



## Supplement of

## Measurement of Henry's law and liquid-phase loss rate constants of peroxypropionic nitric anhydride (PPN) in deionized water and in *n*-octanol

Kevin D. Easterbrook et al.

Correspondence to: Hans D. Osthoff (hosthoff@ucalgary.ca)

The copyright of individual parts of the supplement might differ from the article licence.

## Contents

|    | Table S1. Schedule of experiments: PAN in DI water                                                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------|
|    | Table S2. Schedule of experiments: PPN in DI water    S2                                                                      |
|    | Table S3. Schedule of experiments: PPN in n-octanol    S4                                                                     |
| 5  | Table S4. Schedule of experiments: PPN in n-octanol with $\alpha$ -tocopherolS7                                               |
|    | Figure S1. Plots of $\ln(c_{g,0}/c_{g,t})$ versus t for PPN in n-octanol                                                      |
|    | Figure S2. Plots of dln( $c_{g,0}/c_{g,t}$ )/dt versus $\Phi/V_l$ for PPN in n-octanol at 20.00 °C, 12.50 °C, and 5.00 °C .S9 |
|    | Figure S3. Effect of adding Vitamin E on plots of $dln(c_{g,0}/c_{g,t})/dt$ versus $\Phi/V_l$ for PPN in n-octanol            |
|    | Table S5. Dimensionless Henry's law constants of PAN in deionized water                                                       |
| 10 | Table S6. Dimensionless Henry's law constants of PPN in deionized waterS10                                                    |
|    | Table S7. Dimensionless Henry's law constants of PPN in n-octanol                                                             |
|    | Table S8. Loss rate constants of PPN at 293.15 K                                                                              |
|    | Table S9a. Estimated lifetimes of PAN with respect to wet deposition in the atmosphere at 293 KS11                            |
|    | Table S9b. Estimated lifetimes of PPN with respect to wet deposition in the atmosphere at 293 KS12                            |
| 15 | Table S10a. Estimated lifetimes of PAN with respect to wet deposition in the atmosphere at 278 KS13                           |
|    | Table S10b. Estimated lifetimes of PPN with respect to wet deposition in the atmosphere at 278 KS14                           |
|    | Table S11. Reactive uptake probabilities of PAN and PPN    S15                                                                |
|    | References                                                                                                                    |

| Internal<br>reference | GC-ECD | Т<br>(°С)  | <i>V</i> <sub>l</sub><br>(mL) | <b>Ø</b><br>(mL min <sup>-1</sup> ) | $\frac{\boldsymbol{\Phi}}{\boldsymbol{V}_l}$ (min <sup>-1</sup> ) | $\frac{\mathrm{d}}{\mathrm{d}t}\ln\left(\frac{c_{\mathrm{g},0}}{c_{\mathrm{g},t}}\right)$ (min <sup>-1</sup> ) |
|-----------------------|--------|------------|-------------------------------|-------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| KN 211026             | HP     | 20.0±0.1   | 140±2                         | 317±3                               | 2.26±0.04                                                         | 0.0532±0.0006                                                                                                  |
| KN 211028             | HP     | 20.0±0.1   | 140±2                         | 532±6                               | 3.80±0.07                                                         | 0.0592±0.0010                                                                                                  |
| AM 211108             | Varian | 20.00±0.01 | 140±2                         | 124±1                               | $0.89 \pm 0.02$                                                   | $0.0302 \pm 0.0001$                                                                                            |
| HO 211108             | HP     | 5.0±0.1    | 100±2                         | 240±3                               | $2.40\pm0.05$                                                     | 0.0190±0.0003                                                                                                  |
| AM 211116             | Varian | 5.00±0.01  | 50.0±0.4                      | 481±5                               | 9.6±0.1                                                           | $0.0466 \pm 0.0001$                                                                                            |
| KN 211118-1           | HP     | 5.0±0.1    | 75.0±0.4                      | 541±6                               | 7.21±0.09                                                         | 0.0394±0.0003                                                                                                  |
| KN 211104             | HP     | 5.0±0.1    | 30.0±0.4                      | 433±5                               | 14.4±0.2                                                          | 0.0639±0.0004                                                                                                  |
| KN 211116             | HP     | 5.0±0.1    | 100±2                         | 481±5                               | 4.81±0.11                                                         | $0.0299 \pm 0.0002$                                                                                            |
| KN 211118-2           | HP     | 20.0±0.1   | 140±2                         | 177±2                               | 1.27±0.02                                                         | $0.0299 \pm 0.0002$                                                                                            |
| KN 211123             | HP     | 20.0±0.1   | 140±2                         | 570±6                               | $4.07 \pm 0.07$                                                   | 0.0654±0.0011                                                                                                  |
| AM 211123             | Varian | 5.00±0.01  | 75.0±0.4                      | 451±5                               | 6.01±0.07                                                         | $0.0309 \pm 0.0001$                                                                                            |
| KN 211125             | HP     | 20.0±0.1   | 100±2                         | 697±8                               | 6.97±0.16                                                         | 0.0899±0.0023                                                                                                  |

Table S1. Schedule of experiments: PAN in DI water.

25 **Table S2.** Schedule of experiments: PPN in DI water. Experiments were conducted with the Varian GC-ECD.

| Internal<br>reference | Т<br>(°С)       | V <sub>l</sub><br>(mL) | Ф<br>(mL min <sup>-1</sup> ) | $\frac{\boldsymbol{\Phi}}{\boldsymbol{V}_l}$ (min <sup>-1</sup> ) | $\frac{\mathrm{d}}{\mathrm{d}t}\ln\left(\frac{c_{\mathrm{g},0}}{c_{\mathrm{g},t}}\right)$ (min <sup>-1</sup> ) |
|-----------------------|-----------------|------------------------|------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| MV 220301             | 20.00±0.01      | 100±2                  | 125±15                       | $1.25 \pm 0.15$                                                   | $0.043 \pm 0.005$                                                                                              |
| MV 220308             | 20.00±0.01      | 100±2                  | 433±52                       | 4.33±0.53                                                         | $0.085 \pm 0.002$                                                                                              |
| MV 220315-1           | 20.00±0.01      | 150±2                  | 496±5                        | 3.33±0.06                                                         | $0.0706 \pm 0.0010$                                                                                            |
| MV 220315-2           | 20.00±0.01      | 100±2                  | 620±7                        | 6.23±0.14                                                         | $0.1235 \pm 0.0018$                                                                                            |
| MV 220317-1           | 5.00±0.01       | 150±2                  | 118±1                        | $0.79 \pm 0.01$                                                   | $0.01098 \pm 0.00004$                                                                                          |
| MV 220317-2           | $5.00 \pm 0.01$ | 150±2                  | 294±3                        | $1.97 \pm 0.03$                                                   | $0.01818 \pm 0.00005$                                                                                          |
| MV 220322-1           | 5.00±0.01       | 150±2                  | 235±3                        | $1.58 \pm 0.02$                                                   | $0.01533 \pm 0.00005$                                                                                          |
| MV 220322-2           | $5.00 \pm 0.01$ | 150±2                  | 353±4                        | $2.37 \pm 0.04$                                                   | 0.01932±0.00005                                                                                                |
| MV 220324-1           | 5.00±0.01       | 150±2                  | 176±2                        | 1.18±0.02                                                         | 0.01357±0.00002                                                                                                |

