Articles | Volume 21, issue 4
Atmos. Chem. Phys., 21, 2329–2341, 2021
Atmos. Chem. Phys., 21, 2329–2341, 2021
Research article
17 Feb 2021
Research article | 17 Feb 2021

Brown carbon's emission factors and optical characteristics in household biomass burning: developing a novel algorithm for estimating the contribution of brown carbon

Jianzhong Sun et al.

Related authors

Emission factors and light absorption properties of brown carbon from household coal combustion in China
Jianzhong Sun, Guorui Zhi, Regina Hitzenberger, Yingjun Chen, Chongguo Tian, Yayun Zhang, Yanli Feng, Miaomiao Cheng, Yuzhe Zhang, Jing Cai, Feng Chen, Yiqin Qiu, Zhiming Jiang, Jun Li, Gan Zhang, and Yangzhi Mo
Atmos. Chem. Phys., 17, 4769–4780,,, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Time dependence of heterogeneous ice nucleation by ambient aerosols: laboratory observations and a formulation for models
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748,,, 2022
Short summary
Laboratory studies of ice nucleation onto bare and internally mixed soot–sulfuric acid particles
Kunfeng Gao, Chong-Wen Zhou, Eszter J. Barthazy Meier, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 5331–5364,,, 2022
Short summary
Enhanced soot particle ice nucleation ability induced by aggregate compaction and densification
Kunfeng Gao, Franz Friebel, Chong-Wen Zhou, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 4985–5016,,, 2022
Short summary
Opinion: Insights into updating Ambient Air Quality Directive 2008/50/EC
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808,,, 2022
Short summary
On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors
Yu Wang, Aristeidis Voliotis, Dawei Hu, Yunqi Shao, Mao Du, Ying Chen, Judith Kleinheins, Claudia Marcolli, M. Rami Alfarra, and Gordon McFiggans
Atmos. Chem. Phys., 22, 4149–4166,,, 2022
Short summary

Cited articles

Andre, K., Dlugi, R., and Schantz, G.: Absorption of visible radiation by atmospheric aerosol particles in fog and cloud water residues, J. Atmos. Sci., 38, 141–155,<0141:aovrba>;2, 1981. 
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148,, 2006. 
Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215–225,, 2011. 
Arshanitsa, A., Akishin, Y., Zile, E., Dizhbite, T., Solodovnik, V., and Telysheva, G.: Microwave treatment combined with conventional heating of plant biomass pellets in a rotated reactor as a high rate process for solid biofuel manufacture, Renew. Energ., 91, 386–396,, 2016. 
Aurell, J. and Gullett, B. K.: Emission factors from aerial and ground measurements of field and laboratory forest burns in the southeastern US: PM2.5, black and brown carbon, VOC, and PCDD/PCDF, Environ. Sci. Technol., 47, 8443–8452,, 2013. 
Short summary
Brown carbon (BrC) emission factors from household biomass fuels were measured with an integrating sphere optics approach supported by iterative calculations. A novel algorithm to directly estimate the absorption contribution of BrC relative to that of BrC + black carbon (FBrC) was proposed based purely on the absorption exponent (AAE) (FBrC = 0.5519 lnAAE + 0.0067). The FBrC for household biomass fuels was as high as 50.8 % across the strongest solar spectral range of 350−850 nm.
Final-revised paper