341–11353, https://doi.org/10.5194/acp-15-11341-2015, https://doi.org/10.5194/acp-15-11341-2015, 2015
Short summary
Short summary
Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere. Our result suggests that the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases in the Arctic. The content of organic matter increased in the aged SSA compared with the fresh SSA, which suggests organic acids (beside inorganic acids) participate in the ageing of SSA in the Arctic.
L. Zhang, J. Y. Sun, X. J. Shen, Y. M. Zhang, H. Che, Q. L. Ma, Y. W. Zhang, X. Y. Zhang, and J. A. Ogren
Atmos. Chem. Phys., 15, 8439–8454, https://doi.org/10.5194/acp-15-8439-2015, https://doi.org/10.5194/acp-15-8439-2015, 2015
Short summary
Short summary
The aerosol hygroscopic properties at a rural background site in the Yangtze River delta of China was discussed. The results show the scattering coefficient and backscattering coefficient increased by 58 and 25% as relative humidity (RH) increased from 40 to 85%, while the hemispheric backscatter fraction decreased by 21%. Aerosol hygroscopic growth caused a 47% increase in calculated aerosol direct radiative forcing at 85% RH compared to the forcing at 40% RH. Nitrate played a vital role.
H. Che, X.-Y. Zhang, X. Xia, P. Goloub, B. Holben, H. Zhao, Y. Wang, X.-C. Zhang, H. Wang, L. Blarel, B. Damiri, R. Zhang, X. Deng, Y. Ma, T. Wang, F. Geng, B. Qi, J. Zhu, J. Yu, Q. Chen, and G. Shi
Atmos. Chem. Phys., 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015, https://doi.org/10.5194/acp-15-7619-2015, 2015
Short summary
Short summary
This work studied more than 10 years of measurements of aerosol optical depths (AODs) made for 50 sites of CARSNET compiled into a climatology of aerosol optical properties for China. It lets us see a detailed full-scale description of AOD observations over China. The results would benefit us a lot in comprehending the temporal and special distribution aerosol optical property over China. Also the data would be valuable to communities of aerosol satellite retrieval, modelling, etc.
Z. L. Wang, H. Zhang, and X. Y. Zhang
Atmos. Chem. Phys., 15, 3671–3685, https://doi.org/10.5194/acp-15-3671-2015, https://doi.org/10.5194/acp-15-3671-2015, 2015
Short summary
Short summary
This study highlights that there are no effective ways to remove the black carbon exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth’s climate system in the future.
H. Wang, M. Xue, X. Y. Zhang, H. L. Liu, C. H. Zhou, S. C. Tan, H. Z. Che, B. Chen, and T. Li
Atmos. Chem. Phys., 15, 3257–3275, https://doi.org/10.5194/acp-15-3257-2015, https://doi.org/10.5194/acp-15-3257-2015, 2015
Y. M. Zhang, X. Y. Zhang, J. Y. Sun, G. Y. Hu, X. J. Shen, Y. Q. Wang, T. T. Wang, D. Z. Wang, and Y. Zhao
Atmos. Chem. Phys., 14, 12237–12249, https://doi.org/10.5194/acp-14-12237-2014, https://doi.org/10.5194/acp-14-12237-2014, 2014
Short summary
Short summary
An AMS was employed to measure the mass and size distributions of PM1 at an elevated site. Features of PM1 at four seasons, during different kinds of episodes including NPF, polluted, PBL, LFT and in-cloud, were discussed. The characterizations of PM1 at seven clusters of air masses were also analyzed. BBOA, CCOA and oxidized organic aerosols were resolved by AMS-PMF (positive matrix function). Almost half of OA were oxidized, and BBOA is 34% of OA in summer; CCOA is 22% of OA in winter as well.
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
H. Che, X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, E. Cuevas-Agulló, L. Blarel, H. Wang, H. Zhao, X. Zhang, Y. Wang, J. Sun, R. Tao, X. Zhang, and G. Shi
Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, https://doi.org/10.5194/acp-14-2125-2014, 2014
Z. B. Wang, M. Hu, J. Y. Sun, Z. J. Wu, D. L. Yue, X. J. Shen, Y. M. Zhang, X. Y. Pei, Y. F. Cheng, and A. Wiedensohler
Atmos. Chem. Phys., 13, 12495–12506, https://doi.org/10.5194/acp-13-12495-2013, https://doi.org/10.5194/acp-13-12495-2013, 2013
A. Petzold, J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, C. Wehrli, A. Wiedensohler, and X.-Y. Zhang
Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, https://doi.org/10.5194/acp-13-8365-2013, 2013
H. Jiang, H. Liao, H. O. T. Pye, S. Wu, L. J. Mickley, J. H. Seinfeld, and X. Y. Zhang
Atmos. Chem. Phys., 13, 7937–7960, https://doi.org/10.5194/acp-13-7937-2013, https://doi.org/10.5194/acp-13-7937-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Ice-nucleating particles active below -24 °C in a Finnish boreal forest and their relationship to bioaerosols
Atmospheric Black Carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
Measurement report: In-situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Biological and dust aerosol as sources of ice nucleating particles in the Eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Emerging extreme Saharan-dust events expand northward over the Atlantic and Europe prompting record-breaking PM10 and PM2.5 episodes
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Quantifying the dust direct radiative effect in the Southwestern United States: findings from multiyear measurements
Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China
Contrail processed aviation soot aerosol are poor ice nucleating particles at cirrus temperatures
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei and radiative forcing: Results from five-year observations in Central Europe
Characterization of aerosol over the Eastern Mediterranean by polarization sensitive Raman lidar measurements during A-LIFE – aerosol type classification and type separation
Changing optical properties of Black Carbon and Brown Carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas
Significant spatial gradients in new particle formation frequency in Greece during summer
Impact of desert dust on new particle formation events and the cloud condensation nuclei budget in dust-influenced areas
Active thermokarst regions contain rich sources of ice-nucleating particles
Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
Measurement report: Size-resolved mass concentration of equivalent black carbon-containing particles larger than 700 nm and their role in radiation
Aerosol absorption using in situ filter-based photometers and ground-based sun photometry in the Po Valley urban atmosphere
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
Aircraft ice-nucleating particle and aerosol composition measurements in the western North American Arctic
Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline
New particle formation leads to enhanced cloud condensation nuclei concentrations on the Antarctic Peninsula
