Articles | Volume 21, issue 1
https://doi.org/10.5194/acp-21-269-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-269-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere
Jiecan Cui
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Tenglong Shi
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Dongyou Wu
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Institute of Surface-Earth System Science, Tianjin University, Tianjin
300072, China
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Related authors
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Yue Zhou, Christopher P. West, Anusha P. S. Hettiyadura, Xiaoying Niu, Hui Wen, Jiecan Cui, Tenglong Shi, Wei Pu, Xin Wang, and Alexander Laskin
Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, https://doi.org/10.5194/acp-21-8531-2021, 2021
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal snow of northwestern China. We applied complementary multimodal analytical techniques to investigate bulk and molecular-level composition, optical properties, and sources of WSOC. For the first time, we estimated the extent of radiative forcing due to WSOC in snow using a model simulation and showed the profound influences of WSOC on the energy budget of midlatitude seasonal snowpack.
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021, https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
Short summary
We have explicitly resolved optical properties of coated BC in snow for explaining complex enhancement of snow albedo reduction due to coating effect in real environments. The parameterizations are developed for climate models to improve the understanding of BC in snow on global climate. We demonstrated that the contribution of BC coating effect to snow light absorption has exceeded dust over north China and will significantly contribute to the retreat of Arctic sea ice and Tibetan glaciers.
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021, https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Short summary
We assess the effect of dust external and internal mixing with snow grains on the absorption coefficient and albedo of snowpack. The results suggest that dust–snow internal mixing strongly enhances snow absorption coefficient and albedo reduction relative to external mixing. Meanwhile, the possible non-uniform distribution of dust in snow grains may lead to significantly different values of absorption coefficient and albedo of snowpack in the visible spectral range.
Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, and Xin Wang
Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, https://doi.org/10.5194/acp-19-9949-2019, 2019
Short summary
Short summary
LAPs (light-absorbing particles) deposited on snow can decrease snow albedo and increase the absorption of solar radiation. Radiative forcing by LAPs will affect the regional hydrological cycle and climate. We use MODIS observations to retrieve the radiative forcing by LAPs in snow across northeastern China (NEC). The results of radiative forcing present distinct spatial variability. We find that the biases are negatively correlated with LAP concentrations and range from
~ 5 % to ~ 350 %.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Yue Zhou, Christopher P. West, Anusha P. S. Hettiyadura, Xiaoying Niu, Hui Wen, Jiecan Cui, Tenglong Shi, Wei Pu, Xin Wang, and Alexander Laskin
Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, https://doi.org/10.5194/acp-21-8531-2021, 2021
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal snow of northwestern China. We applied complementary multimodal analytical techniques to investigate bulk and molecular-level composition, optical properties, and sources of WSOC. For the first time, we estimated the extent of radiative forcing due to WSOC in snow using a model simulation and showed the profound influences of WSOC on the energy budget of midlatitude seasonal snowpack.
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021, https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
Short summary
We have explicitly resolved optical properties of coated BC in snow for explaining complex enhancement of snow albedo reduction due to coating effect in real environments. The parameterizations are developed for climate models to improve the understanding of BC in snow on global climate. We demonstrated that the contribution of BC coating effect to snow light absorption has exceeded dust over north China and will significantly contribute to the retreat of Arctic sea ice and Tibetan glaciers.
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021, https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Short summary
We assess the effect of dust external and internal mixing with snow grains on the absorption coefficient and albedo of snowpack. The results suggest that dust–snow internal mixing strongly enhances snow absorption coefficient and albedo reduction relative to external mixing. Meanwhile, the possible non-uniform distribution of dust in snow grains may lead to significantly different values of absorption coefficient and albedo of snowpack in the visible spectral range.
Wei Pu, Zhouxing Zou, Weihao Wang, David Tanner, Zhe Wang, and Tao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-252, https://doi.org/10.5194/amt-2020-252, 2020
Revised manuscript not accepted
Short summary
Short summary
The hydroxyl radical (OH) is responsible for the degradation of trace gases and plays key roles in major environmental issues such as photochemical pollution. However, the measurement of atmospheric OH radical is a huge challenge due to its high reactivity. Our study provides systematic optimization of a chemical ionization mass spectrometer (CIMS) for OH measurement as a reference for other CIMS users. The ambient result demonstrates the capability of the CIMS for ambient OH measurement.
Dandan Zhao, Guangjing Liu, Jinyuan Xin, Jiannong Quan, Yuesi Wang, Xin Wang, Lindong Dai, Wenkang Gao, Guiqian Tang, Bo Hu, Yongxiang Ma, Xiaoyan Wu, Lili Wang, Zirui Liu, and Fangkun Wu
Atmos. Chem. Phys., 20, 4575–4592, https://doi.org/10.5194/acp-20-4575-2020, https://doi.org/10.5194/acp-20-4575-2020, 2020
Short summary
Short summary
Under strong atmospheric oxidization capacity, haze pollution in the summer in Beijing was the result of the synergistic effect of the physicochemical process in the atmospheric boundary layer (ABL). With the premise of an extremely stable ABL structure, the formation of secondary aerosols dominated by nitrate was quite intense, driving the outbreak of haze pollution.
Xin Wang, Xueying Zhang, and Wenjing Di
Atmos. Meas. Tech., 13, 39–52, https://doi.org/10.5194/amt-13-39-2020, https://doi.org/10.5194/amt-13-39-2020, 2020
Short summary
Short summary
We developed an improved two-sphere integration (TSI) technique to quantify black carbon (BC) concentrations in the atmosphere and seasonal snow. The major advantage of this system is that it combines two distinct integrated spheres to reduce the scattering effect due to light-absorbing particles and thus provides accurate determinations of total light absorption from BC collected on Nuclepore filters.
Siqi Ma, Xuelei Zhang, Chao Gao, Daniel Q. Tong, Aijun Xiu, Guangjian Wu, Xinyuan Cao, Ling Huang, Hongmei Zhao, Shichun Zhang, Sergio Ibarra-Espinosa, Xin Wang, Xiaolan Li, and Mo Dan
Geosci. Model Dev., 12, 4603–4625, https://doi.org/10.5194/gmd-12-4603-2019, https://doi.org/10.5194/gmd-12-4603-2019, 2019
Short summary
Short summary
Dust storms are thought to be a worldwide societal issue, and numerical modeling is an effective way to help us to predict dust events. Here we present the first comprehensive evaluation of dust emission modules in four commonly used air quality models for northeastern China. The results showed that most of these models were able to capture this dust event and indicated the dust source maps should be carefully selected or replaced with a new one that is constructed with local data.
Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, and Xin Wang
Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, https://doi.org/10.5194/acp-19-9949-2019, 2019
Short summary
Short summary
LAPs (light-absorbing particles) deposited on snow can decrease snow albedo and increase the absorption of solar radiation. Radiative forcing by LAPs will affect the regional hydrological cycle and climate. We use MODIS observations to retrieve the radiative forcing by LAPs in snow across northeastern China (NEC). The results of radiative forcing present distinct spatial variability. We find that the biases are negatively correlated with LAP concentrations and range from
~ 5 % to ~ 350 %.
Xin Wang, Hailun Wei, Jun Liu, Baiqing Xu, Mo Wang, Mingxia Ji, and Hongchun Jin
The Cryosphere, 13, 309–324, https://doi.org/10.5194/tc-13-309-2019, https://doi.org/10.5194/tc-13-309-2019, 2019
Short summary
Short summary
A large survey on measuring optical and chemical properties of insoluble light-absorbing impurities (ILAPs) from seven glaciers was conducted on the Tibetan Plateau (TP) during 2013–2015. The results indicated that the mixing ratios of black carbon (BC), organic carbon (OC), and iron (Fe) all showed a tendency to decrease from north to south, and the industrial pollution (33.1 %), biomass and biofuel burning (29.4 %), and soil dust (37.5 %) were the major sources of the ILAPs on the TP.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018, https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Short summary
Cryoconites from glaciers on the Tibetan Plateau and surrounding area were studied for iron oxides. We found that goethite is the predominant iron oxide form. Using the abundance, speciation and optical properties of iron oxides, the total light absorption was quantitatively attributed to goethite, hematite, black carbon and organic matter. Such findings are essential to understand the relative significance of anthropogenic and natural impacts.