**Table S2 (continued).** Schedule of experiments: PPN in DI water. Experiments were conducted with the

 Varian GC-ECD.

| Internal    | T<br>(°C)  | $V_l$     | $\Phi$ (mL min <sup>-1</sup> ) | $\frac{\Phi}{V_l}$           | $\frac{\mathrm{d}}{\mathrm{d}t}\ln\left(\frac{c_{\mathrm{g},0}}{c_{\mathrm{g},t}}\right)$ |
|-------------|------------|-----------|--------------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| reference   | ( C)       | (IIIL)    | (III.2 IIIII )                 | ( <b>min</b> <sup>-1</sup> ) | ( <b>min</b> <sup>-1</sup> )                                                              |
| MV 220324-2 | 12.50±0.01 | 150±2     | 121±1                          | 0.81±0.01                    | $0.0204 \pm 0.00018$                                                                      |
| MV 220329-1 | 12.50±0.01 | 150±2     | 243±3                          | $1.62 \pm 0.03$              | $0.0288 \pm 0.0001$                                                                       |
| MV 220329-2 | 12.50±0.01 | 150±2     | 365±4                          | 2.43±0.04                    | $0.0373 \pm 0.0001$                                                                       |
| MV 220331-1 | 12.50±0.01 | 150±2     | 182±2                          | $1.22 \pm 0.02$              | $0.0251 \pm 0.0001$                                                                       |
| MV 220331-2 | 12.50±0.01 | 150±2     | 304±3                          | $2.03 \pm 0.04$              | $0.0332 \pm 0.0002$                                                                       |
| MV 220405-1 | 20.00±0.01 | 150±2     | 375±4                          | $2.50 \pm 0.04$              | $0.0665 \pm 0.0001$                                                                       |
| MV 220405-2 | 8.50±0.01  | 150±2     | 240±3                          | 1.60±0.03                    | 0.0212±0.0001                                                                             |
| MV 220405-3 | 8.50±0.01  | 150±2     | 481±5                          | 3.20±0.06                    | $0.0345 \pm 0.0001$                                                                       |
| MV 220407-1 | 8.50±0.01  | 150±2     | 353±4                          | $2.35 \pm 0.04$              | $0.0285 \pm 0.0001$                                                                       |
| MV 220407-2 | 8.50±0.01  | 150±2     | 530±6                          | $3.54 \pm 0.06$              | $0.0388 \pm 0.0002$                                                                       |
| MV 220407-3 | 5.00±0.01  | 150±2     | 408±4                          | $2.72 \pm 0.05$              | $0.0231 \pm 0.0001$                                                                       |
| HO 220411-1 | 16.00±0.01 | 150±2     | 430±5                          | $2.87 \pm 0.05$              | $0.0567 \pm 0.0003$                                                                       |
| HO 220411-2 | 16.00±0.01 | 150±2     | 246±3                          | 1.64±0.03                    | $0.03744 \pm 0.00004$                                                                     |
| HO 220412-1 | 16.00±0.01 | 150±2     | 213±2                          | 1.42±0.02                    | $0.03453 \pm 0.00005$                                                                     |
| HO 220412-3 | 20.00±0.01 | 150±2     | 246±3                          | 1.64±0.03                    | $0.0487 \pm 0.0001$                                                                       |
| HO 220414-1 | 16.00±0.01 | 150±2     | 336±4                          | $2.24 \pm 0.04$              | $0.0451 \pm 0.0001$                                                                       |
| HO 220414-2 | 16.00±0.01 | 150±2     | 580±6                          | 3.87±0.07                    | $0.0665 \pm 0.0001$                                                                       |
| KE 220531-1 | 25.00±0.01 | 100.0±0.4 | 312±3                          | 3.12±0.04                    | 0.1122±0.0006                                                                             |
| KE 220531-2 | 25.00±0.01 | 100.0±0.4 | 125±1                          | $1.25 \pm 0.01$              | $0.0628 \pm 0.0001$                                                                       |
| KE 220531-3 | 25.00±0.01 | 100.0±0.4 | 281±3                          | 2.81±0.03                    | $0.1048 \pm 0.0006$                                                                       |
| KE 220531-4 | 25.00±0.01 | 100.0±0.4 | 344±4                          | 3.44±0.04                    | $0.125 \pm 0.002$                                                                         |
| KE 220603-1 | 25.00±0.01 | 100.0±0.4 | 189±2                          | 1.89±0.02                    | 0.0810±0.0003                                                                             |