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
EGUsphere, https://doi.org/10.5194/egusphere-2024-1254, https://doi.org/10.5194/egusphere-2024-1254, 2024
Short summary
Short summary
Sea spray aerosol whipped up from the sea surface, is an important compound of the atmospheric boundary layer. Our research provides new insights into the study of sea spray emission in the Baltic Sea and North Atlantic. We investigated the impact of environmental factors on sea spray fluxes. We observed that in case of increased marine biological activity in the Baltic Sea, sea spray flux is suppressed. We also observed evidence of sea surface temperature influence on sea spray emission.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1272, https://doi.org/10.5194/egusphere-2024-1272, 2024
Short summary
Short summary
Ice nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known concerning the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer, and occasionally reach the free troposphere.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Rebecca Katharina Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Satoru Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
EGUsphere, https://doi.org/10.5194/egusphere-2024-1224, https://doi.org/10.5194/egusphere-2024-1224, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
EGUsphere, https://doi.org/10.5194/egusphere-2024-880, https://doi.org/10.5194/egusphere-2024-880, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) during the FIREX-AQ campaign. This study revealed the compositions, abundance, sizes, and mixing states of TBs and showed that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass burning and ages and enhances the knowledge of TB emissions and our understanding of their climate impact.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-853, https://doi.org/10.5194/egusphere-2024-853, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties, hence it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INP we observe are, at least some of the time, of biological origin.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Widensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
EGUsphere, https://doi.org/10.5194/egusphere-2024-770, https://doi.org/10.5194/egusphere-2024-770, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the southern hemisphere, especially in high-altitude conditions. This study provides insight on the concentration level, variability, and optical properties of BC in the cities of La Paz and El Alto, and at the station GAW Chacaltaya Mountain station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, additionally to biomass and open waste burning.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
EGUsphere, https://doi.org/10.5194/egusphere-2024-733, https://doi.org/10.5194/egusphere-2024-733, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud-aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papagiannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2024-511, https://doi.org/10.5194/egusphere-2024-511, 2024
Short summary
Short summary
Ice nucleating particle concentrations (INPs) are required for correct predictions of clouds & precipitation in a changing climate and is poorly constrained in climate models. We unravel airmass & source contributions to INPs in the E.Mediterranean & find that biological particles are important regardless of origin (continental/marine – even during Saharan dust events). The parameterizations developed exhibit superior performance & enable models to consider biological particle effects on INPs.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Sergio Rodríguez and Jessica López-Darias
EGUsphere, https://doi.org/10.5194/egusphere-2023-3083, https://doi.org/10.5194/egusphere-2023-3083, 2024
Short summary
Short summary
Extreme Saharan-dust events have expanded northward to the Atlantic and Europe, prompting the most intense PM10 and PM2.5 events ever recorded in the governmental air quality network of Spain. The events occurred during hemispheric anomalies characterised by subtropical anticyclones shifted to higher latitudes, anomalous low pressures expanding beyond the tropic and a mid-latitude amplified Rossby-waves undulation, resembling the circulation anomalies due to the anthropogenic global warming.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Alexandra Meiko Kuwano, Amato Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2024-1, https://doi.org/10.5194/acp-2024-1, 2024
Revised manuscript accepted for ACP
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over three years and during dust storms at a field site in a desert region in southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
EGUsphere, https://doi.org/10.5194/egusphere-2024-151, https://doi.org/10.5194/egusphere-2024-151, 2024
Short summary
Short summary
Aviation soot residuals released from contrail can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates, where ice nucleation can occur. Here we show that contrail processed soot are highly compact but that they remain unable to form ice at relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that they will not perturb cirrus cloud formation via ice nucleation.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
EGUsphere, https://doi.org/10.5194/egusphere-2023-2359, https://doi.org/10.5194/egusphere-2023-2359, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine, and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. The NPF features differ between site categories, implying the crucial role of local environments such as degree of emissions and meteorological conditions. The results also underscore the importance of the local environments when assessing the impact of NPF on climate in models.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
Krishnakant Budhavant, Mohanan Remani Manoj, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan K. Satheesh, and Orjan Gustafsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-104, https://doi.org/10.5194/egusphere-2024-104, 2024
Short summary
Short summary
The South Asian Pollution Experiment-2018 utilized access to 3 strategically located atmospheric receptor observatories. These observational constraints revealed opposite trends during long-range transport in BC-MAC and BrC-MAC. Models estimating the climate effects of particularly BC aerosols may have underestimated the ambient BC-MAC over distant and extensive receptor areas, which could contribute to the discrepancy between aerosol absorption predicted by models constrained by observations.