Xin Wang, Hui Wen, Jinsen Shi, Jianrong Bi, Zhongwei Huang, Beidou Zhang, Tian Zhou, Kaiqi Fu, Quanliang Chen, and Jinyuan Xin
Atmos. Chem. Phys., 18, 2119–2138, https://doi.org/10.5194/acp-18-2119-2018, https://doi.org/10.5194/acp-18-2119-2018, 2018
Short summary
Short summary
A ground-based mobile laboratory was deployed near the dust source regions over northwestern China.
We not only captured natural dust but also characterized the properties of anthropogenic soil dust produced by agricultural cultivations.
The results indicate that large differences were found between the optical and microphysical properties of anthropogenic and natural dust.
Jianrong Bi, Jianping Huang, Jinsen Shi, Zhiyuan Hu, Tian Zhou, Guolong Zhang, Zhongwei Huang, Xin Wang, and Hongchun Jin
Atmos. Chem. Phys., 17, 7775–7792, https://doi.org/10.5194/acp-17-7775-2017, https://doi.org/10.5194/acp-17-7775-2017, 2017
Short summary
Short summary
We conducted a field campaign on exploring dust aerosol in Dunhuang farmland nearby Gobi deserts. The anthropogenic dust produced by agricultural cultivations exerted a significant superimposed effect on elevated dust loadings. Strong south wind in daytime scavenged the pollution and weak northeast wind at night favorably accumulated air pollutants near the surface. The local emissions remarkably modified the absorptive and optical characteristics of mineral dust in desert source region.
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017, https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Short summary
Black carbon (BC) is the second only to CO2 in heating the planet, but the simulation of BC is associated with large uncertainties. BC burden is largely underestimated over land and overestimated over ocean. Our study finds that a missing process in current Wegener–Bergeron–Findeisen models largely explains the discrepancy in BC simulation over land. We call for more observations of BC in mixed-phase clouds to understand this process and improve the simulation of global BC.
Wei Pu, Xin Wang, Hailun Wei, Yue Zhou, Jinsen Shi, Zhiyuan Hu, Hongchun Jin, and Quanliang Chen
The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, https://doi.org/10.5194/tc-11-1213-2017, 2017
Short summary
Short summary
We conducted a large field campaign to collect snow samples in Xinjiang. We measured insoluble light-absorbing particles with estimated black carbon concentrations of 10–150 ngg-1. We found a probable shift in emission sources with the progression of winter and dominated contributions of BC and OC to light absorption. A PMF model indicated an optimal three-factor/source solution that included industrial pollution, biomass burning, and soil dust.
Xin Wang, Wei Pu, Yong Ren, Xuelei Zhang, Xueying Zhang, Jinsen Shi, Hongchun Jin, Mingkai Dai, and Quanliang Chen
Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, https://doi.org/10.5194/acp-17-2279-2017, 2017
Short summary
Short summary
A 2014 snow survey was performed across northeastern China to analyze light absorption of ILAPs in seasonal snow, and modeling studies were conducted to compare snow albedo reduction due to assumptions of internal–external mixing of BC in snow and different snow grain shapes. The results show that the simulated snow albedos from both SAMDS and SNICAR agree well with the observed values at low ILAP mixing ratios, but they tend to be higher than surface observations at high ILAP mixing ratios.
Xuelei Zhang, Daniel Q. Tong, Guangjian Wu, Xin Wang, Aijun Xiu, Yongxiang Han, Tianli Xu, Shichun Zhang, and Hongmei Zhao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-681, https://doi.org/10.5194/acp-2016-681, 2016
Revised manuscript has not been submitted
Short summary
Short summary
More detailed knowledge regarding recent variations in the characteristics of East Asian dust events and dust sources can effectively improve regional dust modeling and forecasts. Here we reassess the accuracy of previous predictions of trends in dust variations in East Asia, and establish a relatively detailed inventory of dust events based on satellite observations from 2000 to 2015.
Xuezhe Xu, Weixiong Zhao, Qilei Zhang, Shuo Wang, Bo Fang, Weidong Chen, Dean S. Venables, Xinfeng Wang, Wei Pu, Xin Wang, Xiaoming Gao, and Weijun Zhang
Atmos. Chem. Phys., 16, 6421–6439, https://doi.org/10.5194/acp-16-6421-2016, https://doi.org/10.5194/acp-16-6421-2016, 2016
Short summary
Short summary
We report on the field measurement of the optical properties and chemical composition of PM1.0 particles in a suburban environment in Beijing during the winter coal heating season. Organic mass was the largest contributor to the total extinction of PM1.0, while EC, owing to its high absorption efficiency, contributed appreciably to PM1.0 extinction and should be a key target to air quality controls. Non-BC absorption from secondary organic aerosol also contributes to particle absorption.
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The emission, transport, and impacts of the extreme Saharan dust storm of 2015
California wildfire smoke contributes to a positive atmospheric temperature anomaly over the western United States
Light-absorbing black carbon and brown carbon components of smoke aerosol from DSCOVR EPIC measurements over North America and Central Africa
Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
The role of refractive indices in measuring mineral dust with high-spectral resolution infrared satellite sounders: Application to the Gobi Desert
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Opinion: Aerosol remote sensing over the next 20 years
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Thermal infrared observations of a western United States biomass burning aerosol plume
A new look into the impacts of dust radiative effects on the energetics of tropical easterly waves
Wind-driven emissions of coarse-mode particles in an urban environment
Measurement report: Dust and anthropogenic aerosols' vertical distributions over northern China dense aerosols gathered at the top of the mixing layer
Climatological assessment of the vertically resolved optical and microphysical aerosol properties by lidar measurements, sun photometer, and in situ observations over 17 years at Universitat Politècnica de Catalunya (UPC) Barcelona
Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments
Impact of assimilating NOAA VIIRS aerosol optical depth (AOD) observations on global AOD analysis from the Copernicus Atmosphere Monitoring Service (CAMS)
Influence of covariance of aerosol and meteorology on co-located precipitating and non-precipitating clouds over Indo-Gangetic Plains
Spectral dependence of birch and pine pollen optical properties using a synergy of lidar instruments
Validation activities of Aeolus wind products on the southeastern Iberian Peninsula
Thermal infrared dust optical depth and coarse-mode effective diameter over oceans retrieved from collocated MODIS and CALIOP observations
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Satellite (GOSAT-2 CAI-2) retrieval and surface (ARFINET) observations of aerosol black carbon over India
Spatiotemporal variation characteristics of global fires and their emissions
The (mis)identification of high-latitude dust events using remote sensing methods in the Yukon, Canada: a sub-daily variability analysis
Comparison of dust optical depth from multi-sensor products and MONARCH (Multiscale Online Non-hydrostatic AtmospheRe CHemistry) dust reanalysis over North Africa, the Middle East, and Europe
Understanding day–night differences in dust aerosols over the dust belt of North Africa, the Middle East, and Asia
Satellite observations of smoke–cloud–radiation interactions over the Amazon rainforest
Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions
Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars
Vertical characterization of fine and coarse dust particles during an intense Saharan dust outbreak over the Iberian Peninsula in springtime 2021
Aerosol optical depth regime over megacities of the world
South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season
Circular polarization in atmospheric aerosols
Spatiotemporal continuous estimates of daily 1 km PM2.5 from 2000 to present under the Tracking Air Pollution in China (TAP) framework
Robust evidence for reversal of the trend in aerosol effective climate forcing
Simultaneous retrievals of biomass burning aerosols and trace gases from the ultraviolet to near-infrared over northern Thailand during the 2019 pre-monsoon season
A decadal assessment of the climatology of aerosol and cloud properties over South Africa
Aerosol characterisation in the subtropical eastern North Atlantic region using long-term AERONET measurements
Long-range transport of Asian dust to the Arctic: identification of transport pathways, evolution of aerosol optical properties, and impact assessment on surface albedo changes
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES Edition 4.1 SYN1deg data product
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend
Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean
Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes
Aerosol atmospheric rivers: climatology, event characteristics, and detection algorithm sensitivities
Dust transport and advection measurement with spaceborne lidars ALADIN and CALIOP and model reanalysis data
Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers
Wintertime Saharan dust transport towards the Caribbean: an airborne lidar case study during EUREC4A
Brian Harr, Bing Pu, and Qinjian Jin
Atmos. Chem. Phys., 24, 8625–8651, https://doi.org/10.5194/acp-24-8625-2024, https://doi.org/10.5194/acp-24-8625-2024, 2024
Short summary
Short summary
We found that the formation of the extreme trans-Atlantic African dust event in June 2015 was associated with a brief surge in dust emissions over western North Africa and extreme circulation patterns, including intensified easterly jets, which facilitated the westward transport of dust. The dust plume modified radiative flux along its transport pathway but had minor impacts on air quality in the US due to the record-high Caribbean low-level jet advecting part of the plume to the Pacific.
