Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observation and modeling of high-7Be concentration events at the surface in northern Europe associated with the instability of the Arctic polar vortex in early 2003
Department of Physics and Astronomy “Augusto Righi” DIFA, Alma
Mater Studiorum University of Bologna, via Irnerio 46, 40126 Bologna (BO),
Italy
Hongyu Liu
National Institute of Aerospace, 100 Exploration Way, Hampton, VA
23666, USA
National Institute of Aerospace, 100 Exploration Way, Hampton, VA
23666, USA
Miguel Ángel Hernández-Ceballos
Department of Physics, University of Cordoba, Rabanales Campus, 14071
Cordoba, Spain
Jussi Paatero
Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki,
Finland
Darko Sarvan
Faculty of Veterinary Medicine, University of Belgrade, Bulevar
oslobođenja 18, 11000 Belgrade, Serbia
Vladimir Djurdjevic
Institute of Meteorology, Faculty of Physics, University of
Belgrade, Studentski trg 18, 11000 Belgrade, Serbia
Laura Tositti
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum
University of Bologna, via Selmi 2, 40126 Bologna (BO), Italy
Jelena Ajtić
Faculty of Veterinary Medicine, University of Belgrade, Bulevar
oslobođenja 18, 11000 Belgrade, Serbia
Related authors
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Erika Brattich, Encarnación Serrano Castillo, Fabrizio Giulietti, Jean-Baptiste Renard, Sachi N. Tripathi, Kunal Ghosh, Gwenael Berthet, Damien Vignelles, and Laura Tositti
Ann. Geophys., 37, 389–403, https://doi.org/10.5194/angeo-37-389-2019, https://doi.org/10.5194/angeo-37-389-2019, 2019
Short summary
Short summary
This paper describes the aerosol measurement setup and results obtained from the BEXUS18 stratospheric balloon within the A5-Unib (Advanced Atmospheric Aerosol Acquisition and Analysis) experiment performed on 10 October 2014 in northern Sweden (Kiruna). The experiment and the results here presented broaden the understanding of the processes linking the presence of charges with particles all over the vertical heights from the ground to the stratosphere.
Erika Brattich, Hongyu Liu, Laura Tositti, David B. Considine, and James H. Crawford
Atmos. Chem. Phys., 17, 1061–1080, https://doi.org/10.5194/acp-17-1061-2017, https://doi.org/10.5194/acp-17-1061-2017, 2017
Short summary
Short summary
We apply the GMI chemistry and transport model to simulate the seasonal variations of two radionuclide aerosol tracers (terrigenous 210Pb and cosmogenic 7Be) at the WMO-GAW station of Mt. Cimone during 2005, with an aim to understand the roles of transport and precipitation scavenging processes in controlling their seasonality. Results show a dominant role of precipitation scavenging in controlling the seasonality of 210Pb and 7Be concentrations at Mt. Cimone.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2236, https://doi.org/10.5194/egusphere-2023-2236, 2023
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 microns were found in this optically thin cirrus cloud layer. Combined analysis of back-trajectories, satellite, and model data revealed that the formation of this layer was influenced by gravity waves and stratospheric hydration induced by typhoon Hato.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Fule Zhang, Jinlong Wang, Mark Baskaran, Qiangqiang Zhong, Yali Wang, Jussi Paatero, and Jinzhou Du
Earth Syst. Sci. Data, 13, 2963–2994, https://doi.org/10.5194/essd-13-2963-2021, https://doi.org/10.5194/essd-13-2963-2021, 2021
Short summary
Short summary
Here we present a global dataset of air concentration and depositional flux measurements of atmospheric 7Be and 210Pb. The dataset could be used to better understand the transport processes of air masses and depositional processes of aerosols. This dataset not only lays a solid foundation to develop better parameterizations contributing to future modeling efforts but also supplies a basic parameter for tracing soil erosion, particle dynamics, and ocean surface process using 7Be and/or 210Pb.