Julius Seidler, Markus N. Friedrich, Christoph K. Thomas, and Anke C. Nölscher
Atmos. Chem. Phys., 24, 137–153, https://doi.org/10.5194/acp-24-137-2024, https://doi.org/10.5194/acp-24-137-2024, 2024
Short summary
Short summary
Here, we study the transport of ultrafine particles (UFPs) from an airport to two new adjacent measuring sites for 1 year. The number of UFPs in the air and the diurnal variation are typical urban. Winds from the airport show increased number concentrations. Additionally, considering wind frequencies, we estimate that, from all UFPs measured at the two sites, 10 %–14 % originate from the airport and/or other UFP sources from between the airport and site.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
Short summary
Short summary
Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Alessandro Bigi, Giorgio Veratti, Elisabeth Andrews, Martine Collaud Coen, Lorenzo Guerrieri, Vera Bernardoni, Dario Massabò, Luca Ferrero, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 23, 14841–14869, https://doi.org/10.5194/acp-23-14841-2023, https://doi.org/10.5194/acp-23-14841-2023, 2023
Short summary
Short summary
Atmospheric particles include compounds that play a key role in the greenhouse effect and air toxicity. Concurrent observations of these compounds by multiple instruments are presented, following deployment within an urban environment in the Po Valley, one of Europe's pollution hotspots. The study compares these data, highlighting the impact of ground emissions, mainly vehicular traffic and biomass burning, on the absorption of sun radiation and, ultimately, on climate change and air quality.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
Alberto Sanchez-Marroquin, Sarah L. Barr, Ian T. Burke, James B. McQuaid, and Benjamin J. Murray
Atmos. Chem. Phys., 23, 13819–13834, https://doi.org/10.5194/acp-23-13819-2023, https://doi.org/10.5194/acp-23-13819-2023, 2023
Short summary
Short summary
The sources and concentrations of ice-nucleating particles (INPs) in the Arctic are still poorly understood. Here we report aircraft-based INP concentrations and aerosol composition in the western North American Arctic. The concentrations of INPs and all aerosol particles were low. The aerosol samples contained mostly sea salt and dust particles. Dust particles were more relevant for the INP concentrations than sea salt. However, dust alone cannot account for all of the measured INPs.
Katherine L. Ackerman, Alison D. Nugent, and Chung Taing
Atmos. Chem. Phys., 23, 13735–13753, https://doi.org/10.5194/acp-23-13735-2023, https://doi.org/10.5194/acp-23-13735-2023, 2023
Short summary
Short summary
Sea salt aerosol is an important marine aerosol that may be produced in greater quantities in coastal regions than over the open ocean. This study observed these particles along the windward coastline of O'ahu, Hawai'i, to understand how wind and waves influence their production and dispersal. Overall, wave heights were the strongest variable correlated with changes in aerosol concentrations, while wind speeds played an important role in their horizontal dispersal and vertical mixing.
Jiyeon Park, Hyojin Kang, Yeontae Gim, Eunho Jang, Ki-Tae Park, Sangjong Park, Chang Hoon Jung, Darius Ceburnis, Colin O'Dowd, and Young Jun Yoon
Atmos. Chem. Phys., 23, 13625–13646, https://doi.org/10.5194/acp-23-13625-2023, https://doi.org/10.5194/acp-23-13625-2023, 2023
Short summary
Short summary
We measured the number size distribution of 2.5–300 nm particles and cloud condensation nuclei (CCN) number concentrations at King Sejong Station on the Antarctic Peninsula continuously from 1 January to 31 December 2018. During the pristine and clean periods, 97 new particle formation (NPF) events were detected. For 83 of these, CCN concentrations increased by 2 %–268 % (median 44 %) following 1 to 36 h (median 8 h) after NPF events.
Cited articles
Anderson, T. L. and Ogren, J. A.: Determining Aerosol Radiative Properties
Using the TSI 3563 Integrating Nephelometer, Aerosol Sci. Tech., 29, 57–69, https://doi.org/10.1080/02786829808965551, 1998.
Andrews, E., Ogren, J. A., Bonasoni, P., Marinoni, A., Cuevas, E., Rodríguez, S., Sun, J. Y., Jaffe, D. A., Fischer, E. V., Baltensperger,
U., Weingartner, E., Coen, M. C., Sharma, S., Macdonald, A. M., Leaitch, W.
R., Lin, N. H., Laj, P., Arsov, T., Kalapov, I., Jefferson, A., and Sheridan, P.: Climatology of aerosol radiative properties in the free troposphere, Atmos. Res., 102, 365–393, https://doi.org/10.1016/j.atmosres.2011.08.017, 2011.
Bergin, M. H., Cass, G. R., Xu, J., Fang, C., Zeng, L. M., Yu, T., Salmon,
L. G., Kiang, C. S., Tang, X. Y., Zhang, Y. H., and Chameides, W. L.: Aerosol radiative, physical, and chemical properties in Beijing during June 1999, J. Geophys. Res., 106, 17969–17980, https://doi.org/10.1029/2001jd900073, 2001.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol Sci. Tech., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2007.
Bond, T. C., Anderson, T. L., and Campbell, D.: Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by
Aerosols, Aerosol Sci. Tech., 30, 582–600, https://doi.org/10.1080/027868299304435, 1999.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Carrico, C. M., Kus, P., Rood, M. J., Quinn, P. K., and Bates, T. S.: Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity, J. Geophys. Res., 108, 8650, https://doi.org/10.1029/2003jd003405, 2003.
Chang, X., Wang, S., Zhao, B., Xing, J., Liu, X., Wei, L., Song, Y., Wu, W.,
Cai, S., Zheng, H., Ding, D., and Zheng, M.: Contributions of inter-city and
regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei
region and its implications on regional joint air pollution control, Sci.
Total Environ., 660, 1191–1200, https://doi.org/10.1016/j.scitotenv.2018.12.474, 2019.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A.,
Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols, Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992.
Cheng, Y. F., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brüggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., and Tuch, T.: Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China, Atmos. Environ., 42, 6351–6372,
https://doi.org/10.1016/j.atmosenv.2008.02.034, 2008.
Collaud Coen, M., Andrews, E., Asmi, A., Baltensperger, U., Bukowiecki, N., Day, D., Fiebig, M., Fjaeraa, A. M., Flentje, H., Hyvärinen, A., Jefferson, A., Jennings, S. G., Kouvarakis, G., Lihavainen, H., Lund Myhre, C., Malm, W. C., Mihapopoulos, N., Molenar, J. V., O'Dowd, C., Ogren, J. A., Schichtel, B. A., Sheridan, P., Virkkula, A., Weingartner, E., Weller, R., and Laj, P.: Aerosol decadal trends – Part 1: In-situ optical measurements at GAW and IMPROVE stations, Atmos. Chem. Phys., 13, 869–894, https://doi.org/10.5194/acp-13-869-2013, 2013.