James L. Gomez, Robert J. Allen, and King-Fai Li
Atmos. Chem. Phys., 24, 6937–6963, https://doi.org/10.5194/acp-24-6937-2024, https://doi.org/10.5194/acp-24-6937-2024, 2024
Short summary
Short summary
Wildfires in California (CA) have grown very large during the past 20 years. These fires emit sunlight-absorbing aerosols. Analyzing observational data, our study finds that aerosols emitted from large fires in northern CA spread throughout CA and Nevada and heat the atmosphere. This heating is consistent with larger-than-normal temperatures and dry conditions. Further study is needed to determine how much the aerosols heat the atmosphere and whether they are drying the atmosphere as well.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1327, https://doi.org/10.5194/egusphere-2024-1327, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke, black carbon and brown carbon, using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and Central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024, https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary
Short summary
This study investigated the impact of dust storms from the Taklamakan Desert on surrounding high mountains and regional radiation balance. Using satellite data and simulations, researchers found that dust storms significantly darken the snow surface in the Tien Shan, Kunlun, and Qilian mountains, reaching mountains up to 1000 km away. This darkening occurs not only in spring but also during summer and autumn, leading to increased absorption of solar radiation.
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024, https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Short summary
A new method, the geographical detector method (GDM), has been applied to satellite data, in addition to commonly used statistical methods, to study the sensitivity of cloud properties to aerosol over China. Different constraints for aerosol and cloud liquid water path apply over polluted and clean areas. The GDM shows that cloud parameters are more sensitive to combinations of parameters than to individual parameters, but confounding effects due to co-variation of parameters cannot be excluded.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Perla Alalam, Fabrice Ducos, and Hervé Herbin
EGUsphere, https://doi.org/10.5194/egusphere-2024-888, https://doi.org/10.5194/egusphere-2024-888, 2024
Short summary
Short summary
This study dives into the impact of mineral dust laboratory complex refractive indices (CRI) on quantifying the dust microphysical properties using satellite infrared remote sensing. Results show that using new CRI obtained by advanced realistic techniques can improve the accuracy of these measurements, emphasizing the importance of choosing the suitable CRI in atmospheric models. This improvement is crucial for better predicting the dust radiative effect and impact on the climate.
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024, https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
Short summary
Increased wildfire intensity has resulted in taller wildfire smoke plumes. We investigate the vertical structure of wildfire smoke plumes using aircraft lidar data and establish two effective smoke plume height metrics. Four novel satellite-based plume height products are evaluated for wildfires in the western US. Our results provide guidance on the strengths and limitations of these satellite products and set the stage for improved plume rise estimates by leveraging satellite products.
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024, https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Short summary
Global measurements of cloud condensation nuclei (CCN) are essential for understanding aerosol–cloud interactions and predicting climate change. To address this gap, we introduced a remote sensing algorithm that retrieves vertically resolved CCN number concentrations from airborne and spaceborne lidar systems. This innovation offers a global distribution of CCN concentrations from space, facilitating model evaluation and precise quantification of aerosol climate forcing.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024, https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary
Short summary
In June 2019, smoke particles from a Canadian wildfire event were transported to Europe. The long-range-transported smoke plumes were monitored with a spaceborne lidar and reanalysis models. Based on the aerosol mass concentrations estimated from the observations, the reanalysis models had difficulties in reproducing the amount and location of the smoke aerosols during the transport event. Consequently, more spaceborne lidar missions are needed for reliable monitoring of aerosol plumes.
Blake T. Sorenson, Jeffrey S. Reid, Jianglong Zhang, Robert E. Holz, William L. Smith Sr., and Amanda Gumber
Atmos. Chem. Phys., 24, 1231–1248, https://doi.org/10.5194/acp-24-1231-2024, https://doi.org/10.5194/acp-24-1231-2024, 2024
Short summary
Short summary
Smoke particles are typically submicron in size and assumed to have negligible impacts at the thermal infrared spectrum. However, we show that infrared signatures can be observed over dense smoke plumes from satellites. We found that giant particles are unlikely to be the dominant cause. Rather, co-transported water vapor injected to the middle to upper troposphere and surface cooling beneath the plume due to shadowing are significant, with the surface cooling effect being the most dominant.
Farnaz Hosseinpour and Eric M. Wilcox
Atmos. Chem. Phys., 24, 707–724, https://doi.org/10.5194/acp-24-707-2024, https://doi.org/10.5194/acp-24-707-2024, 2024
Short summary
Short summary
This study shows mechanistic relationships between the radiative effect of dust aerosols in the Saharan air layer and the kinetic energy of the African easterly waves across the tropical Atlantic Ocean using 22 years of daily satellite observations and reanalysis data based on satellite assimilation. Our findings suggest that dust aerosols not merely are transported by these waves but also contribute to the growth of waves through the enhancement of diabatic heating induced by dust.
Markus D. Petters, Tyas Pujiastuti, Ajmal Rasheeda Satheesh, Sabin Kasparoglu, Bethany Sutherland, and Nicholas Meskhidze
Atmos. Chem. Phys., 24, 745–762, https://doi.org/10.5194/acp-24-745-2024, https://doi.org/10.5194/acp-24-745-2024, 2024
Short summary
Short summary
This work introduces a new method that uses remote sensing techniques to obtain surface number emissions of particles with a diameter greater than 500 nm. The technique was applied to study particle emissions at an urban site near Houston, TX, USA. The emissions followed a diurnal pattern and peaked near noon local time. The daily averaged emissions correlated with wind speed. The source is likely due to wind-driven erosion of material situated on asphalted and other hard surfaces.
Zhuang Wang, Chune Shi, Hao Zhang, Yujia Chen, Xiyuan Chi, Congzi Xia, Suyao Wang, Yizhi Zhu, Kaidi Zhang, Xintong Chen, Chengzhi Xing, and Cheng Liu
Atmos. Chem. Phys., 23, 14271–14292, https://doi.org/10.5194/acp-23-14271-2023, https://doi.org/10.5194/acp-23-14271-2023, 2023
Short summary
Short summary
The annual cycle of dust and anthropogenic aerosols' vertical distributions was revealed by polarization Raman lidar in Beijing. Anthropogenic aerosols typically accumulate at the top of the mixing layer (ML) due to the hygroscopic growth of atmospheric particles, and this is most significant in summer. There is no significant relationship between bottom dust mass concentration and ML height, while the dust in the upper air tends to be distributed near the mixing layer.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Sebastien Garrigues, Melanie Ades, Samuel Remy, Johannes Flemming, Zak Kipling, Istvan Laszlo, Mark Parrington, Antje Inness, Roberto Ribas, Luke Jones, Richard Engelen, and Vincent-Henri Peuch
Atmos. Chem. Phys., 23, 10473–10487, https://doi.org/10.5194/acp-23-10473-2023, https://doi.org/10.5194/acp-23-10473-2023, 2023
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating the assimilation of the NOAA VIIRS AOD product in the ECMWF model. It shows that the introduction of VIIRS in the CAMS data assimilation system enhances the accuracy of the aerosol analysis, particularly over Europe and desert and maritime sites.