Bo Zhang, Hongyu Liu, James H. Crawford, Gao Chen, T. Duncan Fairlie, Scott Chambers, Chang-Hee Kang, Alastair G. Williams, Kai Zhang, David B. Considine, Melissa P. Sulprizio, and Robert M. Yantosca
Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, https://doi.org/10.5194/acp-21-1861-2021, 2021
Short summary
Short summary
We simulate atmospheric 222Rn using the GEOS-Chem model to improve understanding of 222Rn emissions and characterize convective transport in the model. We demonstrate the potential of a customized global 222Rn emission scenario to improve simulated surface 222Rn concentrations and seasonality. We assess convective transport using observed 222Rn vertical profiles. Results have important implications for using chemical transport models to interpret the transport of trace gases and aerosols.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Susanna Salminen-Paatero, Julius Vira, and Jussi Paatero
Atmos. Chem. Phys., 20, 5759–5769, https://doi.org/10.5194/acp-20-5759-2020, https://doi.org/10.5194/acp-20-5759-2020, 2020
Short summary
Short summary
We measured concentrations and isotope ratios of plutonium in air filters collected in Finnish Lapland in 1965–2011. Radioactive-contamination sources were global nuclear-testing fallout and the Fukushima and SNAP-9A accidents. Both real and hypothetical nuclear accidents were studied with atmospheric-dispersion modeling. The radioactive-contamination effect on Finnish Lapland would be minor from an intended nuclear power plant and negligible from a floating nuclear reactor in the Barents Sea.
Erika Brattich, Encarnación Serrano Castillo, Fabrizio Giulietti, Jean-Baptiste Renard, Sachi N. Tripathi, Kunal Ghosh, Gwenael Berthet, Damien Vignelles, and Laura Tositti
Ann. Geophys., 37, 389–403, https://doi.org/10.5194/angeo-37-389-2019, https://doi.org/10.5194/angeo-37-389-2019, 2019
Short summary
Short summary
This paper describes the aerosol measurement setup and results obtained from the BEXUS18 stratospheric balloon within the A5-Unib (Advanced Atmospheric Aerosol Acquisition and Analysis) experiment performed on 10 October 2014 in northern Sweden (Kiruna). The experiment and the results here presented broaden the understanding of the processes linking the presence of charges with particles all over the vertical heights from the ground to the stratosphere.
David J. du Preez, Jelena V. Ajtić, Hassan Bencherif, Nelson Bègue, Jean-Maurice Cadet, and Caradee Y. Wright
Ann. Geophys., 37, 129–141, https://doi.org/10.5194/angeo-37-129-2019, https://doi.org/10.5194/angeo-37-129-2019, 2019
Short summary
Short summary
Reduced atmospheric ozone results in increased solar ultraviolet radiation (UVR) at the surface which may potentially negative impact public health. We aimed to assess whether or not the break-up of the Antarctic ozone hole had an impact on ozone and UVR at Cape Point (South Africa). We found a moderate inverse relationship between ozone and UVR at midday on clear-sky days. The Antarctic ozone hole had a limited effect on ozone levels while tropical air masses more frequently affected the site.
Simeon K. Schum, Bo Zhang, Katja Džepina, Paulo Fialho, Claudio Mazzoleni, and Lynn R. Mazzoleni
Atmos. Chem. Phys., 18, 14017–14036, https://doi.org/10.5194/acp-18-14017-2018, https://doi.org/10.5194/acp-18-14017-2018, 2018
Short summary
Short summary
This paper presents the detailed molecular composition of free tropospheric aerosol. We studied three pollution events with different origins and residence times and observed differences in the molecular composition pertaining to the atmospheric oxidation. The results indicated that the transport pathways contributed to the observed differences and imply that emissions injected into the free troposphere are longer-lived than those in the boundary layer.
Hyun-Deok Choi, Hongyu Liu, James H. Crawford, David B. Considine, Dale J. Allen, Bryan N. Duncan, Larry W. Horowitz, Jose M. Rodriguez, Susan E. Strahan, Lin Zhang, Xiong Liu, Megan R. Damon, and Stephen D. Steenrod
Atmos. Chem. Phys., 17, 8429–8452, https://doi.org/10.5194/acp-17-8429-2017, https://doi.org/10.5194/acp-17-8429-2017, 2017
Short summary
Short summary
We evaluate global ozone–carbon monoxide (O3–CO) correlations in a chemistry and transport model during July–August with TES-Aura satellite observations and examine the sensitivity of model simulations to input meteorological data and emissions. Results show that O3–CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
Dominik Schmithüsen, Scott Chambers, Bernd Fischer, Stefan Gilge, Juha Hatakka, Victor Kazan, Rolf Neubert, Jussi Paatero, Michel Ramonet, Clemens Schlosser, Sabine Schmid, Alex Vermeulen, and Ingeborg Levin
Atmos. Meas. Tech., 10, 1299–1312, https://doi.org/10.5194/amt-10-1299-2017, https://doi.org/10.5194/amt-10-1299-2017, 2017
Short summary
Short summary
A European-wide 222radon/222radon progeny comparison study has been conducted at nine measurement stations in order to determine differences between existing 222radon instrumentation and atmospheric data sets, respectively. Mean differences up to 45 % were found between monitors. These differences need to be taken into account if the data shall serve for quantitative regional atmospheric transport model validation.
