Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2881-2021
https://doi.org/10.5194/acp-21-2881-2021
Research article
 | 
25 Feb 2021
Research article |  | 25 Feb 2021

Aqueous-phase behavior of glyoxal and methylglyoxal observed with carbon and oxygen K-edge X-ray absorption spectroscopy

Georgia Michailoudi, Jack J. Lin, Hayato Yuzawa, Masanari Nagasaka, Marko Huttula, Nobuhiro Kosugi, Theo Kurtén, Minna Patanen, and Nønne L. Prisle

Related authors

Partitioning of ionic surfactants in aerosol droplets containing glutaric acid, sodium chloride, or sea salts
Alison Bain, Kunal Ghosh, Konstantin Tumashevich, Nønne L. Prisle, and Bryan R. Bzdek
Atmos. Chem. Phys., 25, 5633–5645, https://doi.org/10.5194/acp-25-5633-2025,https://doi.org/10.5194/acp-25-5633-2025, 2025
Short summary
The Global Importance of Gas-phase Peroxy Radical Accretion Reactions
Alfred W. Mayhew, Lauri Franzon, Kelvin H. Bates, Theo Kurtén, Felipe D. Lopez-Hilfiker, Claudia Mohr, Andrew R. Rickard, Joel A. Thornton, and Jessica D. Haskins
EGUsphere, https://doi.org/10.5194/egusphere-2025-1922,https://doi.org/10.5194/egusphere-2025-1922, 2025
Short summary
Gas-phase observations of accretion products from stabilized Criegee intermediates in terpene ozonolysis with two dicarboxylic acids
Yuanyuan Luo, Lauri Franzon, Jiangyi Zhang, Nina Sarnela, Neil M. Donahue, Theo Kurtén, and Mikael Ehn
Atmos. Chem. Phys., 25, 4655–4664, https://doi.org/10.5194/acp-25-4655-2025,https://doi.org/10.5194/acp-25-4655-2025, 2025
Short summary
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024,https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Impact of acidity and surface-modulated acid dissociation on cloud response to organic aerosol
Gargi Sengupta, Minjie Zheng, and Nønne L. Prisle
Atmos. Chem. Phys., 24, 1467–1487, https://doi.org/10.5194/acp-24-1467-2024,https://doi.org/10.5194/acp-24-1467-2024, 2024
Short summary

Cited articles

Bluhm, H., Ogletree, D. F., Fadley, C. S., Hussain, Z., and Salmeron, M.: The premelting of ice studied with photoelectron spectroscopy, J. Phys. Condens. Matter, 14, L227, https://doi.org/10.1088/0953-8984/14/8/108, 2002. a
Chen, Y., Wang, W., and Zhu, L.: Wavelength-Dependent Photolysis of Methylglyoxal in the 290–440 nm Region, J. Phys.Chem. A, 104, 11126–11131, https://doi.org/10.1021/jp002262t, 2000. a
De Haan, D. O., Corrigan, A. L., Smith, K. W., Stroik, D. R., Turley, J. J., Lee, F. E., Tolbert, M. A., Jimenez, J. L., Cordova, K. E., and Ferrell, G. R.: Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids, Environ. Sci. Technol., 43, 2818–2824, https://doi.org/10.1021/es803534f, 2009a. a
De Haan, D. O., Tolbert, M. A., and Jimenez, J. L.: Atmospheric Condensed-Phase Reactions of Glyoxal with Methylamine, Geophys. Res. Lett., 36, L11819, https://doi.org/10.1029/2009GL037441, 2009b. a
Ervens, B. and Volkamer, R.: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219–8244, https://doi.org/10.5194/acp-10-8219-2010, 2010. a, b, c
Download
Short summary
This study provides insight into hydration of two significant atmospheric compounds, glyoxal and methylglyoxal. Using synchrotron radiation excited X-ray absorption spectroscopy, we confirm that glyoxal is fully hydrated in water, and for the first time, we experimentally detect enol structures in aqueous methylglyoxal. Our results support the contribution of these compounds to secondary organic aerosol formation, known to have a large uncertainty in atmospheric models and climate predictions.
Share
Altmetrics
Final-revised paper
Preprint