Collaud Coen, M., Andrews, E., Alastuey, A., Arsov, T. P., Backman, J., Brem, B. T., Bukowiecki, N., Couret, C., Eleftheriadis, K., Flentje, H., Fiebig, M., Gysel-Beer, M., Hand, J. L., Hoffer, A., Hooda, R., Hueglin, C., Joubert, W., Keywood, M., Kim, J. E., Kim, S.-W., Labuschagne, C., Lin, N.-H., Lin, Y., Lund Myhre, C., Luoma, K., Lyamani, H., Marinoni, A., Mayol-Bracero, O. L., Mihalopoulos, N., Pandolfi, M., Prats, N., Prenni, A. J., Putaud, J.-P., Ries, L., Reisen, F., Sellegri, K., Sharma, S., Sheridan, P., Sherman, J. P., Sun, J., Titos, G., Torres, E., Tuch, T., Weller, R., Wiedensohler, A., Zieger, P., and Laj, P.: Multidecadal trend analysis of in situ aerosol radiative properties around the world, Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, 2020.
Dai, M., Zhu, B., Fang, C., Zhou, S., Lu, W., Zhao, D., Ding, D., Pan, C.,
and Liao, H.: Long-Term Variation and Source Apportionment of Black Carbon at Mt. Waliguan, China, J. Geophys. Res.-Atmos., 126, e2021JD035273, https://doi.org/10.1029/2021jd035273, 2021.
Davies, N. W., Fox, C., Szpek, K., Cotterell, M. I., Taylor, J. W., Allan, J. D., Williams, P. I., Trembath, J., Haywood, J. M., and Langridge, J. M.:
Evaluating biases in filter-based aerosol absorption measurements using
photoacoustic spectroscopy, Atmos. Meas. Tech., 12, 3417–3434,
https://doi.org/10.5194/amt-12-3417-2019, 2019.
Delene, D. J. and Ogren, J. A.: Variability of Aerosol Optical Properties
at Four North American Surface Monitoring Sites, J. Aerosol Sci., 59,
1135–1150, https://doi.org/10.1175/1520-0469(2002)059<1135:VOAOPA>2.0.CO;2, 2002.
Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modelling system of trajectories, dispersion, and deposition, Aust. Meteorol. Mag., 47, 295–308, 1998.
Dumka, U. C., Kaskaoutis, D. G., Srivastava, M. K., and Devara, P. C. S.:
Scattering and absorption properties of near-surface aerosol over Gangetic–Himalayan region: the role of boundary-layer dynamics and long-range transport, Atmos. Chem. Phys., 15, 1555–1572,
https://doi.org/10.5194/acp-15-1555-2015, 2015.
Ealo, M., Alastuey, A., Pérez, N., Ripoll, A., Querol, X., and Pandolfi,
M.: Impact of aerosol particle sources on optical properties in urban,
regional and remote areas in the north-western Mediterranean, Atmos. Chem.
Phys., 18, 1149–1169, https://doi.org/10.5194/acp-18-1149-2018, 2018.
Fierz-Schmidhauser, R., Zieger, P., Gysel, M., Kammermann, L., DeCarlo, P. F., Baltensperger, U., and Weingartner, E.: Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch, Atmos. Chem. Phys., 10, 2319–2333, https://doi.org/10.5194/acp-10-2319-2010, 2010.
Garland, R. M., Schmid, O., Nowak, A., Achtert, P., Wiedensohler, A., Gunthe, S. S., Takegawa, N., Kita, K., Kondo, Y., and Hu, M.: Aerosol optical properties observed during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): Characteristic differences between the inflow and outflow of Beijing city air, J. Geophys. Res., 114, D00G04, https://doi.org/10.1029/2008JD010780, 2009.
Gong, S., Zhang, L., Liu, C., Lu, S., Pan, W., and Zhang, Y.: Multi-scale
analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions, Sci. Total Environ., 824, 153847,
https://doi.org/10.1016/j.scitotenv.2022.153847, 2022.
Gui, K., Yao, W., Che, H., An, L., Zheng, Y., Li, L., Zhao, H., Zhang, L.,
Zhong, J., Wang, Y., and Zhang, X.: Record-breaking dust loading during two
mega dust storm events over northern China in March 2021: aerosol optical
and radiative properties and meteorological drivers, Atmos. Chem. Phys., 22,
7905–7932, https://doi.org/10.5194/acp-22-7905-2022, 2022.
Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M., Yan, Y., Bian, L., and Zhai, P.: The climatology of planetary boundary layer
height in China derived from radiosonde and reanalysis data, Atmos. Chem.
Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, 2016.
Han, T., Xu, W., Li, J., Freedman, A., Zhao, J., Wang, Q., Chen, C., Zhang,
Y., Wang, Z., Fu, P., Liu, X., and Sun, Y.: Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between
summer and winter in Beijing, China, J. Geophys. Res.-Atmos., 122, 2513–2526, https://doi.org/10.1002/2016jd025762, 2017.
Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response,
J. Geophys. Res., 102, 6831–6864, https://doi.org/10.1029/96jd03436, 1997.
Haywood, J. M. and Shine, K. P.: The effect of anthropogenic sulfate and
soot aerosol on the clear sky planetary radiation budget, Geophys. Res. Lett., 22, 603–606, https://doi.org/10.1029/95GL00075, 1995.
He, X., Li, C. C., Lau, A. K. H., Deng, Z. Z., Mao, J. T., Wang, M., and Liu, X. Y.: An intensive study of aerosol optical properties in Beijing urban area, Atmos. Chem. Phys., 9, 8903–8915, https://doi.org/10.5194/acp-9-8903-2009, 2009.