Erika Brattich, Hongyu Liu, Laura Tositti, David B. Considine, and James H. Crawford
Atmos. Chem. Phys., 17, 1061–1080, https://doi.org/10.5194/acp-17-1061-2017, https://doi.org/10.5194/acp-17-1061-2017, 2017
Short summary
Short summary
We apply the GMI chemistry and transport model to simulate the seasonal variations of two radionuclide aerosol tracers (terrigenous 210Pb and cosmogenic 7Be) at the WMO-GAW station of Mt. Cimone during 2005, with an aim to understand the roles of transport and precipitation scavenging processes in controlling their seasonality. Results show a dominant role of precipitation scavenging in controlling the seasonality of 210Pb and 7Be concentrations at Mt. Cimone.
Davide Putero, Paolo Cristofanelli, Michael Sprenger, Bojan Škerlak, Laura Tositti, and Paolo Bonasoni
Atmos. Chem. Phys., 16, 14203–14217, https://doi.org/10.5194/acp-16-14203-2016, https://doi.org/10.5194/acp-16-14203-2016, 2016
Short summary
Short summary
The aim of this paper is to present STEFLUX, a tool to obtain a fast-computing identification of the stratospheric intrusion (SI) events occurring at a specific location and during a specified time window. STEFLUX results are compared to the SI observations at two high-mountain WMO/GAW global stations in Nepal and Italy, representative of two hot spots for climate change. Furthermore, the climatology of SI at the two stations is assessed, and the impact of several climate factors investigated.
Hongyu Liu, David B. Considine, Larry W. Horowitz, James H. Crawford, Jose M. Rodriguez, Susan E. Strahan, Megan R. Damon, Stephen D. Steenrod, Xiaojing Xu, Jules Kouatchou, Claire Carouge, and Robert M. Yantosca
Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, https://doi.org/10.5194/acp-16-4641-2016, 2016
Short summary
Short summary
We assess the utility of cosmogenic beryllium-7, a natural aerosol tracer, for evaluating cross-tropopause transport in global models. We show that model excessive cross-tropopause transport of beryllium-7 corresponds to overestimated stratospheric contribution to tropospheric ozone. We conclude that the observational constraints for beryllium-7 and observed beryllium-7 total deposition fluxes can be used routinely as a first-order assessment of cross-tropopause transport in global models.
J. Huang, H. Liu, J. H. Crawford, C. Chan, D. B. Considine, Y. Zhang, X. Zheng, C. Zhao, V. Thouret, S. J. Oltmans, S. C. Liu, D. B. A. Jones, S. D. Steenrod, and M. R. Damon
Atmos. Chem. Phys., 15, 5161–5179, https://doi.org/10.5194/acp-15-5161-2015, https://doi.org/10.5194/acp-15-5161-2015, 2015
Short summary
Short summary
High ozone concentrations (up to 94.7ppbv) were frequently observed at an altitude of ~1.5--2km over Beijing during April--May 2005. Ozone due to Asian anthropogenic pollution made major contributions to the observed ozone enhancements. These enhancements typically occurred under southerly wind and warmer conditions. An earlier onset of the Asian summer monsoon would cause more ozone enhancement events in the lower troposphere over the North China Plain in late spring and early summer.