**Table S3.** Schedule of experiments: PPN in n-octanol. Experiments were conducted with the Varian GC-ECD.

| Internal     | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\Phi}{V_{I}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\mathrm{d}}{\mathrm{d}t}\ln\left(\frac{c_{\mathrm{g},0}}{c}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reference    | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mL min <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( <b>min</b> <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(\min^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| KE 220607-1c | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 277±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.54 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00255±0.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| KE 220607-1d | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 339±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.78 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00381 \pm 0.00003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220609-1b | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 186±2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.73 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00242 \pm 0.00005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220609-1c | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 373±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7.46 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00413±0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| KE 220609-1d | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 311±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.22 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00374 \pm 0.00005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220609-1e | $20.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.49 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00221 \pm 0.00002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220609-1f | $20.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.00\pm0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0018152±0.0000009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KE 220610-1  | $20.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 281±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.62 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00363 \pm 0.00002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220621-2a | $20.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 259±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.17 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00317 \pm 0.00002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220621-2b | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 401±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $8.02 \pm 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.004642±0.000009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KE 220621-2c | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.60\pm0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.002091 \pm 0.000001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KE 220622-1  | 20.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 223±2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.47 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00346 \pm 0.00005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220622-2b | $5.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 384±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7.68 \pm 0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00152 \pm 0.00001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220622-2c | $5.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.37±0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.000562 \pm 0.000001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KE 220623-1  | $5.00 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177±2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.54 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0008265±0.0000009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KE 220624-1a | $5.00 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 234±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4.68 \pm 0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00144 \pm 0.00003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220624-1b | $5.00 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 321±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.42 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00176 \pm 0.00004$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220624-1c | $5.00 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $7.00\pm0.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.00202 \pm 0.00005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220627-1a | 25.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 312±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.25 \pm 0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00533 \pm 0.00009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220627-1b | 25.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2.50 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00379 \pm 0.00003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220627-1c | 25.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 282±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.64 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00543 \pm 0.00002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220627-1d | 25.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188±2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.76 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00439 \pm 0.00001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220627-1e | $25.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.89±0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.005763 \pm 0.000005$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KE 220628-1a | $16.00 \pm 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 304±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6.09 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.0027 \pm 0.0001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KE 220628-1c | 16.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 275±3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.49 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.00263 \pm 0.00003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KE 220628-1d | 16.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 183±2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.67 \pm 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00192±0.00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| KE 220628-1e | 16.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 337±4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.74±0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.002889 \pm 0.000001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KE 220629-2c | 5.00±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.0±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200±2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.01±0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.00095 \pm 0.00001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | Internal         reference         KE 220607-1c         KE 220609-1b         KE 220609-1c         KE 220621-2a         KE 220621-2b         KE 220622-12         KE 220622-12         KE 220622-12         KE 220622-12         KE 220622-13         KE 220624-1a         KE 220624-1a         KE 220624-1a         KE 220627-1a         KE 220628-1a         K | Internal<br>referenceT<br>(°C)KE 220607-1c20.00±0.01KE 220609-1b20.00±0.01KE 220609-1c20.00±0.01KE 220609-1c20.00±0.01KE 220609-1c20.00±0.01KE 220609-1c20.00±0.01KE 220609-1f20.00±0.01KE 220621-2a20.00±0.01KE 220621-2b20.00±0.01KE 220621-2c20.00±0.01KE 220622-2b5.00±0.01KE 220622-2b5.00±0.01KE 220622-2c5.00±0.01KE 220622-2b5.00±0.01KE 220624-1a5.00±0.05KE 220624-1a5.00±0.01KE 220624-1a5.00±0.01KE 220627-1a25.00±0.01KE 220627-1a25.00±0.01KE 220627-1b25.00±0.01KE 220627-1c25.00±0.01KE 220627-1a16.00±0.01KE 220627-1a16.00±0.01KE 220628-1a16.00±0.01KE 220628-1a16.00±0.01 | Internal<br>referenceT<br>(°C) $V_l$<br>(mL)KE 220607-1c20.00±0.0150.0±0.4KE 220609-1b20.00±0.0150.0±0.4KE 220609-1c20.00±0.0150.0±0.4KE 220609-1c20.00±0.0150.0±0.4KE 220609-1c20.00±0.0150.0±0.4KE 220609-1e20.00±0.0150.0±0.4KE 220609-1e20.00±0.0150.0±0.4KE 220609-1e20.00±0.0150.0±0.4KE 220621-2a20.00±0.0150.0±0.4KE 220621-2b20.00±0.0150.0±0.4KE 220621-2c20.00±0.0150.0±0.4KE 220622-2b5.00±0.0150.0±0.4KE 220622-2b5.00±0.0150.0±0.4KE 220622-2b5.00±0.0150.0±0.4KE 220622-2b5.00±0.0150.0±0.4KE 220622-1a20.00±0.0150.0±0.4KE 220622-1b5.00±0.0150.0±0.4KE 220624-1b5.00±0.0550.0±0.4KE 220624-1c5.00±0.0150.0±0.4KE 220627-1a25.00±0.0150.0±0.4KE 220627-1a25.00±0.0150.0±0.4KE 220627-1a25.00±0.0150.0±0.4KE 220627-1a25.00±0.0150.0±0.4KE 220627-1a25.00±0.0150.0±0.4KE 220627-1a25.00±0.0150.0±0.4KE 220628-1a16.00±0.0150.0±0.4KE 220628-1a16.00±0.0150.0±0.4KE 220628-1a16.00±0.0150.0±0.4KE 220628-1a16.00±0.0150.0±0.4KE 220628-1a16.00±0.015 | Internal<br>reference         T<br>(°C)         V <sub>1</sub><br>(mL)         Ø<br>(mL min <sup>-1</sup> )           KE 220607-1c         20.00±0.01         50.0±0.4         339±4           KE 220607-1d         20.00±0.01         50.0±0.4         339±4           KE 220609-1b         20.00±0.01         50.0±0.4         339±4           KE 220609-1c         20.00±0.01         50.0±0.4         373±4           KE 220609-1c         20.00±0.01         50.0±0.4         311±3           KE 220609-1e         20.00±0.01         50.0±0.4         125±1           KE 220609-1f         20.00±0.01         50.0±0.4         100±1           KE 220610-1         20.00±0.01         50.0±0.4         259±3           KE 220621-2a         20.00±0.01         50.0±0.4         259±3           KE 220621-2b         20.00±0.01         50.0±0.4         130±1           KE 220621-2c         20.00±0.01         50.0±0.4         223±2           KE 220622-1         20.00±0.01         50.0±0.4         130±1           KE 220622-1         20.00±0.01         50.0±0.4         132±1           KE 220622-12         5.00±0.01         50.0±0.4         132±3           KE 220622-1         5.00±0.05         50.0±0.4         321±4           K | Internal<br>referenceT<br>(°C) $V_l$<br>(mL) $\varPhi$<br>(mL min <sup>-1</sup> ) $\frac{\varPhi}{V_l}$<br>(min <sup>-1</sup> )KE 220607-1c20.00±0.0150.0±0.4339±46.78±0.09KE 220607-1d20.00±0.0150.0±0.4339±46.78±0.09KE 220609-1b20.00±0.0150.0±0.4186±23.73±0.05KE 220609-1c20.00±0.0150.0±0.4311±36.22±0.08KE 220609-1d20.00±0.0150.0±0.4311±36.22±0.08KE 220609-1e20.00±0.0150.0±0.4125±12.49±0.03KE 220609-1e20.00±0.0150.0±0.4281±35.62±0.08KE 220610-120.00±0.0150.0±0.4281±35.62±0.08KE 220621-2a20.00±0.0150.0±0.4401±48.02±0.11KE 220621-2b20.00±0.0150.0±0.4130±12.60±0.04KE 220622-1c20.00±0.0150.0±0.4130±12.60±0.04KE 220622-1220.00±0.0150.0±0.4130±12.60±0.04KE 220622-1220.00±0.0150.0±0.4130±12.37±0.03KE 220622-125.00±0.0150.0±0.4118±12.37±0.03KE 220622-135.00±0.0550.0±0.4118±12.37±0.03KE 220624-145.00±0.0550.0±0.435±47.00±0.10KE 220624-155.00±0.0150.0±0.435±47.00±0.10KE 220624-165.00±0.0150.0±0.435±47.00±0.10KE 220627-1625.00±0.0150.0±0.435±46.2±0.03KE 220627-1625.00±0.01 </td |

**Table S3 (continued).** Schedule of experiments: PPN in n-octanol. Experiments were conducted with the

 Varian GC-ECD.