Helin, A., Virkkula, A., Backman, J., Pirjola, L., Sippula, O., Aakko-Saksa,
P., Väätäinen, S., Mylläri, F., Järvinen, A., Bloss, M.,
Aurela, M., Jakobi, G., Karjalainen, P., Zimmermann, R., Jokiniemi, J.,
Saarikoski, S., Tissari, J., Rönkkö, T., Niemi, J. V., and Timonen,
H.: Variation of Absorption Ångström Exponent in Aerosols From
Different Emission Sources, J. Geophys. Res.-Atmos., 126, e2020JD034094, https://doi.org/10.1029/2020jd034094, 2021.
Hu, X., Sun, J., Xia, C., Shen, X., Zhang, Y., Zhang, X., and Zhang, S.:
Simultaneous measurements of PM1 and PM10 aerosol scattering properties and their relationships in urban Beijing: A two-year observation, Sci. Total Environ., 770, 145215, https://doi.org/10.1016/j.scitotenv.2021.145215, 2021.
Hu, X., Sun, J., Xia, C., Shen, X., Zhang, Y., Liu, Q., Liu, Z., Zhang, S., Wang, J., Yu, A., Lu, J., Liu, S.,and Zhang, X.: Rapid decline of aerosol absorption coefficient and aerosol optical properties effects on radiative forcing in urban areas of Beijing from 2018 to 2021 (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.7730978, 2023.
Jacobson, M. Z.: Strong radiative heating due to the mixing state of black
carbon in atmospheric aerosols, Nature, 409, 695–697, https://doi.org/10.1038/35055518, 2001.
Ji, D., Gao, W., Maenhaut, W., He, J., Wang, Z., Li, J., Du, W., Wang, L.,
Sun, Y., Xin, J., Hu, B., and Wang, Y.: Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate
matter in urban Beijing, China: insights gained from long-term measurement,
Atmos. Chem. Phys., 19, 8569–8590, https://doi.org/10.5194/acp-19-8569-2019, 2019.
Ji, D., Li, J., Shen, G., He, J., Gao, W., Tao, J., Liu, Y., Tang, G., Zeng,
L., Zhang, R., and Wang, Y.: Environmental effects of China's coal ban policy: Results from in situ observations and model analysis in a typical rural area of the Beijing-Tianjin-Hebei region, China, Atmos. Res., 268,
106015, https://doi.org/10.1016/j.atmosres.2022.106015, 2022.
Jia, M., Evangeliou, N., Eckhardt, S., Huang, X., Gao, J., Ding, A., and Stohl, A.: Black Carbon Emission Reduction Due to COVID-19 Lockdown in China, Geophys. Res. Lett., 48, e2021GL093243, https://doi.org/10.1029/2021GL093243, 2021.
Jing, J., Wu, Y., Tao, J., Che, H., Xia, X., Zhang, X., Yan, P., Zhao, D., and Zhang, L.: Observation and analysis of near-surface atmospheric aerosol
optical properties in urban Beijing, Particuology, 18, 144–154,
https://doi.org/10.1016/j.partic.2014.03.013, 2015.
Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light
absorption enhancement, single scatter albedo and absorption wavelength
dependence of black carbon, Atmos. Chem. Phys., 10, 4207–4220,
https://doi.org/10.5194/acp-10-4207-2010, 2010.
Laj, P., Bigi, A., Rose, C., Andrews, E., Lund Myhre, C., Collaud Coen, M.,
Lin, Y., Wiedensohler, A., Schulz, M., Ogren, J. A., Fiebig, M., Gliß,
J., Mortier, A., Pandolfi, M., Petäja, T., Kim, S.-W., Aas, W., Putaud,
J.-P., Mayol-Bracero, O., Keywood, M., Labrador, L., Aalto, P., Ahlberg, E.,
Alados Arboledas, L., Alastuey, A., Andrade, M., Artíñano, B., Ausmeel, S., Arsov, T., Asmi, E., Backman, J., Baltensperger, U., Bastian,
S., Bath, O., Beukes, J. P., Brem, B. T., Bukowiecki, N., Conil, S., Couret,
C., Day, D., Dayantolis, W., Degorska, A., Eleftheriadis, K., Fetfatzis, P.,
Favez, O., Flentje, H., Gini, M. I., Gregorič, A., Gysel-Beer, M.,
Hallar, A. G., Hand, J., Hoffer, A., Hueglin, C., Hooda, R. K., Hyvärinen, A., Kalapov, I., Kalivitis, N., Kasper-Giebl, A., Kim, J. E.,
Kouvarakis, G., Kranjc, I., Krejci, R., Kulmala, M., Labuschagne, C., Lee,
H.-J., Lihavainen, H., Lin, N.-H., Löschau, G., Luoma, K., Marinoni, A.,
Martins Dos Santos, S., Meinhardt, F., Merkel, M., Metzger, J.-M., Mihalopoulos, N., Nguyen, N. A., Ondracek, J., Pérez, N., Perrone, M.
R., Petit, J.-E., Picard, D., Pichon, J.-M., Pont, V., Prats, N., Prenni,
A., Reisen, F., Romano, S., Sellegri, K., Sharma, S., Schauer, G., Sheridan,
P., Sherman, J. P., Schütze, M., Schwerin, A., Sohmer, R., Sorribas, M.,
Steinbacher, M., Sun, J., Titos, G., Toczko, B., Tuch, T., Tulet, P., Tunved, P., Vakkari, V., Velarde, F., Velasquez, P., Villani, P., Vratolis, S., Wang, S.-H., Weinhold, K., Weller, R., Yela, M., Yus-Diez, J., Zdimal, V., Zieger, P., and Zikova, N.: A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories, Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, 2020.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J.