K. Dzepina, C. Mazzoleni, P. Fialho, S. China, B. Zhang, R. C. Owen, D. Helmig, J. Hueber, S. Kumar, J. A. Perlinger, L. J. Kramer, M. P. Dziobak, M. T. Ampadu, S. Olsen, D. J. Wuebbles, and L. R. Mazzoleni
Atmos. Chem. Phys., 15, 5047–5068, https://doi.org/10.5194/acp-15-5047-2015, https://doi.org/10.5194/acp-15-5047-2015, 2015
Short summary
Short summary
Aerosol was sampled at the Pico Mountain Observatory located at 2.2km amsl on Pico Island of the North Atlantic Azores archipelago. Two aerosol samples characterized by ultrahigh resolution mass spectrometry had biomass burning and marine emissions origins, as corroborated by collocated gas- and particle-phase measurements, air masses analyses and satellites. The paper presents the first molecular characterization of aged and processed aerosol intercepted at a remote lower free troposphere
A. Vukovic, M. Vujadinovic, G. Pejanovic, J. Andric, M. R. Kumjian, V. Djurdjevic, M. Dacic, A. K. Prasad, H. M. El-Askary, B. C. Paris, S. Petkovic, S. Nickovic, and W. A. Sprigg
Atmos. Chem. Phys., 14, 3211–3230, https://doi.org/10.5194/acp-14-3211-2014, https://doi.org/10.5194/acp-14-3211-2014, 2014
B. Zhang, R. C. Owen, J. A. Perlinger, A. Kumar, S. Wu, M. Val Martin, L. Kramer, D. Helmig, and R. E. Honrath
Atmos. Chem. Phys., 14, 2267–2287, https://doi.org/10.5194/acp-14-2267-2014, https://doi.org/10.5194/acp-14-2267-2014, 2014
I. Antolović, V. Mihajlović, D. Rančić, D. Mihić, and V. Djurdjević
Adv. Sci. Res., 10, 107–111, https://doi.org/10.5194/asr-10-107-2013, https://doi.org/10.5194/asr-10-107-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Age of air from in situ trace gas measurements: insights from a new technique
Tropospheric links to uncertainty in stratospheric subseasonal predictions
The impact of El Niño–Southern Oscillation on the total column ozone over the Tibetan Plateau
Exploring ozone variability in the upper troposphere and lower stratosphere using dynamical coordinates
Climatology of the terms and variables of transformed Eulerian-mean (TEM) equations from multiple reanalyses: MERRA-2, JRA-55, ERA-Interim, and CFSR
Quasi-biennial oscillation modulation of stratospheric water vapour in the Asian monsoon
Transport into the polar stratosphere from the Asian monsoon region
Crucial role of obliquely propagating gravity waves in the quasi-biennial oscillation dynamics
Technical note: Multi-year changes in the Brewer–Dobson circulation from Halogen Occultation Experiment (HALOE) methane
Exploring the ENSO modulation of the QBO periods with GISS E2.2 models
The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing
Stratospherically induced circulation changes under the extreme conditions of the no-Montreal-Protocol scenario
Vortex preconditioning of the 2021 sudden stratospheric warming: barotropic–baroclinic instability associated with the double westerly jets
On the pattern of interannual polar vortex–ozone co-variability during northern hemispheric winter
A mountain ridge model for quantifying oblique mountain wave propagation and distribution
Weakening of the tropical tropopause layer cold trap with global warming
On the magnitude and sensitivity of the quasi-biennial oscillation response to a tropical volcanic eruption
The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing
The Holton–Tan mechanism under stratospheric aerosol intervention
Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Driving mechanisms for the El Niño–Southern Oscillation impact on stratospheric ozone
Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models
The impact of improved spatial and temporal resolution of reanalysis data on Lagrangian studies of the tropical tropopause layer
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
Ozone–gravity wave interaction in the upper stratosphere/lower mesosphere
How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
The semi-annual oscillation (SAO) in the upper troposphere and lower stratosphere (UTLS)
Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales
Impacts of three types of solar geoengineering on the Atlantic Meridional Overturning Circulation
Enhanced upward motion through the troposphere over the tropical western Pacific and its implications for the transport of trace gases from the troposphere to the stratosphere
Evolution of the intensity and duration of the Southern Hemisphere stratospheric polar vortex edge for the period 1979–2020
Characterization of transport from the Asian summer monsoon anticyclone into the UTLS via shedding of low potential vorticity cutoffs
Long-range prediction and the stratosphere
Weakening of Antarctic stratospheric planetary wave activities in early austral spring since the early 2000s: a response to sea surface temperature trends
The impact of sulfur hexafluoride (SF6) sinks on age of air climatologies and trends
Specified dynamics scheme impacts on wave-mean flow dynamics, convection, and tracer transport in CESM2 (WACCM6)
Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet
Eastward-propagating planetary waves in the polar middle atmosphere
The Brewer–Dobson circulation in CMIP6
Climate impact of volcanic eruptions: the sensitivity to eruption season and latitude in MPI-ESM ensemble experiments
Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption
Differences in the quasi-biennial oscillation response to stratospheric aerosol modification depending on injection strategy and species
The advective Brewer–Dobson circulation in the ERA5 reanalysis: climatology, variability, and trends
Is our dynamical understanding of the circulation changes associated with the Antarctic ozone hole sensitive to the choice of reanalysis dataset?