|    | Internal     | Т               | $V_l$     | Φ                       | $\frac{\Phi}{V_l}$           | $\frac{\mathrm{d}}{\mathrm{d}t}\ln\left(\frac{c_{\mathrm{g},0}}{c_{\mathrm{g},t}}\right)$ |
|----|--------------|-----------------|-----------|-------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| 40 | reference    | (°C)            | (mL)      | (mL min <sup>-1</sup> ) | ( <b>min</b> <sup>-1</sup> ) | (min <sup>-1</sup> )                                                                      |
|    | KE 220711-1b | 8.50±0.01       | 50.0±0.4  | 118±1                   | 2.37±0.03                    | 0.000843±0.000009                                                                         |
|    | KE 220711-1c | 8.50±0.01       | 50.0±0.4  | 267±3                   | $5.34 \pm 0.07$              | $0.00155 \pm 0.00001$                                                                     |
|    | KE 220711-1d | 8.50±0.01       | 50.0±0.4  | 178±2                   | $3.56 \pm 0.05$              | 0.0010546±0.0000009                                                                       |
|    | KE 220712-1a | 8.50±0.01       | 50.0±0.4  | 327±4                   | 6.55±0.09                    | $0.00197 \pm 0.00002$                                                                     |
|    | KE 220712-1b | 8.50±0.01       | 50.0±0.4  | 238±3                   | $4.77 \pm 0.06$              | $0.00162 \pm 0.00002$                                                                     |
| 45 | KE 220712-1c | 8.50±0.01       | 50.0±0.4  | 358±4                   | 7.16±0.10                    | $0.00223 \pm 0.00004$                                                                     |
|    | KE 220712-2b | 12.50±0.01      | 50.0±0.4  | 121±1                   | 2.43±0.03                    | 0.001046±0.000002                                                                         |
|    | KE 220713-1a | 12.50±0.01      | 50.0±0.4  | 273±3                   | $5.46 \pm 0.07$              | $0.00214 \pm 0.00002$                                                                     |
|    | KE 220713-1b | 12.50±0.01      | 50.0±0.4  | 182±2                   | 3.64±0.05                    | $0.00168 \pm 0.00002$                                                                     |
|    | KE 220713-1c | 12.50±0.01      | 50.0±0.4  | 334±4                   | 6.68±0.09                    | $0.0025 \pm 0.0001$                                                                       |
|    | KE 220713-1d | 12.50±0.01      | 50.0±0.4  | 152±2                   | 3.03±0.04                    | $0.00161 \pm 0.00008$                                                                     |
| 50 | KE 220713-1e | 12.50±0.01      | 50.0±0.4  | 243±3                   | $4.86 \pm 0.07$              | $0.00206 \pm 0.00007$                                                                     |
|    | KE 220713-2  | $5.00 \pm 0.01$ | 50.0±0.4  | 147±2                   | $2.94{\pm}0.04$              | $0.000682 \pm 0.000001$                                                                   |
|    | KE 220714-1a | $5.00 \pm 0.01$ | 50.0±0.4  | 252±3                   | $5.05 \pm 0.07$              | $0.00127 \pm 0.00002$                                                                     |
|    | KE 220714-1b | $5.00 \pm 0.01$ | 50.0±0.4  | 211±2                   | 4.23±0.06                    | $0.00105 \pm 0.00004$                                                                     |
|    | KE 220714-1c | $5.00 \pm 0.01$ | 50.0±0.4  | 382±4                   | 7.64±0.10                    | $0.00181 \pm 0.00003$                                                                     |
| 55 | KE 220714-1d | $5.00 \pm 0.01$ | 50.0±0.4  | 265±3                   | $5.29 \pm 0.07$              | 0.00129±0.00003                                                                           |
| 55 | KE 220714-1e | $5.00 \pm 0.01$ | 50.0±0.4  | 306±3                   | 6.12±0.08                    | 0.00167±0.00006                                                                           |
|    | KE 220718-1b | $5.00 \pm 0.01$ | 50.0±0.4  | 354±4                   | 7.09±0.10                    | 0.00122±0.00003                                                                           |
|    | KE 220718-1c | $5.00 \pm 0.01$ | 50.0±0.4  | 331±4                   | 6.62±0.09                    | $0.00142 \pm 0.00001$                                                                     |
|    | KE 220718-1d | $5.00 \pm 0.01$ | 50.0±0.4  | 401±4                   | 8.02±0.11                    | $0.001641 \pm 0.000001$                                                                   |
|    | KE 220719-1a | $5.00 \pm 0.01$ | 50.0±0.4  | 318±3                   | 6.36±0.09                    | $0.00167 \pm 0.00002$                                                                     |
| 60 | KE 220719-1b | $5.00 \pm 0.01$ | 50.0±0.4  | 365±4                   | 7.30±0.10                    | $0.00195 \pm 0.00004$                                                                     |
|    | KE 220719-1c | $5.00 \pm 0.01$ | 50.0±0.4  | 413±5                   | 8.26±0.11                    | $0.00206 \pm 0.00006$                                                                     |
|    | KE 220719-2  | $5.00 \pm 0.01$ | 100.0±0.6 | 94±1                    | $0.94 \pm 0.01$              | $0.000285 \pm 0.000001$                                                                   |
|    | KE 220720-1a | $5.00 \pm 0.01$ | 100.0±0.6 | 176±2                   | $1.76 \pm 0.02$              | $0.00062 \pm 0.00001$                                                                     |
|    | KE 220720-1b | $5.00 \pm 0.01$ | 100.0±0.6 | 129±1                   | $1.29 \pm 0.02$              | $0.000466 \pm 0.000007$                                                                   |
|    | KE 220720-1c | 5.00±0.01       | 100.0±0.6 | 188±2                   | $1.88 \pm 0.02$              | $0.000667 \pm 0.000008$                                                                   |
| 65 |              | 1 1             |           | I                       | l                            |                                                                                           |

**Table S3 (continued).** Schedule of experiments: PPN in n-octanol. Experiments were conducted with the

 Varian GC-ECD.

|     | Internal<br>reference | Т<br>(°С)  | <i>Vl</i> (mL) | <b>Ф</b><br>(mL min <sup>-1</sup> ) | $\frac{\Phi}{V_l}$ (min <sup>-1</sup> ) | $\frac{\mathrm{d}}{\mathrm{d}t} \ln\left(\frac{c_{\mathrm{g},0}}{c_{\mathrm{g},t}}\right)$ (min <sup>-1</sup> ) |
|-----|-----------------------|------------|----------------|-------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 70  | KE 220720-1d          | 5.00±0.05  | 100.0±0.6      | 153±2                               | 1.53±0.02                               | 0.000444±0.000001                                                                                               |
|     | KE 220721-1b          | 16.00±0.01 | 50.0±0.4       | 257±3                               | 5.14±0.07                               | $0.00235 \pm 0.00004$                                                                                           |
|     | KE 220721-1c          | 16.00±0.01 | 50.0±0.4       | 153±2                               | 3.06±0.04                               | 0.001639±0.000007                                                                                               |
|     | KE 220721-1d          | 16.00±0.01 | 50.0±0.4       | 221±2                               | 4.42±0.06                               | $0.00219 \pm 0.00002$                                                                                           |
|     | KE 220725-1a          | 20.00±0.01 | 100.0±0.4      | 148±2                               | $1.48 \pm 0.02$                         | $0.00140 \pm 0.00006$                                                                                           |
|     | KE 220725-1b          | 20.00±0.01 | 100.0±0.4      | 432±5                               | 4.32±0.05                               | $0.00372 \pm 0.00009$                                                                                           |
| 75  | KE 220725-1c          | 20.00±0.01 | 100.0±0.4      | 99±1                                | $0.99 \pm 0.01$                         | $0.00149 \pm 0.00003$                                                                                           |
|     | KE 220725-1d          | 20.00±0.01 | 100.0±0.4      | 185±2                               | $1.85 \pm 0.02$                         | $0.00206 \pm 0.00001$                                                                                           |
|     | KE 220725-1e          | 20.00±0.01 | 100.0±0.4      | 463±5                               | 4.63±0.05                               | $0.00325 \pm 0.00003$                                                                                           |
|     | KE 220725-1f          | 20.00±0.01 | 100.0±0.4      | 111±1                               | $1.11 \pm 0.01$                         | $0.001492 \pm 0.000001$                                                                                         |
|     | KE 220726-1a          | 25.00±0.01 | 100.0±0.4      | 150±2                               | $1.50\pm0.02$                           | $0.00350 \pm 0.00009$                                                                                           |
|     | KE 220726-1b          | 25.00±0.01 | 100.0±0.4      | 100±1                               | $1.00 \pm 0.01$                         | $0.00307 \pm 0.00007$                                                                                           |
|     | KE 220726-1c          | 25.00±0.01 | 100.0±0.4      | 451±5                               | 4.51±0.05                               | $0.0050 \pm 0.0001$                                                                                             |
| 80  | KE 220726-1d          | 25.00±0.01 | 100.0±0.4      | 201±2                               | $2.01 \pm 0.02$                         | $0.0033 \pm 0.0001$                                                                                             |
|     | KE 220726-1e          | 25.00±0.01 | 100.0±0.4      | 502±6                               | $5.02 \pm 0.06$                         | $0.00513 \pm 0.00006$                                                                                           |
|     | KE 220726-2           | 12.50±0.01 | 100.0±0.4      | 102±1                               | $1.02 \pm 0.01$                         | 0.000622±0.000002                                                                                               |
|     | KE 220727-1a          | 12.50±0.01 | 100.0±0.4      | 204±2                               | $2.04 \pm 0.02$                         | $0.00115 \pm 0.00001$                                                                                           |
|     | KE 220727-1b          | 12.50±0.01 | 100.0±0.4      | 450±5                               | $4.50 \pm 0.05$                         | $0.00190 \pm 0.00002$                                                                                           |
|     | KE 220727-1c          | 12.50±0.01 | 100.0±0.4      | $144 \pm 2$                         | $1.44 \pm 0.02$                         | $0.00088 \pm 0.00003$                                                                                           |
| 05  | KE 220727-1d          | 12.50±0.01 | 100.0±0.4      | 390±4                               | $3.90 \pm 0.05$                         | $0.00174 \pm 0.00007$                                                                                           |
| 0.) | KE 220727-1e          | 12.50±0.01 | 100.0±0.4      | 240±3                               | $2.40 \pm 0.03$                         | $0.00131 \pm 0.00003$                                                                                           |
|     | KE 220727-2           | 8.50±0.01  | 100.0±0.4      | 101±1                               | $1.01 \pm 0.01$                         | 0.000438±0.000001                                                                                               |
|     | KE 220728-1a          | 8.50±0.01  | 100.0±0.4      | 296±3                               | 2.96±0.03                               | 0.00118±0.00004                                                                                                 |

