Articles | Volume 23, issue 1
https://doi.org/10.5194/acp-23-311-2023
https://doi.org/10.5194/acp-23-311-2023
Research article
 | 
10 Jan 2023
Research article |  | 10 Jan 2023

Measurement of Henry's law and liquid-phase loss rate constants of peroxypropionic nitric anhydride (PPN) in deionized water and in n-octanol

Kevin D. Easterbrook, Mitchell A. Vona, Kiana Nayebi-Astaneh, Amanda M. Miller, and Hans D. Osthoff

Related authors

A compact, high-purity source of HONO validated by Fourier transform infrared and thermal-dissociation cavity ring-down spectroscopy
Nicholas J. Gingerysty and Hans D. Osthoff
Atmos. Meas. Tech., 13, 4159–4167, https://doi.org/10.5194/amt-13-4159-2020,https://doi.org/10.5194/amt-13-4159-2020, 2020
Short summary
Validation of MAX-DOAS retrievals of aerosol extinction, SO2, and NO2 through comparison with lidar, sun photometer, active DOAS, and aircraft measurements in the Athabasca oil sands region
Zoë Y. W. Davis, Udo Frieß, Kevin B. Strawbridge, Monika Aggarwaal, Sabour Baray, Elijah G. Schnitzler, Akshay Lobo, Vitali E. Fioletov, Ihab Abboud, Chris A. McLinden, Jim Whiteway, Megan D. Willis, Alex K. Y. Lee, Jeff Brook, Jason Olfert, Jason O'Brien, Ralf Staebler, Hans D. Osthoff, Cristian Mihele, and Robert McLaren
Atmos. Meas. Tech., 13, 1129–1155, https://doi.org/10.5194/amt-13-1129-2020,https://doi.org/10.5194/amt-13-1129-2020, 2020
Short summary
Quantification of nitrous acid (HONO) and nitrogen dioxide (NO2) in ambient air by broadband cavity-enhanced absorption spectroscopy (IBBCEAS) between 361 and 388 nm
Nick Jordan and Hans D. Osthoff
Atmos. Meas. Tech., 13, 273–285, https://doi.org/10.5194/amt-13-273-2020,https://doi.org/10.5194/amt-13-273-2020, 2020
Short summary
A large contribution of anthropogenic organo-nitrates to secondary organic aerosol in the Alberta oil sands
Alex K. Y. Lee, Max G. Adam, John Liggio, Shao-Meng Li, Kun Li, Megan D. Willis, Jonathan P. D. Abbatt, Travis W. Tokarek, Charles A. Odame-Ankrah, Hans D. Osthoff, Kevin Strawbridge, and Jeffery R. Brook
Atmos. Chem. Phys., 19, 12209–12219, https://doi.org/10.5194/acp-19-12209-2019,https://doi.org/10.5194/acp-19-12209-2019, 2019
Short summary
A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and Rayleigh scattering cross sections in the cyan region (470–540 nm)
Nick Jordan, Connie Z. Ye, Satyaki Ghosh, Rebecca A. Washenfelder, Steven S. Brown, and Hans D. Osthoff
Atmos. Meas. Tech., 12, 1277–1293, https://doi.org/10.5194/amt-12-1277-2019,https://doi.org/10.5194/amt-12-1277-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of HO2∕RO2 ratio on highly oxygenated α-pinene photooxidation products and secondary organic aerosol formation potential
Yarê Baker, Sungah Kang, Hui Wang, Rongrong Wu, Jian Xu, Annika Zanders, Quanfu He, Thorsten Hohaus, Till Ziehm, Veronica Geretti, Thomas J. Bannan, Simon P. O'Meara, Aristeidis Voliotis, Mattias Hallquist, Gordon McFiggans, Sören R. Zorn, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 24, 4789–4807, https://doi.org/10.5194/acp-24-4789-2024,https://doi.org/10.5194/acp-24-4789-2024, 2024
Short summary
Negligible temperature dependence of the ozone–iodide reaction and implications for oceanic emissions of iodine
Lucy V. Brown, Ryan J. Pound, Lyndsay S. Ives, Matthew R. Jones, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 3905–3923, https://doi.org/10.5194/acp-24-3905-2024,https://doi.org/10.5194/acp-24-3905-2024, 2024
Short summary
Extension, development, and evaluation of the representation of the OH-initiated dimethyl sulfide (DMS) oxidation mechanism in the Master Chemical Mechanism (MCM) v3.3.1 framework
Lorrie Simone Denise Jacob, Chiara Giorio, and Alexander Thomas Archibald
Atmos. Chem. Phys., 24, 3329–3347, https://doi.org/10.5194/acp-24-3329-2024,https://doi.org/10.5194/acp-24-3329-2024, 2024
Short summary
Mechanistic insight into the kinetic fragmentation of Norpinonic Acid in the gas phase: An experimental and DFT study
Izabela Kurzydym, Agata Błaziak, Kinga Podgórniak, Karol Kułacz, and Kacper Błaziak
EGUsphere, https://doi.org/10.5194/egusphere-2024-679,https://doi.org/10.5194/egusphere-2024-679, 2024
Short summary
On the potential use of highly oxygenated organic molecules (HOMs) as indicators for ozone formation sensitivity
Jiangyi Zhang, Jian Zhao, Yuanyuan Luo, Valter Mickwitz, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 24, 2885–2911, https://doi.org/10.5194/acp-24-2885-2024,https://doi.org/10.5194/acp-24-2885-2024, 2024
Short summary

Cited articles

Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov (last access: 5 January 2021), 2019. 
Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.: Mass accommodation and chemical reactions at gas-liquid interfaces, Chem. Rev., 106, 1323–1354, https://doi.org/10.1021/cr040366k, 2006. 
Frenzel, A., Kutsuna, S., Takeuchi, K., and Ibusuki, T.: Solubility and reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and in sulphuric acid, Atmos. Environ., 34, 3641–3644, https://doi.org/10.1016/S1352-2310(00)00132-1, 2000. 
Furgeson, A., Mielke, L. H., Paul, D., and Osthoff, H. D.: A photochemical source of peroxypropionic and peroxyisobutanoic nitric anhydride, Atmos. Environ., 45, 5025–5032, https://doi.org/10.1016/j.atmosenv.2011.03.072, 2011. 
Gaffney, J. S. and Marley, N. A.: The Impacts of Peroxyacetyl Nitrate in the Atmosphere of Megacities and Large Urban Areas: A Historical Perspective, ACS Earth Space Chem., 5, 1829–1841, https://doi.org/10.1021/acsearthspacechem.1c00143, 2021. 
Download
Short summary
The trace gas peroxypropionyl nitrate (PPN) is generated in photochemical smog, phytotoxic, a strong eye irritant, and possibly mutagenic. Here, its solubility and reactivity in water and in octanol were investigated using a bubble flow apparatus, yielding its Henry's law constant and octanol–water partition coefficient (Kow). The results allow the fate of PPN to be more accurately constrained in atmospheric chemical transport models, including its uptake on clouds, organic aerosol, and leaves.
Altmetrics
Final-revised paper
Preprint