The impact of increasing stratospheric radiative damping on the quasi-biennial oscillation period
Analysis of recent lower-stratospheric ozone trends in chemistry climate models
Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion
Reanalysis intercomparison of potential vorticity and potential-vorticity-based diagnostics
Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models
Eric A. Ray, Fred L. Moore, Hella Garny, Eric J. Hintsa, Bradley D. Hall, Geoff S. Dutton, David Nance, James W. Elkins, Steven C. Wofsy, Jasna Pittman, Bruce Daube, Bianca C. Baier, Jianghanyang Li, and Colm Sweeney
Atmos. Chem. Phys., 24, 12425–12445, https://doi.org/10.5194/acp-24-12425-2024, https://doi.org/10.5194/acp-24-12425-2024, 2024
Short summary
Short summary
In this study we describe new techniques to derive age of air from multiple simultaneous measurements of long-lived trace gases in order to improve the fidelity of the age-of-air estimates and to be able to compare age of air from measurements taken from different instruments, platforms and decades. This technique also allows new transport information to be obtained from the measurements such as the primary source latitude that can also be compared to models.
Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen
Atmos. Chem. Phys., 24, 12259–12275, https://doi.org/10.5194/acp-24-12259-2024, https://doi.org/10.5194/acp-24-12259-2024, 2024
Short summary
Short summary
Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts.
Yang Li, Wuhu Feng, Xin Zhou, Yajuan Li, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 8277–8293, https://doi.org/10.5194/acp-24-8277-2024, https://doi.org/10.5194/acp-24-8277-2024, 2024
Short summary
Short summary
The Tibetan Plateau (TP), the highest and largest plateau, experiences strong surface solar UV radiation, whose excess can cause harmful influences on local biota. Hence, it is critical to study TP ozone. We find ENSO, the strongest interannual phenomenon, tends to induce tropospheric temperature change and thus modulate tropopause variability, which in turn favours ozone change over the TP. Our results have implications for a better understanding of the interannual variability of TP ozone.
Luis F. Millán, Peter Hoor, Michaela I. Hegglin, Gloria L. Manney, Harald Boenisch, Paul Jeffery, Daniel Kunkel, Irina Petropavlovskikh, Hao Ye, Thierry Leblanc, and Kaley Walker
Atmos. Chem. Phys., 24, 7927–7959, https://doi.org/10.5194/acp-24-7927-2024, https://doi.org/10.5194/acp-24-7927-2024, 2024
Short summary
Short summary
In the Observed Composition Trends And Variability in the UTLS (OCTAV-UTLS) Stratosphere-troposphere Processes And their Role in Climate (SPARC) activity, we have mapped multiplatform ozone datasets into coordinate systems to systematically evaluate the influence of these coordinates on binned climatological variability. This effort unifies the work of studies that focused on individual coordinate system variability. Our goal was to create the most comprehensive assessment of this topic.
Masatomo Fujiwara, Patrick Martineau, Jonathon S. Wright, Marta Abalos, Petr Šácha, Yoshio Kawatani, Sean M. Davis, Thomas Birner, and Beatriz M. Monge-Sanz
Atmos. Chem. Phys., 24, 7873–7898, https://doi.org/10.5194/acp-24-7873-2024, https://doi.org/10.5194/acp-24-7873-2024, 2024
Short summary
Short summary
A climatology of the major variables and terms of the transformed Eulerian-mean (TEM) momentum and thermodynamic equations from four global atmospheric reanalyses is evaluated. The spread among reanalysis TEM momentum balance terms is around 10 % in Northern Hemisphere winter and up to 50 % in Southern Hemisphere winter. The largest uncertainties in the thermodynamic equation (about 50 %) are in the vertical advection, which does not show a structure consistent with the differences in heating.
Cristina Peña-Ortiz, Nuria Pilar Plaza, David Gallego, and Felix Ploeger
Atmos. Chem. Phys., 24, 5457–5478, https://doi.org/10.5194/acp-24-5457-2024, https://doi.org/10.5194/acp-24-5457-2024, 2024
Short summary
Short summary
Although water vapour (H2O) in the lower stratosphere is only a few molecules among 1 million air molecules, atmospheric radiative forcing and surface temperature are sensitive to changes in its concentration. Monsoon regions play a key role in H2O transport and its concentration in the lower stratosphere. We show how the quasi-biennial oscillation (QBO) has a major impact on H2O over the Asian monsoon during August through changes in temperature caused by QBO modulation of tropical clouds.