Table S4. Schedule of experiments: PPN in n-octanol containing  $\sim (0.6\pm0.2)$  mM of  $\alpha$ -tocopherol.90 Experiments were conducted with the Varian GC-ECD.

| Internal<br>reference | Т<br>(°С)  | <i>Vl</i> (mL) | <b>Φ</b><br>(mL min <sup>-1</sup> ) | $\frac{\boldsymbol{\Phi}}{\boldsymbol{V}_l}$ (min <sup>-1</sup> ) | $\frac{\mathrm{d}}{\mathrm{d}t} \ln\left(\frac{c_{\mathrm{g},0}}{c_{\mathrm{g},t}}\right)$ (min <sup>-1</sup> ) |
|-----------------------|------------|----------------|-------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| KE 220809-1b          | 20.00±0.01 | $100.0\pm0.4$  | 123±1                               | $1.23 \pm 0.01$                                                   | $0.0027 \pm 0.0002$                                                                                             |
| KE 220809-1c          | 20.00±0.01 | 100.0±0.4      | 278±3                               | 2.78±0.03                                                         | $0.00345 \pm 0.00002$                                                                                           |
| KE 220809-1d          | 20.00±0.01 | 100.0±0.4      | 185±2                               | $1.85 \pm 0.02$                                                   | $0.003015 \pm 0.000004$                                                                                         |
| KE 220810-1a          | 20.00±0.01 | 100.0±0.4      | 339±4                               | 3.39±0.04                                                         | $0.0033 \pm 0.0001$                                                                                             |
| KE 220810-1b          | 20.00±0.01 | 100.0±0.4      | 197±2                               | $1.97 \pm 0.02$                                                   | $0.00310 \pm 0.00009$                                                                                           |
| KE 220810-1c          | 20.00±0.01 | 100.0±0.4      | 247±3                               | $2.47 \pm 0.03$                                                   | $0.00341 \pm 0.00005$                                                                                           |
| KE 220810-1d          | 20.00±0.01 | 100.0±0.4      | 370±4                               | $3.70 \pm 0.04$                                                   | $0.00404 \pm 0.00003$                                                                                           |
| KE 220810-1e          | 20.00±0.01 | 100.0±0.4      | 123±1                               | 1.23±0.01                                                         | 0.003100±0.000007                                                                                               |



**Figure S1.** Plots of  $\ln(c_{g,0}/c_{g,t})$  versus *t* for PPN, observed in overnight experiments downstream from 50 mL of n-octanol at 5.00 °C for four different volumetric flow rates. Each data point shown is derived from the peak area of an individual chromatogram, of which there were between 119 and 219 at each flow rate. The data from Figure 3 are superimposed in black colour.



**Figure S2.** Plots of dln( $c_{g,0}/c_{g,t}$ )/dt versus  $\Phi/V_l$  for PPN in n-octanol at 20.00 °C (•), 12.50 °C ( $\blacktriangle$ ), and 5.00 °C ( $\blacksquare$ ).



**Figure S3**. Effect of adding Vitamin E on plots of  $dln(c_{g,0}/c_{g,t})/dt$  versus  $\Phi/V_l$  for PPN in n-octanol at 20.00 °C. Results with unadulterated n-octanol are shown as (**n**), whereas results with n-octanol containing ~(0.6±0.2) mM of  $\alpha$ -tocopherol are shown as (**A**).

|                            | H <sup>cc</sup> <sub>S,aq</sub> (PAN)<br>(unitless) |          |  |
|----------------------------|-----------------------------------------------------|----------|--|
| Reference                  | 293.15 K                                            | 278.15 K |  |
| (Lee 1984)                 | 98.3±4.8                                            | n/d      |  |
| (Lee, 1964)                | (295 K)                                             | n/u      |  |
| (Kames et al., 1991)       | 97.4±3.6                                            | N/A      |  |
| (Kames and Schurath, 1995) | 97.9±2.0                                            | N/A      |  |
| This work                  | 101±10                                              | 269±13   |  |

**Table S5.** Dimensionless Henry's law constants of PAN in deionized water,  $H_{S,aq}^{cc}$  (PAN). N/A = not available. n/d = not determined.