Nabia Gulistan, Khan Alam, and Yangang Liu
EGUsphere, https://doi.org/10.5194/egusphere-2023-1865, https://doi.org/10.5194/egusphere-2023-1865, 2023
Short summary
Short summary
This study investigates the influence of aerosol and meteorology on precipitating and non-precipitating clouds over Indo-Gangetic Plains (IGP). The major findings of this study include the high loading of aerosols led to a high occurrence of precipitating clouds under unstable conditions in summer. This study has the potential to open a new avenue for the scientific community to further explore and understand the complications of aerosol-cloud-precipitation over the complex topography of IGP.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Jesús Abril-Gago, Pablo Ortiz-Amezcua, Diego Bermejo-Pantaleón, Juana Andújar-Maqueda, Juan Antonio Bravo-Aranda, María José Granados-Muñoz, Francisco Navas-Guzmán, Lucas Alados-Arboledas, Inmaculada Foyo-Moreno, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 8453–8471, https://doi.org/10.5194/acp-23-8453-2023, https://doi.org/10.5194/acp-23-8453-2023, 2023
Short summary
Short summary
Validation activities of Aeolus wind products were performed in Granada with different upward-probing instrumentation (Doppler lidar system and radiosondes) and spatiotemporal collocation criteria. Specific advantages and disadvantages of each instrument were identified, and an optimal comparison criterion is proposed. Aeolus was proven to provide reliable wind products, and the upward-probing instruments were proven to be useful for Aeolus wind product validation activities.
Jianyu Zheng, Zhibo Zhang, Hongbin Yu, Anne Garnier, Qianqian Song, Chenxi Wang, Claudia Di Biagio, Jasper F. Kok, Yevgeny Derimian, and Claire Ryder
Atmos. Chem. Phys., 23, 8271–8304, https://doi.org/10.5194/acp-23-8271-2023, https://doi.org/10.5194/acp-23-8271-2023, 2023
Short summary
Short summary
We developed a multi-year satellite-based retrieval of dust optical depth at 10 µm and the coarse-mode dust effective diameter over global oceans. It reveals climatological coarse-mode dust transport patterns and regional differences over the North Atlantic, the Indian Ocean and the North Pacific.
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023, https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
Mukunda M. Gogoi, S. Suresh Babu, Ryoichi Imasu, and Makiko Hashimoto
Atmos. Chem. Phys., 23, 8059–8079, https://doi.org/10.5194/acp-23-8059-2023, https://doi.org/10.5194/acp-23-8059-2023, 2023
Short summary
Short summary
Considering the climate warming potential of atmospheric black carbon (BC), satellite-based retrieval is a novel idea. This study highlights the regional distribution of BC based on observations by the Cloud and Aerosol Imager-2 on board the GOSAT-2 satellite and near-surface measurements of BC in ARFINET. The satellite retrieval fairly depicts the regional and seasonal features of BC over the Indian region, which are similar to those recorded by surface observations.
Hao Fan, Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, and Zhenyao Shen
Atmos. Chem. Phys., 23, 7781–7798, https://doi.org/10.5194/acp-23-7781-2023, https://doi.org/10.5194/acp-23-7781-2023, 2023
Short summary
Short summary
Using 20-year multi-source data, this study shows pronounced regional and seasonal variations in fire activities and emissions. Seasonal variability of fires is larger with increasing latitude. The increase in temperature in the Northern Hemisphere's middle- and high-latitude forest regions was primarily responsible for the increase in fires and emissions, while the changes in fire occurrence in tropical regions were more influenced by the decrease in precipitation and relative humidity.
Rosemary Huck, Robert G. Bryant, and James King
Atmos. Chem. Phys., 23, 6299–6318, https://doi.org/10.5194/acp-23-6299-2023, https://doi.org/10.5194/acp-23-6299-2023, 2023
Short summary
Short summary
This study shows that mineral aerosol (dust) emission events in high-latitude areas are under-represented in both ground- and space-based detecting methods. This is done through a suite of ground-based data to prove that dust emissions from the proglacial area, Lhù’ààn Mân, occur almost daily but are not always recorded at different timescales. Dust has multiple effects on atmospheric processes; therefore, accurate quantification is important in the calibration and validation of climate models.
Michail Mytilinaios, Sara Basart, Sergio Ciamprone, Juan Cuesta, Claudio Dema, Enza Di Tomaso, Paola Formenti, Antonis Gkikas, Oriol Jorba, Ralph Kahn, Carlos Pérez García-Pando, Serena Trippetta, and Lucia Mona
Atmos. Chem. Phys., 23, 5487–5516, https://doi.org/10.5194/acp-23-5487-2023, https://doi.org/10.5194/acp-23-5487-2023, 2023
Short summary
Short summary
Multiscale Online Non-hydrostatic AtmospheRe CHemistry model (MONARCH) dust reanalysis provides a high-resolution 3D reconstruction of past dust conditions, allowing better quantification of climate and socioeconomic dust impacts. We assess the performance of the reanalysis needed to reproduce dust optical depth using dust-related products retrieved from satellite and ground-based observations and show that it reproduces the spatial distribution and seasonal variability of atmospheric dust well.
Jacob Z. Tindan, Qinjian Jin, and Bing Pu
Atmos. Chem. Phys., 23, 5435–5466, https://doi.org/10.5194/acp-23-5435-2023, https://doi.org/10.5194/acp-23-5435-2023, 2023
Short summary
Short summary
We use the Infrared Atmospheric Sounder Interferometer (IASI) retrievals of dust variables (dust optical depth and dust layer height) and surface observations to understand the day- and nighttime variations in dust aerosols over the dust belt. Our results show that daytime dust aerosols are significantly different from nighttime, and such day–night variations are influenced by meteorological factors such as wind speed, precipitation, and turbulent motions within the atmospheric boundary layer.
Ross Herbert and Philip Stier
Atmos. Chem. Phys., 23, 4595–4616, https://doi.org/10.5194/acp-23-4595-2023, https://doi.org/10.5194/acp-23-4595-2023, 2023
Short summary
Short summary
We provide robust evidence from multiple sources showing that smoke from fires in the Amazon rainforest significantly modifies the diurnal cycle of convection and cools the climate. Low to moderate amounts of smoke increase deep convective clouds and rain, whilst beyond a threshold amount, the smoke starts to suppress the convection and rain. We are currently at this threshold, suggesting increases in fires from agricultural practices or droughts will reduce cloudiness and rain over the region.
Yue Huang, Jasper F. Kok, Masanori Saito, and Olga Muñoz
Atmos. Chem. Phys., 23, 2557–2577, https://doi.org/10.5194/acp-23-2557-2023, https://doi.org/10.5194/acp-23-2557-2023, 2023
Short summary
Short summary
Global aerosol models and remote sensing retrievals use dust optical models with inconsistent and inaccurate dust shape approximations. Here, we present a new dust optical model constrained by measured dust shape distributions. This new dust optical model is an improvement on the current dust optical models used in models and retrieval algorithms, as quantified by comparisons against laboratory and field observations of dust optics.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
María Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Diego Bermejo-Pantaleón, Michaël Sicard, Vanda Salgueiro, Francisco Molero, Clara Violeta Carvajal-Pérez, María José Granados-Muñoz, Adolfo Comerón, Flavio T. Couto, Rubén Barragán, María-Paz Zorzano, Juan Antonio Bravo-Aranda, Constantino Muñoz-Porcar, María João Costa, Begoña Artíñano, Alejandro Rodríguez-Gómez, Daniele Bortoli, Manuel Pujadas, Jesús Abril-Gago, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 23, 143–161, https://doi.org/10.5194/acp-23-143-2023, https://doi.org/10.5194/acp-23-143-2023, 2023
Short summary
Short summary
An intense Saharan dust outbreak crossing the Iberian Peninsula in springtime was monitored to determinine the specific contribution of fine and coarse dust particles at five lidar stations, strategically covering its SW–central–NE pathway. Expected dust ageing along the transport started unappreciated. A different fine-dust impact on optical (~30 %) and mass (~10 %) properties was found. Use of polarized lidar measurements (mainly in elastic systems) for fine/coarse dust separation is crucial.