Xiaolu Yan, Paul Konopka, Felix Ploeger, and Aurélien Podglajen
EGUsphere, https://doi.org/10.5194/egusphere-2024-782, https://doi.org/10.5194/egusphere-2024-782, 2024
Short summary
Short summary
Our study finds that the air mass fractions (AMFs) from the Asian boundary layer (ABL) to the polar regions are about 1.5 times larger than those from the same latitude band in the Southern Hemisphere. The transport of AMFs from the ABL to the polar vortex primarily occurs above 20 km and over timescales exceeding 2 years. Our analysis reveals a strong correlation between the polar pollutants and the AMFs from the ABL. About 20 % of SF6 in the polar stratosphere originates from the ABL.
Young-Ha Kim, Georg Sebastian Voelker, Gergely Bölöni, Günther Zängl, and Ulrich Achatz
Atmos. Chem. Phys., 24, 3297–3308, https://doi.org/10.5194/acp-24-3297-2024, https://doi.org/10.5194/acp-24-3297-2024, 2024
Short summary
Short summary
The quasi-biennial oscillation, which governs the tropical stratospheric circulation, is driven primarily by small-scale wave processes. We employ a novel method to realistically represent these wave processes in a global model, thereby revealing an aspect of the oscillation that has not been identified before. We find that the oblique propagation of waves, a process neglected by existing climate models, plays a pivotal role in the stratospheric circulation and its oscillation.
Ellis Remsberg
Atmos. Chem. Phys., 24, 1691–1697, https://doi.org/10.5194/acp-24-1691-2024, https://doi.org/10.5194/acp-24-1691-2024, 2024
Short summary
Short summary
CH4 data from the Halogen Occultation Experiment show clear changes in the deep and shallow branches of the Brewer–Dobson circulation (BDC) from 1992 to 2005. CH4 decreased in the upper stratosphere in the early 1990s following the Pinatubo eruption. There was also meridional transport of CH4 from the tropics to mid-latitudes in both hemispheres in the late 1990s. CH4 trends in the shallow branch agree with the tropospheric CH4 trends from 1996 to 2005.
Tiehan Zhou, Kevin J. DallaSanta, Clara Orbe, David H. Rind, Jeffrey A. Jonas, Larissa Nazarenko, Gavin A. Schmidt, and Gary Russell
Atmos. Chem. Phys., 24, 509–532, https://doi.org/10.5194/acp-24-509-2024, https://doi.org/10.5194/acp-24-509-2024, 2024
Short summary
Short summary
The El Niño–Southern Oscillation (ENSO) tends to speed up and slow down the phase speed of the Quasi-Biennial Oscillation (QBO) during El Niño and La Niña, respectively. The ENSO modulation of the QBO does not show up in the climate models with parameterized but temporally constant gravity wave sources. We show that the GISS E2.2 models can capture the observed ENSO modulation of the QBO period with a horizontal resolution of 2° by 2.5° and its gravity wave sources parameterized interactively.
Helen Weierbach, Allegra N. LeGrande, and Kostas Tsigaridis
Atmos. Chem. Phys., 23, 15491–15505, https://doi.org/10.5194/acp-23-15491-2023, https://doi.org/10.5194/acp-23-15491-2023, 2023
Short summary
Short summary
Volcanic aerosols impact global and regional climate conditions but can vary depending on pre-existing initial climate conditions. We ran an ensemble of volcanic aerosol simulations under varying ENSO and NAO initial conditions to understand how initial climate states impact the modeled response to volcanic forcing. Overall we found that initial NAO conditions can impact the strength of the first winter post-eruptive response but are also affected by the choice of anomaly and sampling routine.
Franziska Zilker, Timofei Sukhodolov, Gabriel Chiodo, Marina Friedel, Tatiana Egorova, Eugene Rozanov, Jan Sedlacek, Svenja Seeber, and Thomas Peter
Atmos. Chem. Phys., 23, 13387–13411, https://doi.org/10.5194/acp-23-13387-2023, https://doi.org/10.5194/acp-23-13387-2023, 2023
Short summary
Short summary
The Montreal Protocol (MP) has successfully reduced the Antarctic ozone hole by banning chlorofluorocarbons (CFCs) that destroy the ozone layer. Moreover, CFCs are strong greenhouse gases (GHGs) that would have strengthened global warming. In this study, we investigate the surface weather and climate in a world without the MP at the end of the 21st century, disentangling ozone-mediated and GHG impacts of CFCs. Overall, we avoided 1.7 K global surface warming and a poleward shift in storm tracks.
