Articles | Volume 23, issue 1
https://doi.org/10.5194/acp-23-163-2023
https://doi.org/10.5194/acp-23-163-2023
Research article
 | Highlight paper
 | 
05 Jan 2023
Research article | Highlight paper |  | 05 Jan 2023

Dependence of strategic solar climate intervention on background scenario and model physics

John T. Fasullo and Jadwiga H. Richter

Related authors

An overview of the E3SM version 2 large ensemble and comparison to other E3SM and CESM large ensembles
John T. Fasullo, Jean-Christophe Golaz, Julie M. Caron, Nan Rosenbloom, Gerald A. Meehl, Warren Strand, Sasha Glanville, Samantha Stevenson, Maria Molina, Christine A. Shields, Chengzhu Zhang, James Benedict, Hailong Wang, and Tony Bartoletti
Earth Syst. Dynam., 15, 367–386, https://doi.org/10.5194/esd-15-367-2024,https://doi.org/10.5194/esd-15-367-2024, 2024
Short summary
New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model
Marika M. Holland, Cecile Hannay, John Fasullo, Alexandra Jahn, Jennifer E. Kay, Michael Mills, Isla R. Simpson, William Wieder, Peter Lawrence, Erik Kluzek, and David Bailey
Geosci. Model Dev., 17, 1585–1602, https://doi.org/10.5194/gmd-17-1585-2024,https://doi.org/10.5194/gmd-17-1585-2024, 2024
Short summary
Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1)
John T. Fasullo
Geosci. Model Dev., 13, 3627–3642, https://doi.org/10.5194/gmd-13-3627-2020,https://doi.org/10.5194/gmd-13-3627-2020, 2020
Short summary

Related subject area

Subject: Radiation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The impact of coupled 3D shortwave radiative transfer on surface radiation and cumulus clouds over land
Mirjam Tijhuis, Bart J. H. van Stratum, and Chiel C. van Heerwaarden
Atmos. Chem. Phys., 24, 10567–10582, https://doi.org/10.5194/acp-24-10567-2024,https://doi.org/10.5194/acp-24-10567-2024, 2024
Short summary
Atmospheric cloud-radiative heating in CMIP6 and observations and its response to surface warming
Aiko Voigt, Stefanie North, Blaž Gasparini, and Seung-Hee Ham
Atmos. Chem. Phys., 24, 9749–9775, https://doi.org/10.5194/acp-24-9749-2024,https://doi.org/10.5194/acp-24-9749-2024, 2024
Short summary
Trends in observed surface solar radiation and their causes in Brazil in the first 2 decades of the 21st century
Lucas Ferreira Correa, Doris Folini, Boriana Chtirkova, and Martin Wild
Atmos. Chem. Phys., 24, 8797–8819, https://doi.org/10.5194/acp-24-8797-2024,https://doi.org/10.5194/acp-24-8797-2024, 2024
Short summary
A sensitivity study on radiative effects due to the parameterization of dust optical properties in models
Ilias Fountoulakis, Alexandra Tsekeri, Stelios Kazadzis, Vassilis Amiridis, Angelos Nersesian, Maria Tsichla, Emmanouil Proestakis, Antonis Gkikas, Kyriakoula Papachristopoulou, Vasileios Barlakas, Claudia Emde, and Bernhard Mayer
Atmos. Chem. Phys., 24, 4915–4948, https://doi.org/10.5194/acp-24-4915-2024,https://doi.org/10.5194/acp-24-4915-2024, 2024
Short summary
How to observe the small-scale spatial distribution of surface solar irradiance, and how is it influenced by cumulus clouds?
Zili He, Quentin Libois, Najda Villefranque, Hartwig Deneke, Jonas Witthuhn, and Fleur Couvreux
EGUsphere, https://doi.org/10.5194/egusphere-2024-1064,https://doi.org/10.5194/egusphere-2024-1064, 2024
Short summary

Cited articles

Abiodun, B. J., Odoulami, R. C., Sawadogo, W., Olumuyiwa, A., Abayomi, O., Abatan, A., New, M., Lennard, C., Izidine, P., Egbebiyi, T. S., and MacMartin, D. G.: Potential impacts of stratospheric aerosol injection on drought risk managements over major river basins in Africa, Climatic Change, 169, 1–19, https://doi.org/10.1007/s10584-021-03268-w, 2021. 
Bala, G., Caldeira, K., and Nemani, R.: Fast versus slow response in climate change: Implications for the global hydrological cycle, Clim. Dynam., 35, 423–434, https://doi.org/10.1007/s00382-009-0583-y, 2010. 
Banerjee, A., Butler, A. H., Polvani, L. M., Robock, A., Simpson, I. R., and Sun, L.: Robust winter warming over Eurasia under stratospheric sulphate geoengineering–the role of stratospheric dynamics, Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, 2021. 
Burgess, M. G., Ritchie, J., Shapland, J., and Pielke Jr., R.: IPCC baseline scenarios have over-projected CO2 emissions and economic growth, Environ. Res. Lett., 16, 014016, https://doi.org/10.1088/1748-9326/abcdd2, 2021. 
Download
Executive editor
Stratospheric aerosol injection (SAI) is often discussed in the media and in policy circles as a possible action to limit future increase in global temperatures. Indeed it has been demonstrated in model simulations that in principle injection could be 'controlled', using model information, to meet specific targets on the temperature increase and its spatial distribution. This paper shows that the simulated climate response to SAI is strongly model-dependent, reflecting fundamental uncertainties in model representation of key processes. In particular this means that the SAI determined by the control algorithms as those required to achieve temperature targets different significantly from one model to another. Specific mechanisms, in particular the difference in rapid response in clouds and in precipitation to an imposed radiative perturbation and the ensuing ocean circulation response, are identified that contribute to the strong differences in model response to SAI. There is also a strong sensitivity to the pre-existing sulphate distribution which will be determined by future anthropogenic emissions. The authors note that these inter-model differences are unlikely to be resolved quickly and that controlled SAI, to achieve specific temperature goals and with well-quantified risks of unexpected consequences, is likely to remain out of reach for many years.
Short summary
The continued high levels of anthropogenic greenhouse gas emissions increase the likelihood that key climate warming thresholds will be exceeded in the coming decades. Here we examine a recently proposed geoengineering approach using two recently produced climate model experiments. We find the associated latitudinal distribution of aerosol mass to exhibit substantial uncertainty, suggesting the need for significant flexibility in the location and amount of aerosol delivery, if implemented.
Altmetrics
Final-revised paper
Preprint