H.: Unexpected air pollution with marked emission reductions during the
COVID-19 outbreak in China, Science, 369, 702–706, https://doi.org/10.1126/science.abb7431, 2020.
Lee, K. H., Li, Z., Wong, M. S., Xin, J., Wang, Y., Hao, W.-M., and Zhao, F.: Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements, J. Geophys. Res., 112, D22S15, https://doi.org/10.1029/2007jd009077, 2007.
Lei, L., Zhou, W., Chen, C., He, Y., Li, Z., Sun, J., Tang, X., Fu, P., Wang, Z., and Sun, Y.: Long-term characterization of aerosol chemistry in cold season from 2013 to 2020 in Beijing, China, Environ. Pollut., 268, 115952, https://doi.org/10.1016/j.envpol.2020.115952, 2021.
Li, J., Carlson, B. E., Yung, Y. L., Lv, D., Hansen, J., Penner, J. E., Liao, H., Ramaswamy, V., Kahn, R. A., Zhang, P., Dubovik, O., Ding, A., Lacis, A. A., Zhang, L., and Dong, Y.: Scattering and absorbing aerosols in the climate system, Nat. Rev. Earth Environ., 3, 363–379, https://doi.org/10.1038/s43017-022-00296-7, 2022.
Li, W., Liu, X., Duan, F., Qu, Y., and An, J.: A one-year study on black
carbon in urban Beijing: Concentrations, sources and implications on
visibility, Atmos. Pollut. Res., 13, 101307, https://doi.org/10.1016/j.apr.2021.101307, 2022.
Liu, G. J., Xin, J. Y., Wang, X., Si, R. R., Ma, Y. N., Wen, T. X., Zhao, L., Zhao, D. D., Wang, Y. S., and Gao, W. K.: Impact of the coal banning zone on visibility in the Beijing-Tianjin-Hebei region, Sci. Total Environ., 692, 402–410, https://doi.org/10.1016/j.scitotenv.2019.07.006, 2019.
Liu, Y., Wang, Y., Cao, Y., Yang, X., Zhang, T., Luan, M., Lyu, D., Hansen,
A. D. A., Liu, B., and Zheng, M.: Impacts of COVID-19 on Black Carbon in Two
Representative Regions in China: Insights Based on Online Measurement in
Beijing and Tibet, Geophys. Res. Lett., 48, e2021GL092770, https://doi.org/10.1029/2021gl092770, 2021.
Luo, L., Tian, H., Liu, H., Bai, X., Liu, W., Liu, S., Wu, B., Lin, S., Zhao, S., Hao, Y., Sun, Y., Hao, J., and Zhang, K.: Seasonal variations in the mass characteristics and optical properties of carbonaceous constituents of PM2.5 in six cities of North China, Environ. Pollut., 268, 115780,
https://doi.org/10.1016/j.envpol.2020.115780, 2020.
Luoma, K., Virkkula, A., Aalto, P., Petäjä, T., and Kulmala, M.: Over a 10-year record of aerosol optical properties at SMEAR II, Atmos. Chem. Phys., 19, 11363–11382, https://doi.org/10.5194/acp-19-11363-2019, 2019.
Moosmüller, H., Chakrabarty, R. K., and Arnott, W. P.: Aerosol light
absorption and its measurement: A review, J. Quant. Spectrosc. Ra., 110, 844–878, https://doi.org/10.1016/j.jqsrt.2009.02.035, 2009.
Ogren, J. A., Wendell, J., Andrews, E., and Sheridan, P. J.: Continuous light absorption photometer for long-term studies, Atmos. Meas. Tech., 10, 4805–4818, https://doi.org/10.5194/amt-10-4805-2017, 2017.
Pandolfi, M., Alados-Arboledas, L., Alastuey, A., Andrade, M., Angelov, C.,
Artiñano, B., Backman, J., Baltensperger, U., Bonasoni, P., Bukowiecki,
N., Collaud Coen, M., Conil, S., Coz, E., Crenn, V., Dudoitis, V., Ealo, M.,
Eleftheriadis, K., Favez, O., Fetfatzis, P., Fiebig, M., Flentje, H., Ginot,
P., Gysel, M., Henzing, B., Hoffer, A., Holubova Smejkalova, A., Kalapov, I., Kalivitis, N., Kouvarakis, G., Kristensson, A., Kulmala, M., Lihavainen, H., Lunder, C., Luoma, K., Lyamani, H., Marinoni, A., Mihalopoulos, N., Moerman, M., Nicolas, J., amp, apos, Dowd, C., Petäjä, T., Petit, J.-E., Pichon, J. M., Prokopciuk, N., Putaud, J.-P., Rodríguez, S., Sciare, J., Sellegri, K., Swietlicki, E., Titos, G., Tuch, T., Tunved, P., Ulevicius, V., Vaishya, A., Vana, M., Virkkula, A., Vratolis, S., Weingartner, E., Wiedensohler, A., and Laj, P.: A European aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28 ACTRIS sites, Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, 2018.
Pu, W., Zhao, X., Shi, X., Ma, Z., Zhang, X., and Yu, B.: Impact of long-range transport on aerosol properties at a regional background station in Northern China, Atmos. Res., 153, 489–499, https://doi.org/10.1016/j.atmosres.2014.10.010, 2015.
Ran, L., Deng, Z. Z., Wang, P. C., and Xia, X. A.: Black carbon and
wavelength-dependent aerosol absorption in the North China Plain based on
two-year aethalometer measurements, Atmos. Environ., 142, 132–144,
https://doi.org/10.1016/j.atmosenv.2016.07.014, 2016.
Segura, S., Estellés, V., Esteve, A. R., Marcos, C. R., Utrillas, M. P.,
and Martínez-Lozano, J. A.: Multiyear in-situ measurements of atmospheric aerosol absorption properties at an urban coastal site in western Mediterranean, Atmos. Environ., 129, 18–26, https://doi.org/10.1016/j.atmosenv.2016.01.008, 2016.