Ji-Hee Yoo, Hye-Yeong Chun, and Min-Jee Kang
Atmos. Chem. Phys., 23, 10869–10881, https://doi.org/10.5194/acp-23-10869-2023, https://doi.org/10.5194/acp-23-10869-2023, 2023
Short summary
Short summary
The January 2021 sudden stratospheric warming was preceded by unusual double westerly jets with polar stratospheric and subtropical mesospheric cores. This wind structure promotes anomalous dissipation of tropospheric planetary waves between the two maxima, leading to unusually strong shear instability. Shear instability generates the westward-propagating planetary waves with zonal wavenumber 2 in situ, thereby splitting the polar vortex just before the onset.
Frederik Harzer, Hella Garny, Felix Ploeger, Harald Bönisch, Peter Hoor, and Thomas Birner
Atmos. Chem. Phys., 23, 10661–10675, https://doi.org/10.5194/acp-23-10661-2023, https://doi.org/10.5194/acp-23-10661-2023, 2023
Short summary
Short summary
We study the statistical relation between year-by-year fluctuations in winter-mean ozone and the strength of the stratospheric polar vortex. In the latitude–pressure plane, regression analysis shows that anomalously weak polar vortex years are associated with three pronounced local ozone maxima over the polar cap relative to the winter climatology. These response maxima primarily reflect the non-trivial combination of different ozone transport processes with varying relative contributions.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 23, 7447–7460, https://doi.org/10.5194/acp-23-7447-2023, https://doi.org/10.5194/acp-23-7447-2023, 2023
Short summary
Short summary
Here, we show how projected changes to tropical circulation will impact the water vapor concentration in the lower stratosphere, which has implications for surface climate and stratospheric chemistry. In our transport scenarios with slower east–west winds, air parcels ascending into the stratosphere do not experience the same cold temperatures that they would today. This effect could act in concert with previously modeled changes to stratospheric water vapor to amplify surface warming.
Flossie Brown, Lauren Marshall, Peter H. Haynes, Rolando R. Garcia, Thomas Birner, and Anja Schmidt
Atmos. Chem. Phys., 23, 5335–5353, https://doi.org/10.5194/acp-23-5335-2023, https://doi.org/10.5194/acp-23-5335-2023, 2023
Short summary
Short summary
Large-magnitude volcanic eruptions have the potential to alter large-scale circulation patterns, such as the quasi-biennial oscillation (QBO). The QBO is an oscillation of the tropical stratospheric zonal winds between easterly and westerly directions. Using a climate model, we show that large-magnitude eruptions can delay the progression of the QBO, with a much longer delay when the shear is easterly than when it is westerly. Such delays may affect weather and transport of atmospheric gases.
Dillon Elsbury, Amy H. Butler, John R. Albers, Melissa L. Breeden, and Andrew O'Neil Langford
Atmos. Chem. Phys., 23, 5101–5117, https://doi.org/10.5194/acp-23-5101-2023, https://doi.org/10.5194/acp-23-5101-2023, 2023
Short summary
Short summary
One of the global hotspots where stratosphere-to-troposphere transport (STT) of ozone takes place is over Pacific North America (PNA). However, we do not know how or if STT over PNA will change in response to climate change. Using climate model experiments forced with
worst-casescenario Representative Concentration Pathway 8.5 climate change, we find that changes in net chemical production and transport of ozone in the lower stratosphere increase STT of ozone over PNA in the future.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023, https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
Short summary
Atmospheric oscillations with periods between 5 and more than 200 years are believed to be self-excited (internal) in the atmosphere, i.e. non-anthropogenic. They are found at all altitudes up to 110 km and at four very different geographical locations (75° N, 70° E; 75° N, 280° E; 50° N, 7° E; 50° S, 7° E). Therefore, they hint at a global-oscillation mode. Their amplitudes are on the order of present-day climate trends, and it is therefore difficult to disentangle them.
Samuel Benito-Barca, Natalia Calvo, and Marta Abalos
Atmos. Chem. Phys., 22, 15729–15745, https://doi.org/10.5194/acp-22-15729-2022, https://doi.org/10.5194/acp-22-15729-2022, 2022
Short summary
Short summary
The impact of different El Niño flavors (eastern (EP) and central (CP) Pacific El Niño) and La Niña on the stratospheric ozone is studied in a state-of-the-art chemistry–climate model. Ozone reduces in the tropics and increases in the extratropics when an EP El Niño event occurs, the opposite of La Niña. However, CP El Niño has no impact on extratropical ozone. These ozone variations are driven by changes in the stratospheric transport circulation, with an important contribution of mixing.