Kyriakoula Papachristopoulou, Ioannis-Panagiotis Raptis, Antonis Gkikas, Ilias Fountoulakis, Akriti Masoom, and Stelios Kazadzis
Atmos. Chem. Phys., 22, 15703–15727, https://doi.org/10.5194/acp-22-15703-2022, https://doi.org/10.5194/acp-22-15703-2022, 2022
Short summary
Short summary
Megacities' air quality is determined by atmospheric aerosols. We focus on changes over the last two decades in the 81 largest cities, using satellite data. European and American cities have lower aerosol compared to African and Asian cities. For European, North American and East Asian cities, aerosols are decreasing over time, especially in China and the US. In the remaining cities, aerosol loads are increasing, particularly in India.
Nilton Évora do Rosário, Elisa Thomé Sena, and Marcia Akemi Yamasoe
Atmos. Chem. Phys., 22, 15021–15033, https://doi.org/10.5194/acp-22-15021-2022, https://doi.org/10.5194/acp-22-15021-2022, 2022
Short summary
Short summary
The 2020 burning season in Brazil was marked by an atypically high number of fire spots across Pantanal, leading to high amounts of smoke within the biome. This study shows that smoke over Pantanal, usually a fraction of that over Amazonia, was higher and resulted mainly from fires in conservation and indigenous areas. It also contributes to highlighting Pantanal's 2020 burning season as the worst combination of a climate extreme scenario and inadequately enforced environmental regulations.
Santiago Gassó and Kirk D. Knobelspiesse
Atmos. Chem. Phys., 22, 13581–13605, https://doi.org/10.5194/acp-22-13581-2022, https://doi.org/10.5194/acp-22-13581-2022, 2022
Short summary
Short summary
Atmospheric particles interact with light resulting in observable optical polarization. Thus, we can learn about their composition from space. New satellite sensor technology measures full polarization of reflected sunlight. This paper considers circular polarization, an overlooked category of polarization with distinctive features that could bring new insights. We review existing literature and make novel computations to consider this previously underappreciated category of polarization.
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022, https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Short summary
We provided complete coverage PM2.5 concentrations at a 1-km resolution from 2000 to the present, carefully considering the significant changes in land use characteristics in China. This high-resolution PM2.5 data successfully revealed the local-scale PM2.5 variations. We noticed changes in PM2.5 spatial patterns in association with the clean air policies, with the pollution hotspots having transferred from urban centers to rural regions with limited air quality monitoring.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Ukkyo Jeong, Si-Chee Tsay, N. Christina Hsu, David M. Giles, John W. Cooper, Jaehwa Lee, Robert J. Swap, Brent N. Holben, James J. Butler, Sheng-Hsiang Wang, Somporn Chantara, Hyunkee Hong, Donghee Kim, and Jhoon Kim
Atmos. Chem. Phys., 22, 11957–11986, https://doi.org/10.5194/acp-22-11957-2022, https://doi.org/10.5194/acp-22-11957-2022, 2022
Short summary
Short summary
Ultraviolet (UV) measurements from satellite and ground are important for deriving information on several atmospheric trace and aerosol characteristics. Simultaneous retrievals of aerosol and trace gases in this study suggest that water uptake by aerosols is one of the important phenomena affecting aerosol properties over northern Thailand, which is important for regional air quality and climate. Obtained aerosol properties covering the UV are also important for various satellite algorithms.
Abdulaziz Tunde Yakubu and Naven Chetty
Atmos. Chem. Phys., 22, 11065–11087, https://doi.org/10.5194/acp-22-11065-2022, https://doi.org/10.5194/acp-22-11065-2022, 2022
Short summary
Short summary
This study examined the source of atmospheric aerosols and their role in forming clouds and rainfall over South Africa. The research provided answers to the cause of low precipitation, mainly linked to drought and water shortages experienced over the region. Further insight into the cause of occasional flooding that occurs in other parts of the area is provided. Finally, the study described the relationship between aerosol–cloud precipitation based on observation over the region.
África Barreto, Rosa D. García, Carmen Guirado-Fuentes, Emilio Cuevas, A. Fernando Almansa, Celia Milford, Carlos Toledano, Francisco J. Expósito, Juan P. Díaz, and Sergio F. León-Luis
Atmos. Chem. Phys., 22, 11105–11124, https://doi.org/10.5194/acp-22-11105-2022, https://doi.org/10.5194/acp-22-11105-2022, 2022
Short summary
Short summary
A comprehensive characterization of atmospheric aerosols in the subtropical eastern North Atlantic has been carried out in this paper using long-term ground AERONET photometric observations over the period 2005–2020 from a unique network made up of four stations strategically located from sea level to 3555 m height on the island of Tenerife. This is a region that can be considered a key location to study the seasonal dependence of dust transport from the Sahel-Sahara.
Xiaoxi Zhao, Kan Huang, Joshua S. Fu, and Sabur F. Abdullaev
Atmos. Chem. Phys., 22, 10389–10407, https://doi.org/10.5194/acp-22-10389-2022, https://doi.org/10.5194/acp-22-10389-2022, 2022
Short summary
Short summary
Long-range transport of Asian dust to the Arctic was considered an important source of Arctic air pollution. Different transport routes to the Arctic had divergent effects on the evolution of aerosol properties. Depositions of long-range-transported dust particles can reduce the Arctic surface albedo considerably. This study implied that the ubiquitous long-transport dust from China exerted considerable aerosol indirect effects on the Arctic and may have potential biogeochemical significance.
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
David W. Fillmore, David A. Rutan, Seiji Kato, Fred G. Rose, and Thomas E. Caldwell
Atmos. Chem. Phys., 22, 10115–10137, https://doi.org/10.5194/acp-22-10115-2022, https://doi.org/10.5194/acp-22-10115-2022, 2022
Short summary
Short summary
This paper presents an evaluation of the aerosol analysis incorporated into the Clouds and the Earth's Radiant Energy System (CERES) data products as well as the aerosols' impact on solar radiation reaching the surface. CERES is a NASA Earth observation mission with instruments flying on various polar-orbiting satellites. Its primary objective is the study of the radiative energy balance of the climate system as well as examination of the influence of clouds and aerosols on this balance.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022, https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Short summary
The evolution of aerosol in biomass burning smoke plumes that travel over marine clouds off the Atlantic coast of central Africa was studied using measurements made by a lidar deployed on a high-altitude aircraft. The main finding was that the physical properties of aerosol do not change appreciably once the plume has left land and travels over the ocean over a timescale of 1 to 2 d. Almost all particles in the plume are of radius less than 1 micrometer and spherical in shape.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Jeffrey S. Reid, Travis D. Toth, Blake Sorenson, Edward J. Hyer, James R. Campbell, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9949–9967, https://doi.org/10.5194/acp-22-9949-2022, https://doi.org/10.5194/acp-22-9949-2022, 2022
Short summary
Short summary
The study provides a baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Sudip Chakraborty, Bin Guan, Duane E. Waliser, and Arlindo M. da Silva
Atmos. Chem. Phys., 22, 8175–8195, https://doi.org/10.5194/acp-22-8175-2022, https://doi.org/10.5194/acp-22-8175-2022, 2022
Short summary
Short summary
This study explores extreme aerosol transport events by aerosol atmospheric rivers (AARs) and shows the characteristics of individual AARs such as length, width, length-to-width ratio, transport strength, and dominant transport direction, the seasonal variations, the relationship to the spatial distribution of surface emissions, the vertical profiles of wind, aerosol mixing ratio, and aerosol mass fluxes, and the major planetary-scale aerosol transport pathways.