**Table S6.** Dimensionless Henry's law constants of PPN in deionized water,  $H_{S,aq}^{cc}$  (PPN). N/A = not available.

|                            | H <sup>cc</sup> <sub>S,aq</sub> (PPN)<br>(unitless) |          |          |          |           |           |
|----------------------------|-----------------------------------------------------|----------|----------|----------|-----------|-----------|
| Reference                  | 298.15                                              | 293.15 K | 289.15 K | 285.65 K | 281.65 K  | 278.15 K  |
| (Kames and Schurath, 1995) | N/A                                                 | 70.8±1.5 | N/A      | N/A      | N/A       | N/A       |
| This work                  | 36.5±1.1                                            | 64.2±4.4 | 74.5±4.5 | 96.4±1.7 | 114.7±7.1 | 160.1±5.6 |

**Table S7.** Dimensionless Henry's law constants of PPN in n-octanol,  $H_{S,oct}^{cc}(PPN)$ .

|           | H <sup>cc</sup> <sub>S,oct</sub> (PPN)<br>(unitless) |                                 |                                 |                                 |                                 |                                 |  |  |  |  |
|-----------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|
| Reference | 298.15 K                                             | 293.15 K                        | 289.15 K                        | 285.65 K                        | 281.65 K                        | 278.15 K                        |  |  |  |  |
| This work | $(2.15\pm0.11)$<br>×10 <sup>3</sup>                  | (2.35±0.21)<br>×10 <sup>3</sup> | (2.98±0.19)<br>×10 <sup>3</sup> | (3.07±0.18)<br>×10 <sup>3</sup> | (3.62±0.26)<br>×10 <sup>3</sup> | (4.65±0.36)<br>×10 <sup>3</sup> |  |  |  |  |

Table S8. Loss rate constants of PPN at 293.15 K.

| Compound and solvent / medium                                        | k                          |
|----------------------------------------------------------------------|----------------------------|
| Compound and solvent / medium                                        | $(10^{-4} \text{ s}^{-1})$ |
| PPN in DI water                                                      | 3.8±0.6                    |
| PPN in n-octanol                                                     | 0.18±0.03                  |
| PPN in n-octanol containing ~(0.6 $\pm$ 0.2) mM $\alpha$ -tocopherol | 0.40±0.04                  |
| PPN in air (Kabir et al., 2014)                                      | 1.7                        |

125

Table S9a. Estimated lifetimes of PAN with respect to wet deposition in the atmosphere at 293 K.

| Type                    | L                                         | $H_{c}^{cc}(\mathbf{PAN}) \times L$     | k <sub>l,aq</sub> (PAN)             | $	au_{\mathrm{wet}}(\mathrm{PAN}) = (k_{\mathrm{l,aq}} \times$ |  |
|-------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------|----------------------------------------------------------------|--|
| - 5 P 2                 | (g m <sup>-3</sup> )                      |                                         | (10 <sup>-4</sup> s <sup>-1</sup> ) | $H_{\rm S}^{cc} \times L$ ) <sup>-1</sup>                      |  |
| Aerosol (low load)      | $2.4 \times 10^{-6}$ (Nenes et al., 2021) | 2.4×10 <sup>-10</sup>                   | 3.8 (this work)                     | 350 ky                                                         |  |
| Aerosol (high load)     | $1.0 \times 10^{-4}$ (Nenes et al., 2021) | 1.0×10 <sup>-8</sup>                    | 3.8 (this work)                     | 8.3 ky                                                         |  |
| Stratus clouds          | 0.28 (Hess et al. 1998)                   | $2.8 \times 10^{-5}$                    | 3.8 (this work)                     | 3 () v                                                         |  |
| (continental)           | 0.20 (11035 et al., 1990)                 | 2.0 ×10                                 | 5.0 (uns work)                      | 5.0 y                                                          |  |
| Stratus clouds          | 0.30 (Hess et al. 1998)                   | 3.0×10 <sup>-5</sup>                    | 44 (Kames and                       | 87 d                                                           |  |
| (maritime)              | 0.00 (11000 et al., 1990)                 |                                         | Schurath, 1995)                     | 07 <b>u</b>                                                    |  |
| Cumulus clouds          | 0.26 (Hess et al. 1998)                   | 2.6 ×10 <sup>-5</sup>                   | 3.8 (this work)                     | 3.2 y                                                          |  |
| (continental, clean)    | 0.20 (11055 et al., 1990)                 | 2.0 / 10                                |                                     |                                                                |  |
| Cumulus clouds          | 0.30 (Hess et al., 1998)                  | 3.0×10 <sup>-5</sup>                    | 3.8 (this work)                     | 2.8 y                                                          |  |
| (continental, polluted) | 0.00 (11000 et all, 1990)                 |                                         |                                     |                                                                |  |
| Cumulus clouds          | 0.44 (Hess et al., 1998)                  | 4 4 ×10 <sup>-5</sup>                   | 44 (Kames and                       | 59 d                                                           |  |
| (maritime)              | 0.11 (11055 et al., 1996)                 |                                         | Schurath, 1995)                     | <i></i>                                                        |  |
| Cumulonimbus            | 3.0 (Rosenfeld and Lensky,                | 3.0×10 <sup>-4</sup>                    | 3.8 (this work)                     | 101 d                                                          |  |
| clouds (Java)           | 1998)                                     |                                         |                                     |                                                                |  |
| Fog                     | 0.058 (Hess et al., 1998)                 | 5.8×10 <sup>-6</sup>                    | 3.8 (this work)                     | 14 y                                                           |  |
| Fog (Po Valley)         | 0.3 (Wobrock et al., 1992)                | 3.0×10 <sup>-5</sup>                    | 3.8 (this work)                     | 2.8 y                                                          |  |
| Fog (maritime)          | 0.058 (Hess et al., 1998)                 | (98) $5.8 \times 10^{-6}$ 44 (Kames and |                                     | 1.2 v                                                          |  |
|                         | 0.050 (Hess et al., 1990)                 |                                         | Schurath, 1995)                     | y                                                              |  |
| Fog (maritime)          | 0.8 (Dimitrova et al. 2021)               | 8 1 ×10 <sup>-5</sup>                   | 44 (Kames and                       | 33 d                                                           |  |
|                         |                                           |                                         | Schurath, 1995)                     |                                                                |  |
| Fog (maritime)          | 1.8 (Osthoff et al., 2006)                | $1.8 \times 10^{-4}$                    | 44 (Kames and                       | 14 d                                                           |  |
|                         |                                           |                                         | Schurath, 1995)                     |                                                                |  |