Shen, Y., Virkkula, A., Ding, A., Wang, J., Chi, X., Nie, W., Qi, X., Huang,
X., Liu, Q., Zheng, L., Xu, Z., Petäjä, T., Aalto, P. P., Fu, C., and Kulmala, M.: Aerosol optical properties at SORPES in Nanjing, east China, Atmos. Chem. Phys., 18, 5265–5292, https://doi.org/10.5194/acp-18-5265-2018, 2018.
Sheridan, P. J. and Ogren, J. A.: Observations of the vertical and regional
variability of aerosol optical properties over central and eastern North
America, J. Geophys. Res., 104, 16793–16805, https://doi.org/10.1029/1999jd900241, 1999.
Sherman, J. P., Sheridan, P. J., Ogren, J. A., Andrews, E., Hageman, D.,
Schmeisser, L., Jefferson, A., and Sharma, S.: A multi-year study of lower
tropospheric aerosol variability and systematic relationships from four
North American regions, Atmos. Chem. Phys., 15, 12487–12517,
https://doi.org/10.5194/acp-15-12487-2015, 2015.
Sun, J., Wang, Z., Zhou, W., Xie, C., Wu, C., Chen, C., Han, T., Wang, Q.,
Li, Z., Li, J., Fu, P., Wang, Z., and Sun, Y.: Measurement report: Long-term
changes in black carbon and aerosol optical properties from 2012 to 2020 in
Beijing, China, Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, 2022.
Sun, Y., Xu, W., Zhang, Q., Jiang, Q., Canonaco, F., Prévôt, A. S. H., Fu, P., Li, J., Jayne, J., Worsnop, D. R., and Wang, Z.: Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China, Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, 2018.
Sun, Y., Lei, L., Zhou, W., Chen, C., He, Y., Sun, J., Li, Z., Xu, W., Wang,
Q., Ji, D., Fu, P., Wang, Z., and Worsnop, D. R.: A chemical cocktail during
the COVID-19 outbreak in Beijing, China: Insights from six-year aerosol
particle composition measurements during the Chinese New Year holiday, Sci.
Total Environ., 742, 140739, https://doi.org/10.1016/j.scitotenv.2020.140739, 2020.
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D.,
Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger,
N., and Zanis, P.: Short-Lived Climate Forcers, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 817–922, https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-6/ (last access: 12 May 2023), 2021.
Tian, H., Liu, Y., Li, Y., Wu, C. H., Chen, B., Kraemer, M. U. G., Li, B.,
Cai, J., Xu, B., Yang, Q., Wang, B., Yang, P., Cui, Y., Song, Y., Zheng, P.,
Wang, Q., Bjornstad, O. N., Yang, R., Grenfell, B. T., Pybus, O. G., and
Dye, C.: An investigation of transmission control measures during the first
50 days of the COVID-19 epidemic in China, Science, 368, 638–642,
https://doi.org/10.1126/science.abb6105, 2020.
Titos, G., Foyo-Moreno, I., Lyamani, H., Querol, X., Alastuey, A., and
Alados-Arboledas, L.: Optical properties and chemical composition of aerosol
particles at an urban location: An estimation of the aerosol mass scattering
and absorption efficiencies, J. Geophys. Res., 117, D04206, https://doi.org/10.1029/2011jd016671, 2012.
Titos, G., Burgos, M. A., Zieger, P., Alados-Arboledas, L., Baltensperger,
U., Jefferson, A., Sherman, J., Weingartner, E., Henzing, B., Luoma, K.,
O'Dowd, C., Wiedensohler, A., and Andrews, E.: A global study of
hygroscopicity-driven light-scattering enhancement in the context of other
in situ aerosol optical properties, Atmos. Chem. Phys., 21, 13031–13050, https://doi.org/10.5194/acp-21-13031-2021, 2021.
Tuch, T. M., Haudek, A., Müller, T., Nowak, A., Wex, H., and Wiedensohler, A.: Design and performance of an automatic regenerating
adsorption aerosol dryer for continuous operation at monitoring sites, Atmos. Meas. Tech., 2, 417–422, https://doi.org/10.5194/amt-2-417-2009, 2009.
Twomey, S.: Pollution and the Planetary Albedo, Atmos. Environ., 41, 120–125, https://doi.org/10.1016/j.atmosenv.2007.10.062, 2007.
Virkkula, A., Backman, J., Aalto, P. P., Hulkkonen, M., Riuttanen, L.,
Nieminen, T., dal Maso, M., Sogacheva, L., de Leeuw, G., and Kulmala, M.:
Seasonal cycle, size dependencies, and source analyses of aerosol optical
properties at the SMEAR II measurement station in Hyytiälä, Finland,
Atmos. Chem. Phys., 11, 4445–4468, https://doi.org/10.5194/acp-11-4445-2011, 2011.
Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Harrison, R.
M.: Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique, Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, 2019.
Wang, Q. L., Wang, L. L., Gong, C. S., Li, M. G., Xin, J. Y., Tang, G. Q.,
Sun, Y., Gao, J. H., Wang, Y. H., Wu, S., Kang, Y. Y., Yang, Y., Li, T. T.,
Liu, J. D., and Wang, Y. S.: Vertical evolution of black and brown carbon
during pollution events over North China Plain, Sci. Total Environ., 806,
150950, https://doi.org/10.1016/j.scitotenv.2021.150950, 2022.
Wang, T., Du, Z., Tan, T., Xu, N., Hu, M., Hu, J., and Guo, S.: Measurement
of aerosol optical properties and their potential source origin in urban
Beijing from 2013–2017, Atmos. Environ., 206, 293–302,
https://doi.org/10.1016/j.atmosenv.2019.02.049, 2019.
Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software
that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environ.