Guangyao Dai, Kangwen Sun, Xiaoye Wang, Songhua Wu, Xiangying E, Qi Liu, and Bingyi Liu
Atmos. Chem. Phys., 22, 7975–7993, https://doi.org/10.5194/acp-22-7975-2022, https://doi.org/10.5194/acp-22-7975-2022, 2022
Short summary
Short summary
In this paper, a Sahara dust event is tracked with the spaceborne lidars ALADIN and CALIOP and the models ECMWF and HYSPLIT. The performance of ALADIN and CALIOP on tracking the dust event and on the observations of dust optical properties and wind fields during the dust transport is evaluated. The dust mass advection is defined, which is calculated with the combination of data from ALADIN and CALIOP coupled with the products from models to describe the dust transport quantitatively.
Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
Atmos. Chem. Phys., 22, 7905–7932, https://doi.org/10.5194/acp-22-7905-2022, https://doi.org/10.5194/acp-22-7905-2022, 2022
Short summary
Short summary
This study investigates the aerosol optical and radiative properties and meteorological drivers during two mega SDS events over Northern China in March 2021. The MODIS-retrieved DOD data registered these two events as the most intense episode in the same period in history over the past 20 years. These two extreme SDS events were associated with both atmospheric circulation extremes and local meteorological anomalies that favor enhanced dust emissions in the Gobi Desert.
Manuel Gutleben, Silke Groß, Christian Heske, and Martin Wirth
Atmos. Chem. Phys., 22, 7319–7330, https://doi.org/10.5194/acp-22-7319-2022, https://doi.org/10.5194/acp-22-7319-2022, 2022
Short summary
Short summary
The main transportation route of Saharan mineral dust particles leads over the subtropical Atlantic Ocean and is subject to a seasonal variation. This study investigates the characteristics of wintertime transatlantic dust transport towards the Caribbean by means of airborne lidar measurements. It is found that dust particles are transported at low atmospheric altitudes (<3.5 km) embedded in a relatively moist mixture with two other particle types, namely marine and biomass-burning particles.
Cited articles
Bair, E. H., Rittger, K., Skiles, S. M., and Dozier, J.: An Examination of
Snow Albedo Estimates From MODIS and Their Impact on Snow Water Equivalent
Reconstruction, Water Resour. Res., 55, 7826–7842, https://doi.org/10.1029/2019wr024810, 2019.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S.,
Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties
in ERA-Interim, Q. J. Roy. Meteor. Soc., 137,
1381–1399, https://doi.org/10.1002/qj.864, 2011.
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement
of visible light absorption due to mixing state, J. Geophys.
Res.,111, D20211, https://doi.org/10.1029/2006jd007315, 2006.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Brandt, R. E., Warren, S. G., and Clarke, A. D.: A controlled snowmaking
experiment testing the relation between black carbon content and reduction
of snow albedo, J. Geophys. Res., 116, D08109, https://doi.org/10.1029/2010jd015330,
2011.
Brown, R. D. and Mote, P. W.: The Response of Northern Hemisphere Snow
Cover to a Changing Climate, J. Climate, 22, 2124–2145,
https://doi.org/10.1175/2008jcli2665.1, 2009.
Brun, E., Vionnet, V., Boone, A., Decharme, B., Peings, Y., Valette, R.,
Karbou, F., and Morin, S.: Simulation of Northern Eurasian Local Snow Depth,
Mass, and Density Using a Detailed Snowpack Model and Meteorological
Reanalyses, J. Hydrometeorol., 14, 203–219,
https://doi.org/10.1175/jhm-d-12-012.1, 2013.
Bryant, A. C., Painter, T. H., Deems, J. S., and Bender, S. M.: Impact of
dust radiative forcing in snow on accuracy of operational runoff prediction
in the Upper Colorado River Basin, Geophys. Res. Lett., 40,
3945–3949, https://doi.org/10.1002/grl.50773, 2013.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S.,
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C.,
Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J.,
Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E.,
Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System
Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019ms001916, 2020.
Dang, C., Brandt, R. E., and Warren, S. G.: Parameterizations for narrowband
and broadband albedo of pure snow and snow containing mineral dust and black
carbon, J. Geophys. Res.-Atmos., 120, 5446–5468,
https://doi.org/10.1002/2014jd022646, 2015.
Dang, C., Warren, S. G., Fu, Q., Doherty, S. J., Sturm, M., and Su, J.:
Measurements of light-absorbing particles in snow across the Arctic, North
America, and China: Effects on surface albedo, J. Geophys. Res.-Atmos., 122,
10149–10168, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data
assimilation system, Q.
J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011.
Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte,
B., and Colombo, R.: Mineral dust impact on snow radiative properties in the
European Alps combining ground, UAV, and satellite observations, J.
Geophys. Res.-Atmos., 120, 6080–6097, https://doi.org/10.1002/2015jd023287,
2015.
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D.,
Nguyen, C., Wielicki, B. A., Young, D. F., and Sun, M.: Geostationary
Enhanced Temporal Interpolation for CERES Flux Products, J.
Atmos. Ocean. Tech., 30, 1072–1090,
https://doi.org/10.1175/jtech-d-12-00136.1, 2013.
Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D., and Brandt, R. E.: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647–11680, https://doi.org/10.5194/acp-10-11647-2010, 2010.
Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R., and Warren, S. G.: Black
carbon and other light-absorbing particles in snow of central North America,
J. Geophys. Res.-Atmos., 119, 807–831,
https://doi.org/10.1002/2014jd022350, 2014.
Drusch, M., Vasiljevic, D., and Viterbo, P.: ECMWF's Global Snow Analysis:
Assessment and Revision Based on Satellite Observations, J. Appl.
Meteorol., 43, 1282–1294, https://doi.org/10.1175/1520-0450(2004)043<1282:egsaaa>2.0.co;2, 2004.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:
Present-day climate forcing and response from black carbon in snow, J.
Geophys. Res., 112, D11202, https://doi.org/10.1029/2006jd008003, 2007.
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497, https://doi.org/10.5194/acp-9-2481-2009, 2009.
Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., and Tschudi, M.
A.: Radiative forcing and albedo feedback from the Northern Hemisphere
cryosphere between 1979 and 2008, Nat. Geosci., 4, 151–155,
https://doi.org/10.1038/ngeo1062, 2011.
Friedl, M. and Sulla-Menashe, D.: MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12C1.006, 2015.
Fu, Y., Zhu, J., Yang, Y., Yuan, R., Liu, G., Xian, T., and Liu, P.:
Grid-cell aerosol direct shortwave radiative forcing calculated using the
SBDART model with MODIS and AERONET observations: An application in winter
and summer in eastern China, Adv. Atmos. Sci., 34, 952–964,
https://doi.org/10.1007/s00376-017-6226-z, 2017.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Grenfell, T. C., Doherty, S. J., Clarke, A. D., and Warren, S. G.: Light
absorption from particulate impurities in snow and ice determined by
spectrophotometric analysis of filters, Appl. Optics, 50, 2037–2048,
https://doi.org/10.1364/AO.50.002037, 2011.
Hadley, O. L. and Kirchstetter, T. W.: Black-carbon reduction of snow
albedo, Nat. Clim. Change, 2, 437–440, https://doi.org/10.1038/nclimate1433, 2012.
Hall, D. K. and Riggs, G. A.: MODIS/Aqua Snow Cover Daily L3 Global 0.05Deg CMG Version 6, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/MODIS/MYD10C1.006, 2016.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice
albedos, P. Natl. Acad. Sci. USA, 101, 423–428, 2004.
Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., Larson, T. V.,
and Clarke, A. D.: Source attribution of black carbon in Arctic snow,
Environ. Sci. Technol., 43, 4016–4021, https://doi.org/10.1021/es803623f, 2009.
Huang, J. P. and Yi, Y. H.: Inversion of a nonlinear dynamic-model from the
observation, Sci. China Chem., 34, 1246–1246, 1991.
Huang, J., Fu, Q., Zhang, W., Wang, X., Zhang, R., Ye, H., and Warren, S.
G.: Dust and Black Carbon in Seasonal Snow Across Northern China, B.
Am. Meteorol. Soc., 92, 175–181, https://doi.org/10.1175/2010bams3064.1,
2011.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available at: http://srtm.csi.cgiar.org (last access: 1 October 2020), 2008.
Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M., and Schwikowski, M.: Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings, Atmos. Chem. Phys., 14, 8089–8103, https://doi.org/10.5194/acp-14-8089-2014, 2014.
Lee, L. A., Reddington, C. L., and Carslaw, K. S.: On the relationship
between aerosol model uncertainty and radiative forcing uncertainty, P.
Natl. Acad. Sci. USA, 113, 5820–5827, https://doi.org/10.1073/pnas.1507050113, 2016.
Lewis, P. and Barnsley, M.: Influence of the sky radiance distribution on
various formulations of the earth surface albedo, in: 6th International
Symposium on Physical Measurements and Signatures in Remote Sensing, Val d'Isère, France, 17–21 January 1994,
707–715, 1994.
Liou, K. N., Takano, Y., He, C., Yang, P., Leung, L. R., Gu, Y., and Lee, W.
L.: Stochastic parameterization for light absorption by internally mixed
BC/dust in snow grains for application to climate models, J.
Geophys. Res.-Atmos., 119, 7616–7632, https://doi.org/10.1002/2014jd021665,
2014.
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31,
895–918, https://doi.org/10.1175/jcli-d-17-0208.1, 2018.
Manninen, T., Anttila, K., Jääskeläinen, E., Riihelä, A., Peltoniemi, J., Räisänen, P., Lahtinen, P., Siljamo, N., Thölix, L., Meinander, O., Kontu, A., Suokanerva, H., Pirazzini, R., Suomalainen, J., Hakala, T., Kaasalainen, S., Kaartinen, H., Kukko, A., Hautecoeur, O., and Roujean, J.-L.: Effect of small-scale snow surface roughness on snow albedo and reflectance, The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-154, in review, 2020.
Meinander, O., Kazadzis, S., Arola, A., Riihelä, A., Räisänen, P., Kivi, R., Kontu, A., Kouznetsov, R., Sofiev, M., Svensson, J., Suokanerva, H., Aaltonen, V., Manninen, T., Roujean, J.-L., and Hautecoeur, O.: Spectral albedo of seasonal snow during intensive melt period at Sodankylä, beyond the Arctic Circle, Atmos. Chem. Phys., 13, 3793–3810, https://doi.org/10.5194/acp-13-3793-2013, 2013.
Miller, S. D., Wang, F., Burgess, A. B., Skiles, S. M., Rogers, M., and
Painter, T. H.: Satellite-Based Estimation of Temporally Resolved Dust
Radiative Forcing in Snow Cover, J. Hydrometeorol., 17, 1999–2011,
2016.
NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA, Within-Atmosphere and Surface Fluxes, Clouds and Aerosols Daily Terra-Aqua Edition4A, NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A, 2017.
Negi, H. S. and Kokhanovsky, A.: Retrieval of snow grain size and albedo of western Himalayan snow cover using satellite data, The Cryosphere, 5, 831–847, https://doi.org/10.5194/tc-5-831-2011, 2011.
Nolin, A. W. and Dozier, J.: Estimating snow grain size using AVIRIS data,
Remote Sens. Environ., 44, 231–238, https://doi.org/10.1016/0034-4257(93)90018-s,
1993.
Nolin, A. W. and Dozier, J.: A Hyperspectral Method for Remotely Sensing
the Grain Size of Snow, Remote Sens. Environ., 74, 207–216,
https://doi.org/10.1016/s0034-4257(00)00111-5, 2000.
Oaida, C. M., Xue, Y., Flanner, M. G., Skiles, S. M., De Sales, F., and
Painter, T. H.: Improving snow albedo processes in WRF/SSiB regional climate
model to assess impact of dust and black carbon in snow on surface energy
balance and hydrology over western US, J. Geophys. Res.-Atmos., 120, 3228–3248, https://doi.org/10.1002/2014jd022444, 2015.
Painter, T. H., Roberts, D. A., Green, R. O., and Dozier, J.: The Effect of
Grain Size on Spectral Mixture Analysis of Snow-Covered Area from AVIRIS
Data, Remote Sens. Environ., 65, 320–332,
https://doi.org/10.1016/s0034-4257(98)00041-8, 1998.
Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P.,
Lawrence, C. R., McBride, K. E., and Farmer, G. L.: Impact of disturbed
desert soils on duration of mountain snow cover, Geophys. Res.
Lett., 34, L12502, https://doi.org/10.1029/2007gl030284, 2007.
Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and
Dozier, J.: Retrieval of subpixel snow covered area, grain size, and albedo
from MODIS, Remote Sens. Environ., 113, 868–879,
https://doi.org/10.1016/j.rse.2009.01.001, 2009.
Painter, T. H., Bryant, A. C., and Skiles, S. M.: Radiative forcing by light
absorbing impurities in snow from MODIS surface reflectance data,
Geophys. Res. Lett., 39, L17502, https://doi.org/10.1029/2012gl052457, 2012a.
Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry, C.
C.: Dust radiative forcing in snow of the Upper Colorado River Basin: 1. A 6
year record of energy balance, radiances, and dust concentrations, Water
Resour. Res., 48, W07522, https://doi.org/10.1029/2012wr011985, 2012b.
Painter, T. H., Seidel, F. C., Bryant, A. C., McKenzie Skiles, S., and
Rittger, K.: Imaging spectroscopy of albedo and radiative forcing by
light-absorbing impurities in mountain snow, J. Geophys.
Res.-Atmos., 118, 9511–9523, https://doi.org/10.1002/jgrd.50520, 2013.
Platnick, S., King, M., and Hubanks, P.: MODIS Atmosphere L3 Daily Product, NASA MODIS Adaptive Processing System, https://doi.org/10.5067/MODIS/MYD08_D3.061, 2015.
Pu, W., Wang, X., Wei, H., Zhou, Y., Shi, J., Hu, Z., Jin, H., and Chen, Q.: Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China, The Cryosphere, 11, 1213–1233, https://doi.org/10.5194/tc-11-1213-2017, 2017.
Pu, W., Cui, J., Shi, T., Zhang, X., He, C., and Wang, X.: The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China, Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, 2019.
Qi, L., Li, Q., Henze, D. K., Tseng, H.-L., and He, C.: Sources of springtime surface black carbon in the Arctic: an adjoint analysis for April 2008, Atmos. Chem. Phys., 17, 9697–9716, https://doi.org/10.5194/acp-17-9697-2017, 2017.
Qian, Y., Gustafson, W. I., Leung, L. R., and Ghan, S. J.: Effects of
soot-induced snow albedo change on snowpack and hydrological cycle in
western United States based on Weather Research and Forecasting chemistry
and regional climate simulations, J. Geophys. Res., 114, D03108,
https://doi.org/10.1029/2008jd011039, 2009.
Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948, https://doi.org/10.5194/acp-11-1929-2011, 2011.
Qian, Y., Wang, H., Zhang, R., Flanner, M. G., and Rasch, P. J.: A
sensitivity study on modeling black carbon in snow and its radiative forcing
over the Arctic and Northern China, Environ. Res. Lett., 9,
064001, https://doi.org/10.1088/1748-9326/9/6/064001, 2014.
Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M.,
Ming, J., Wang, H., Wang, M., Warren, S. G., and Zhang, R.: Light-absorbing
particles in snow and ice: Measurement and modeling of climatic and
hydrological impact, Adv. Atmos. Sci., 32, 64–91,
https://doi.org/10.1007/s00376-014-0010-0, 2015.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward, Part I:
System Description and Data Assimilation Evaluation, J. Climate, 30,
6823–6850, https://doi.org/10.1175/jcli-d-16-0609.1, 2017.
Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D.: SBDART: A Research and
Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's
Atmosphere, B. Am. Meteorol. Soc., 79, 2101–2114,
https://doi.org/10.1175/1520-0477(1998)079<2101:sarats>2.0.co;2, 1998.
Riggs, G. A., Hall, D. K., and Román, M. O.: MODIS snow products collection 6 user guide, National Snow and Ice Data Center, Boulder, CO, USA, 66 pp., 2016.
Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for
mapping snow cover from MODIS, Adv. Water Resour., 51,
367–380, https://doi.org/10.1016/j.advwatres.2012.03.002, 2013.
Seidel, F. C., Rittger, K., Skiles, S. M., Molotch, N. P., and Painter, T. H.: Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy, The Cryosphere, 10, 1229–1244, https://doi.org/10.5194/tc-10-1229-2016, 2016.
Schaaf, C. and Wang, Z.: MCD43C3 MODIS/Terra+Aqua BRDF/Albedo Albedo Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43C3.006, 2015.
Shi, T., Pu, W., Zhou, Y., Cui, J., Zhang, D., and Wang, X.: Albedo of Black
Carbon-Contaminated Snow Across Northwestern China and the Validation With
Model Simulation, J. Geophys. Res.-Atmos., 125,
e2019JD032065, https://doi.org/10.1029/2019JD032065, 2020.
Siegmund, A. and Menz, G.: Fernes nah
gebracht – Satelliten- und Luftbildeinsatz zur Analyse von
Umweltveränderungen im Geographieunterricht, Geographie und Schule, 154,
2–10, 2005.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 3, NCARTech. Note, NCAR/TN-475CSTR, National Center for Atmospheric Research, Boulder, CO, USA, available at: http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (last access: 10 October 2020), 2016.
Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M., and Painter, T. H.:
Radiative forcing by light-absorbing particles in snow, Nat. Clim.
Change, 8, 964–971, https://doi.org/10.1038/s41558-018-0296-5, 2018.
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Optics, 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988.
Sterle, K. M., McConnell, J. R., Dozier, J., Edwards, R., and Flanner, M. G.: Retention and radiative forcing of black carbon in eastern Sierra Nevada snow, The Cryosphere, 7, 365–374, https://doi.org/10.5194/tc-7-365-2013, 2013.
Sturm, M., Holmgren, J., and Liston, G. E.: A Seasonal Snow Cover
Classification System for Local to Global Applications, J. Climate,
8, 1261–1283, https://doi.org/10.1175/1520-0442(1995)008<1261:assccs>2.0.co;2, 1995.
Su, W., Corbett, J., Eitzen, Z., and Liang, L.: Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: validation, Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015, 2015.
TanrÉ, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos,
J., and Deschamps, P. Y.: Technical note Description of a computer code to
simulate the satellite signal in the solar spectrum: the 5S code,
Int. J. Remote Sens., 11, 659–668,
https://doi.org/10.1080/01431169008955048, 1990.
Tedesco, M. and Kokhanovsky, A. A.: The semi-analytical snow retrieval
algorithm and its application to MODIS data, Remote Sens. Environ.,
111, 228–241, https://doi.org/10.1016/j.rse.2007.02.036, 2007.
Teillet, P. M., Guindon, B., and Goodenough, D. G.: On the Slope-Aspect
Correction of Multispectral Scanner Data, Can. J. Remote
Sens., 8, 84–106, https://doi.org/10.1080/07038992.1982.10855028, 1982.
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid
calculation of radiative heating rates and photodissociation rates in
inhomogeneous multiple scattering atmospheres, J. Geophys.
Res., 94, 16287, https://doi.org/10.1029/JD094iD13p16287, 1989.
Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J. F., Piao, S. L., Shen, H. Z., Vuolo, M. R., Valari, M., Chen, H., Chen, Y. C., Cozic, A., Huang, Y., Li, B. G., Li, W., Shen, G. F., Wang, B., and Zhang, Y. Y.: Exposure to ambient black carbon derived from a unique inventory and high-resolution model, P. Natl. Acad. Sci. USA, 111, 2459–2463, https://doi.org/10.1073/pnas.1318763111, 2014.
Wang, X., Doherty, S. J., and Huang, J.: Black carbon and other
light-absorbing impurities in snow across Northern China, J.
Geophys. Res.-Atmos., 118, 1471–1492, https://doi.org/10.1029/2012jd018291,
2013.
Wang, X., Xu, B., and Ming, J.: An overview of the studies on black carbon
and mineral dust deposition in snow and ice cores in East Asia, J.
Meteorol. Res., 28, 354–370, https://doi.org/10.1007/s13351-014-4005-7, 2014.
Wang, X., Pu, W., Ren, Y., Zhang, X., Zhang, X., Shi, J., Jin, H., Dai, M., and Chen, Q.: Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey, Atmos. Chem. Phys., 17, 2279–2296, https://doi.org/10.5194/acp-17-2279-2017, 2017.
Wang, X., Wei, H., Liu, J., Xu, B., Wang, M., Ji, M., and Jin, H.: Quantifying the light absorption and source attribution of insoluble light-absorbing particles on Tibetan Plateau glaciers between 2013 and 2015, The Cryosphere, 13, 309–324, https://doi.org/10.5194/tc-13-309-2019, 2019.
Wang, X., Zhang, X., and Di, W.: Development of an improved two-sphere integration technique for quantifying black carbon concentrations in the atmosphere and seasonal snow, Atmos. Meas. Tech., 13, 39–52, https://doi.org/10.5194/amt-13-39-2020, 2020.
Warneke, C., Froyd, K. D., Brioude, J., Bahreini, R., Brock, C. A., Cozic,
J., de Gouw, J. A., Fahey, D. W., Ferrare, R., Holloway, J. S., Middlebrook,
A. M., Miller, L., Montzka, S., Schwarz, J. P., Sodemann, H., Spackman, J.
R., and Stohl, A.: An important contribution to springtime Arctic aerosol
from biomass burning in Russia, Geophys. Res. Lett., 37, L01801,
https://doi.org/10.1029/2009gl041816, 2010.
Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67–89,
https://doi.org/10.1029/RG020i001p00067, 1982.
Warren, S. G.: Impurities in Snow: Effects on Albedo and Snowmelt (Review),
Ann. Glaciol., 5, 177–179, https://doi.org/10.3189/1984AoG5-1-177-179, 1984.
Warren, S. G.: Can black carbon in snow be detected by remote sensing?,
J. Geophys. Res.-Atmos., 118, 779–786,
https://doi.org/10.1029/2012jd018476, 2013.
Warren, S. G. and Brandt, R. E.: Optical constants of ice from the
ultraviolet to the microwave: A revised compilation, J. Geophys.
Res., 113, D14220, https://doi.org/10.1029/2007jd009744, 2008.
Wiscombe, W. J. and Warren, S. G.: A Model for the Spectral Albedo of Snow,
I: Pure Snow, J. Atmos. Sci., 37, 2712–2733,
https://doi.org/10.1175/1520-0469(1980)037<2712:amftsa>2.0.co;2, 1980.
Ye, H., Zhang, R., Shi, J., Huang, J., Warren, S. G., and Fu, Q.: Black
carbon in seasonal snow across northern Xinjiang in northwestern China,
Environ. Res. Lett., 7, 044002, https://doi.org/10.1088/1748-9326/7/4/044002,
2012.
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J., Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.: Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements, Atmos. Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014, 2014.
Zhong, E., Li, Q., Sun, S., Chen, S., and Chen, W.: Analysis of euphotic
depth in snow with SNICAR transfer scheme, Atmos. Sci. Lett., 18,
484–490, https://doi.org/10.1002/asl.792, 2017.
Zhou, Y., Wen, H., Liu, J., Pu, W., Chen, Q., and Wang, X.: The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China, The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, 2019.
Zhu, C., Kobayashi, H., Kanaya, Y., and Saito, M.: Size-dependent validation
of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia:
Large underestimation in croplands, Sci. Rep.-UK, 7, 4181,
https://doi.org/10.1038/s41598-017-03739-0, 2017.
Short summary
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of radiative forcing (RF) due to light-absorbing particles (LAPs) in snow. We observed significant spatial variations in snow albedo reduction and RF due to LAPs throughout the Northern Hemisphere, with the lowest values occurring in the Arctic and the highest in northeastern China. We determined that the LAPs in snow play a critical role in spatial variability in Northern Hemisphere albedo reduction and RF.
We make the first quantitative, remote-sensing-based, and hemisphere-scale assessment of...
Altmetrics
Final-revised paper
Preprint