| <b>T</b>                                  | L                                         |                           | k <sub>l,aq</sub> (PPN)                     | $	au_{\mathrm{wet}}(\mathrm{PPN})$                        |  |
|-------------------------------------------|-------------------------------------------|---------------------------|---------------------------------------------|-----------------------------------------------------------|--|
| Type                                      | (g m <sup>-3</sup> )                      | $H_{S}^{c}(PPN) \times L$ | ( <b>10</b> <sup>-4</sup> s <sup>-1</sup> ) | $= \left(k_{1,aq} \times H_{S}^{cc} \times L\right)^{-1}$ |  |
| Aerosol (low load)                        | $2.4 \times 10^{-6}$ (Nenes et al., 2021) | $1.5 \times 10^{-10}$     | 3.8 (this work)                             | 540 ky                                                    |  |
| Aerosol (high load)                       | $1.0 \times 10^{-4}$ (Nenes et al., 2021) | 6.4 ×10 <sup>-9</sup>     | 3.8 (this work)                             | 13 ky                                                     |  |
| Stratus clouds (continental)              | 0.28 (Hess et al., 1998)                  | 1.8×10 <sup>-5</sup>      | 3.8 (this work)                             | 4.6 y                                                     |  |
| Stratus clouds (maritime)                 | 0.30 (Hess et al., 1998)                  | 1.9×10 <sup>-5</sup>      | 44 (Kames and<br>Schurath, 1995)            | 137 d                                                     |  |
| Cumulus clouds (continental, clean)       | 0.26 (Hess et al., 1998)                  | 1.7 ×10 <sup>-5</sup>     | 3.8 (this work)                             | 5.0 y                                                     |  |
| Cumulus clouds<br>(continental, polluted) | 0.30 (Hess et al., 1998)                  | 1.9×10 <sup>-5</sup>      | 3.8 (this work)                             | 4.3 y                                                     |  |
| Cumulus clouds<br>(maritime)              | 0.44 (Hess et al., 1998)                  | 2.8×10 <sup>-5</sup>      | 44 (Kames and<br>Schurath, 1995)            | 93 d                                                      |  |
| Cumulonimbus<br>clouds (Java)             | 3.0 (Rosenfeld and Lensky,<br>1998)       | 1.9×10 <sup>-4</sup>      | 3.8 (this work)                             | 158 d                                                     |  |
| Fog                                       | 0.058 (Hess et al., 1998)                 | 3.7 ×10 <sup>-6</sup>     | 3.8 (this work)                             | 22 у                                                      |  |
| Fog (Po Valley)                           | 0.3 (Wobrock et al., 1992)                | 1.9×10 <sup>-5</sup>      | 3.8 (this work)                             | 4.3 y                                                     |  |
| Fog (maritime)                            | 0.058 (Hess et al., 1998)                 | 3.7 ×10 <sup>-6</sup>     | 44 (Kames and<br>Schurath, 1995)            | 1.9 y                                                     |  |
| Fog (maritime)                            | 0.8 (Dimitrova et al., 2021)              | 5.1 ×10 <sup>-5</sup>     | 44 (Kames and<br>Schurath, 1995)            | 51 d                                                      |  |
| Fog (maritime)                            | 1.8 (Osthoff et al., 2006)                | 1.2×10 <sup>-4</sup>      | 44 (Kames and<br>Schurath, 1995)            | 23 d                                                      |  |

Table S9b. Estimated lifetimes of PPN with respect to wet deposition in the atmosphere at 293 K.

| T                                      | L                                         |                                | k <sub>l,aq</sub> (PAN)                     | $	au_{wet}(PAN)$                                                              |  |
|----------------------------------------|-------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|--|
| Type                                   | (g m <sup>-3</sup> )                      | $H_{S}^{\infty}(PAN) \times L$ | ( <b>10</b> <sup>-4</sup> s <sup>-1</sup> ) | $= \left( k_{\mathrm{l,aq}} \times H_{\mathrm{S}}^{cc} \times L \right)^{-1}$ |  |
| Aerosol (low load)                     | $2.4 \times 10^{-6}$ (Nenes et al., 2021) | 6.4 ×10 <sup>-10</sup>         | 1.8 (this work)                             | 274 ky                                                                        |  |
| Aerosol (high load)                    | $1.0 \times 10^{-4}$ (Nenes et al., 2021) | 2.7 ×10 <sup>-8</sup>          | 1.8 (this work)                             | 6.5 ky                                                                        |  |
| Stratus clouds (continental)           | 0.28 (Hess et al., 1998)                  | 7.5 ×10 <sup>-5</sup>          | 1.8 (this work)                             | 2.3 y                                                                         |  |
| Stratus clouds<br>(maritime)           | 0.30 (Hess et al., 1998)                  | 8.1 ×10 <sup>-5</sup>          | 44 (Kames and<br>Schurath, 1995)            | 33 d                                                                          |  |
| Cumulus clouds (continental, clean)    | 0.26 (Hess et al., 1998)                  | 7.0×10 <sup>-5</sup>           | 1.8 (this work)                             | 2.5 у                                                                         |  |
| Cumulus clouds (continental, polluted) | 0.30 (Hess et al., 1998)                  | 8.1×10 <sup>-5</sup>           | 1.8 (this work)                             | 2.2 у                                                                         |  |
| Cumulus clouds (maritime)              | 0.44 (Hess et al., 1998)                  | 1.2×10 <sup>-4</sup>           | 44 (Kames and<br>Schurath, 1995)            | 22 d                                                                          |  |
| Cumulonimbus<br>clouds (Java)          | 3.0 (Rosenfeld and Lensky,<br>1998)       | 8.1 ×10 <sup>-4</sup>          | 1.8 (this work)                             | 80 d                                                                          |  |
| Fog                                    | 0.058 (Hess et al., 1998)                 | 1.6×10 <sup>-5</sup>           | 1.8 (this work)                             | 11 y                                                                          |  |
| Fog (Po Valley)                        | 0.3 (Wobrock et al., 1992)                | 8.1 ×10 <sup>-5</sup>          | 1.8 (this work)                             | 2.2 у                                                                         |  |
| Fog (maritime)                         | 0.058 (Hess et al., 1998)                 | 1.6×10 <sup>-5</sup>           | 44 (Kames and<br>Schurath, 1995)            | 168 d                                                                         |  |
| Fog (maritime)                         | 0.8 (Dimitrova et al., 2021)              | 2.2×10 <sup>-4</sup>           | 44 (Kames and<br>Schurath, 1995)            | 12 d                                                                          |  |
| Fog (maritime)                         | 1.8 (Osthoff et al., 2006)                | 4.8×10 <sup>-4</sup>           | 44 (Kames and<br>Schurath, 1995)            | 5 d                                                                           |  |

| т                                         | L                                         |                               | k1,aq(PPN)                                  | $	au_{wet}(PPN)$                                          |  |
|-------------------------------------------|-------------------------------------------|-------------------------------|---------------------------------------------|-----------------------------------------------------------|--|
| Туре                                      | (g m <sup>-3</sup> )                      | $H_{S}^{\circ}(PPN) \times L$ | ( <b>10</b> <sup>-4</sup> s <sup>-1</sup> ) | $= \left(k_{1,aq} \times H_{S}^{cc} \times L\right)^{-1}$ |  |
| Aerosol (low load)                        | $2.4 \times 10^{-6}$ (Nenes et al., 2021) | 3.8×10 <sup>-10</sup>         | 1.0 (this work)                             | 840 ky                                                    |  |
| Aerosol (high load)                       | 1.0×10 <sup>-4</sup> (Nenes et al., 2021) | 1.6×10 <sup>-8</sup>          | 1.0 (this work)                             | 20 ky                                                     |  |
| Stratus clouds (continental)              | 0.28 (Hess et al., 1998)                  | 4.5×10 <sup>-5</sup>          | 1.0 (this work)                             | 7.2 у                                                     |  |
| Stratus clouds<br>(maritime)              | 0.30 (Hess et al., 1998)                  | 4.8×10 <sup>-5</sup>          | 44 (Kames and<br>Schurath, 1995)            | 55 d                                                      |  |
| Cumulus clouds (continental, clean)       | 0.26 (Hess et al., 1998)                  | 4.2×10 <sup>-5</sup>          | 1.0 (this work)                             | 7.7 у                                                     |  |
| Cumulus clouds<br>(continental, polluted) | 0.30 (Hess et al., 1998)                  | 4.8×10 <sup>-5</sup>          | 1.0 (this work)                             | 6.7 y                                                     |  |
| Cumulus clouds (maritime)                 | 0.44 (Hess et al., 1998)                  | 7.0×10 <sup>-5</sup>          | 44 (Kames and<br>Schurath, 1995)            | 37 d                                                      |  |
| Cumulonimbus<br>clouds (Java)             | 3.0 (Rosenfeld and Lensky,<br>1998)       | 4.8×10 <sup>-4</sup>          | 1.0 (this work)                             | 244 d                                                     |  |
| Fog                                       | 0.058 (Hess et al., 1998)                 | 9.3×10 <sup>-6</sup>          | 1.0 (this work)                             | 35 у                                                      |  |
| Fog (Po Valley)                           | 0.3 (Wobrock et al., 1992)                | 4.8×10 <sup>-5</sup>          | 1.0 (this work)                             | 6.7 y                                                     |  |
| Fog (maritime)                            | 0.058 (Hess et al., 1998)                 | 9.3×10 <sup>-6</sup>          | 44 (Kames and<br>Schurath, 1995)            | 283 d                                                     |  |
| Fog (maritime)                            | 0.8 (Dimitrova et al., 2021)              | 1.3×10 <sup>-4</sup>          | 44 (Kames and Schurath, 1995)               | 21 d                                                      |  |
| Fog (maritime)                            | 1.8 (Osthoff et al., 2006)                | 2.9×10 <sup>-4</sup>          | 44 (Kames and<br>Schurath, 1995)            | 9 d                                                       |  |