Model. Softw., 24, 938–939, https://doi.org/10.1016/j.envsoft.2009.01.004, 2009.
WMO/GAW: WMO/GAW Aerosol Measurement Procedures, Guidelines and Recommendations, Geneva, Switzerland, https://library.wmo.int/?lvl=notice_display&id=19622#.ZF2FGxFBxPZ (last access: 12 May 2023), 2016.
Xia, C., Sun, J., Qi, X., Shen, X., Zhong, J., Zhang, X., Wang, Y., Zhang,
Y., and Hu, X.: Observational study of aerosol hygroscopic growth on
scattering coefficient in Beijing: A case study in March of 2018, Sci. Total
Environ., 685, 239-247, 10.1016/j.scitotenv.2019.05.283, 2019.
Xia, C., Sun, J., Hu, X., Shen, X., Zhang, Y., Zhang, S., Wang, J., Liu, Q., Lu, J., Liu, S., and Zhang, X.: Effects of hygroscopicity on aerosol optical
properties and direct radiative forcing in Beijing: Based on two-year
observations, Sci. Total Environ., 857, 159233, https://doi.org/10.1016/j.scitotenv.2022.159233, 2023.
Xia, Y., Wu, Y., Huang, R. J., Xia, X., Tang, J., Wang, M., Li, J., Wang, C., Zhou, C., and Zhang, R.: Variation in black carbon concentration and aerosol optical properties in Beijing: Role of emission control and meteorological transport variability, Chemosphere, 254, 126849, https://doi.org/10.1016/j.chemosphere.2020.126849, 2020.
Xie, C., He, Y., Lei, L., Zhou, W., Liu, J., Wang, Q., Xu, W., Qiu, Y., Zhao, J., Sun, J., Li, L., Li, M., Zhou, Z., Fu, P., Wang, Z., and Sun, Y.: Contrasting mixing state of black carbon-containing particles in summer and
winter in Beijing, Environ. Pollut., 263, 114455,
https://doi.org/10.1016/j.envpol.2020.114455, 2020.
Xu, X. and Zhang, T.: Spatial-temporal variability of PM2.5 air quality in Beijing, China during 2013–2018, J. Environ. Manage., 262, 110263,
https://doi.org/10.1016/j.jenvman.2020.110263, 2020.
Yan, P., Tang, J., Huang, J., Mao, J. T., Zhou, X. J., Liu, Q., Wang, Z. F.,
and Zhou, H. G.: The measurement of aerosol optical properties at a rural site in Northern China, Atmos. Chem. Phys., 8, 2229–2242,
https://doi.org/10.5194/acp-8-2229-2008, 2008.
Yang, M., Howell, S. G., Zhuang, J., and Huebert, B. J.: Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE, Atmos. Chem. Phys., 9, 2035–2050, https://doi.org/10.5194/acp-9-2035-2009, 2009.
Yi, Z., Wang, Y., Chen, W., Guo, B., Zhang, B., Che, H., and Zhang, X.:
Classification of the Circulation Patterns Related to Strong Dust Weather in
China Using a Combination of the Lamb–Jenkinson and k-Means Clustering
Methods, Atmosphere, 12, 1545, https://doi.org/10.3390/atmos12121545, 2021.
Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang,
J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J.: Drivers of improved PM2.5 air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469, https://doi.org/10.1073/pnas.1907956116, 2019.
Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., Lee, C. S. L.,
Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and
source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013.
Zhang, Y. Z., Zhi, G. R., Jin, W. J., Wang, L., Guo, S. C., Shi, R., Sun, J.
Z., Cheng, M. M., Bi, F., Gao, J., Zhang, B. J., Wu, J. J., Shi, Z. H., Liu,
B., Wang, Z., and Li, S. Y.: Differing effects of escalating pollution on
absorption and scattering efficiencies of aerosols: Toward co-beneficial air
quality enhancement and climate protection measures, Atmos. Environ., 232,
11570, https://doi.org/10.1016/j.atmosenv.2020.117570, 2020.
Zhao, S. M., Hu, B., Du, C. J., Tang, L. Q., Ma, Y. J., Liu, H., Zou, J. N.,
Liu, Z. R., Wei, J., and Wang, Y. S.: Aerosol optical characteristics and
radiative forcing in urban Beijing, Atmos. Environ., 212, 41–53,
https://doi.org/10.1016/j.atmosenv.2019.05.034, 2019.
Zhao, S. M., Hu, B., Gao, W. K., Li, L. C., Huang, W., Wang, L. L., Yang, Y., Liu, J. D., Li, J. Y., Ji, D. S., Zhang, R. J., Zhang, Y. Y., and Wang, Y. S.: Effect of the ”coal to gas” project on atmospheric NOX during the heating period at a suburban site between Beijing and Tianjin, Atmos. Res., 241, 104977, https://doi.org/10.1016/j.atmosres.2020.104977, 2020.
Zhuang, B. L., Wang, T. J., Liu, J., Ma, Y., Yin, C. Q., Li, S., Xie, M.,
Han, Y., Zhu, J. L., Yang, X. Q., and Fu, C. B.: Absorption coefficient of
urban aerosol in Nanjing, west Yangtze River Delta, China, Atmos. Chem. Phys., 15, 13633–13646, https://doi.org/10.5194/acp-15-13633-2015, 2015.
Short summary
The simultaneous measurements under dry conditions of aerosol optical properties were conducted at three wavelengths for PM1 and PM10 in urban Beijing from 2018 to 2021. Considerable reductions in aerosol absorption coefficient and increased single scattering albedo demonstrated that absorbing aerosols were more effectively controlled than scattering aerosols due to pollution control measures. The aerosol radiative effect and the transport's impact on aerosol optical properties were analysed.
The simultaneous measurements under dry conditions of aerosol optical properties were conducted...
Altmetrics
Final-revised paper
Preprint