**Table S10b.** Estimated lifetimes of PPN with respect to wet deposition in the atmosphere at 278 K.

Table S11. Reactive uptake probabilities of PAN and PPN calculated using Eq. (8-9). The water viscosities

135 were obtained from Korson et al. (1969) and those for n-octanol were calculated by linear extrapolation of the above-room temperature data by Venkatesan et al. (2020). Molar volume data were obtained using the PhysChem module of the ACD/Labs percepta platform via the Royal Society of Chemistry's Chemspider web site (2022).

| Commenced on London land | Τ      | μ       | $D_l$                                  | $k_1$                      | ω                    | H <sup>cc</sup> <sub>S</sub> | γ                   |
|--------------------------|--------|---------|----------------------------------------|----------------------------|----------------------|------------------------------|---------------------|
| Compound and solvent     | (K)    | (mPa s) | $(10^{-9} \text{ m}^2 \text{ s}^{-1})$ | $(10^{-5} \text{ s}^{-1})$ | (m s <sup>-1</sup> ) |                              | (10 <sup>-5</sup> ) |
| PAN and DI water         | 278.15 | 1.5192  | 0.88                                   | 18                         | 221                  | 269                          | 0.2                 |
| PAN and DI water         | 293.15 | 1.0020  | 1.4                                    | 38                         | 226                  | 101                          | 0.1                 |
| PPN and DI water         | 278.15 | 1.5192  | 0.86                                   | 10                         | 209                  | 160                          | 0.09                |
| PPN and DI water         | 293.15 | 1.0020  | 1.4                                    | 38                         | 214                  | 64                           | 0.09                |
| PAN and n-octanol        | 278.15 | 12.2    | 2.3                                    | 0.5                        | 221                  | 1920                         | 0.4                 |
| PAN and n-octanol        | 293.15 | 9.3     | 3.2                                    | 0.3                        | 226                  | 1010                         | 0.2                 |
| PPN and n-octanol        | 278.15 | 12.2    | 2.3                                    | 0.3                        | 209                  | 4652                         | 0.7                 |
| PPN and n-octanol        | 293.15 | 9.3     | 3.2                                    | 1.8                        | 214                  | 2351                         | 1.1                 |

## 140 **References**

150

ChemSpider: http://www.chemspider.com/Chemical-Structure.20713.html and

http://www.chemspider.com/Chemical-Structure.15907.html, access: Aug 8, 2022.

Dimitrova, R., Sharma, A., Fernando, H. J. S., Gultepe, I., Danchovski, V., Wagh, S., Bardoel, S. L., and Wang, S.: Simulations of Coastal Fog in the Canadian Atlantic with the Weather Research and

145 Forecasting Model, Bound.-Layer Meteor., 181, 443-472, 10.1007/s10546-021-00662-w, 2021.

Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bulletin of the American Meteorological Society, 79, 831-844, 10.1175/1520-0477(1998)079<0831:Opoaac>2.0.Co;2, 1998.

Kabir, M., Jagiella, S., and Zabel, F.: Thermal Stability of n-Acyl Peroxynitrates, Internat. J. Chem. Kin., 46, 462-469, 10.1002/kin.20862, 2014.

Kames, J., Schweighoefer, S., and Schurath, U.: Henry's law constant and hydrolysis of peroxyacetyl nitrate (PAN), J. Atmos. Chem., 12, 169-180, 10.1007/BF00115778, 1991.

- Kames, J., and Schurath, U.: Henry's law and hydrolysis rate constants for peroxyacyl nitrates (PANs) using a homogeneous gas-phase source, J. Atmos. Chem., 21, 151-164, 10.1007/BF00696578, 1995.
- 155 Korson, L., Drost-Hansen, W., and Millero, F. J.: Viscosity of water at various temperatures, The Journal of Physical Chemistry, 73, 34-39, 10.1021/j100721a006, 1969.
  - Lee, Y. N.: Kinetics of some aqueous-phase reactions of peroxyacetyl nitrate, Brookhaven National Lab., Upton, NY (USA)BNL-34735; CONF-840489-4; ON:DE84011911, 1984.

Nenes, A., Pandis, S. N., Kanakidou, M., Russell, A. G., Song, S., Vasilakos, P., and Weber, R. J.:

Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen,Atmos. Chem. Phys., 21, 6023-6033, 10.5194/acp-21-6023-2021, 2021.

Osthoff, H. D., Sommariva, R., Baynard, T., Pettersson, A., Williams, E. J., Lerner, B. M., Roberts, J. M.,
Stark, H., Goldan, P. D., Kuster, W. C., Bates, T. S., Coffman, D., Ravishankara, A. R., and Brown, S.
S.: Observation of daytime N<sub>2</sub>O<sub>5</sub> in the marine boundary layer during New England Air Quality Study

 Intercontinental Transport and Chemical Transformation 2004, J. Geophys. Res., 111, D23S14, 10.1029/2006JD007593, 2006.

Rosenfeld, D., and Lensky, I. M.: Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds, Bulletin of the American Meteorological Society, 79, 2457-2476, 10.1175/1520-0477(1998)079<2457:Sbiipf>2.0.Co;2, 1998.

170 Venkatesan, D., Amarnath D, J., Krishna, T. S., Biswas, P., and Dey, R.: Densities, viscosities and excess parameters of octanol with alkyl(C1 – C4) acetates at varying temperatures, Journal of Molecular Liquids, 299, 112221, 10.1016/j.molliq.2019.112221, 2020.

- Wobrock, W., Schell, D., Maser, R., Kessel, M., Jaeschke, W., Fuzzi, S., Facchini, M. C., Orsi, G., Marzorati, A., Winkler, P., Arends, B. G., and Bendix, J.: Meteorological characteristics of the Po
- 175 Valley fog, Tellus B: Chemical and Physical Meteorology, 44, 469-488, 10.3402/tellusb.v44i5.15562, 1992.