Nora Bergner, Marina Friedel, Daniela I. V. Domeisen, Darryn Waugh, and Gabriel Chiodo
Atmos. Chem. Phys., 22, 13915–13934, https://doi.org/10.5194/acp-22-13915-2022, https://doi.org/10.5194/acp-22-13915-2022, 2022
Short summary
Short summary
Polar vortex extremes, particularly situations with an unusually weak cyclonic circulation in the stratosphere, can influence the surface climate in the spring–summer time in the Southern Hemisphere. Using chemistry-climate models and observations, we evaluate the robustness of the surface impacts. While models capture the general surface response, they do not show the observed climate patterns in midlatitude regions, which we trace back to biases in the models' circulations.
Stephen Bourguet and Marianna Linz
Atmos. Chem. Phys., 22, 13325–13339, https://doi.org/10.5194/acp-22-13325-2022, https://doi.org/10.5194/acp-22-13325-2022, 2022
Short summary
Short summary
Here, we tested the impact of spatial and temporal resolution on Lagrangian trajectory studies in a key region of interest for climate feedbacks and stratospheric chemistry. Our analysis shows that new higher-resolution input data provide an opportunity for a better understanding of physical processes that control how air moves from the troposphere to the stratosphere. Future studies of how these processes will change in a warming climate will benefit from these results.
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022, https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño–Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards are assessed.
Axel Gabriel
Atmos. Chem. Phys., 22, 10425–10441, https://doi.org/10.5194/acp-22-10425-2022, https://doi.org/10.5194/acp-22-10425-2022, 2022
Short summary
Short summary
Recent measurements show some evidence that the amplitudes of atmospheric gravity waves (horizontal wavelengths of 100–2000 km), which propagate from the troposphere (0–10 km) to the stratosphere and mesosphere (10–100 km), increase more strongly with height during daytime than during nighttime. This study shows that ozone–temperature coupling in the upper stratosphere can principally produce such an amplification. The results will help to improve atmospheric circulation models.
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022, https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
Short summary
Brewer–Dobson circulation (BDC) controls the composition of the stratosphere, which in turn affects radiation and climate. As the BDC cannot be measured directly, it is necessary to infer its strength and trends indirectly. In this study, we test in the
model worlddifferent methods for estimating the mean age of air trends based on a combination of stratospheric water vapour and methane data. We also provide simple practical advice of a more reliable estimation of the mean age of air trends.
Ming Shangguan and Wuke Wang
Atmos. Chem. Phys., 22, 9499–9511, https://doi.org/10.5194/acp-22-9499-2022, https://doi.org/10.5194/acp-22-9499-2022, 2022
Short summary
Short summary
Skilful predictions of weather and climate on subseasonal to seasonal scales are valuable for decision makers. Here we show the global spatiotemporal variation of the temperature SAO in the UTLS with GNSS RO and reanalysis data. The formation of the SAO is explained by an energy budget analysis. The results show that the SAO in the UTLS is partly modified by the SSTs according to model simulations. The results may provide an important source for seasonal predictions of the surface weather.
Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha
Atmos. Chem. Phys., 22, 4867–4893, https://doi.org/10.5194/acp-22-4867-2022, https://doi.org/10.5194/acp-22-4867-2022, 2022
Short summary
Short summary
This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC.
Mengdie Xie, John C. Moore, Liyun Zhao, Michael Wolovick, and Helene Muri
Atmos. Chem. Phys., 22, 4581–4597, https://doi.org/10.5194/acp-22-4581-2022, https://doi.org/10.5194/acp-22-4581-2022, 2022
Short summary
Short summary
We use data from six Earth system models to estimate Atlantic meridional overturning circulation (AMOC) changes and its drivers under four different solar geoengineering methods. Solar dimming seems relatively more effective than marine cloud brightening or stratospheric aerosol injection at reversing greenhouse-gas-driven declines in AMOC. Geoengineering-induced AMOC amelioration is due to better maintenance of air–sea temperature differences and reduced loss of Arctic summer sea ice.
Kai Qie, Wuke Wang, Wenshou Tian, Rui Huang, Mian Xu, Tao Wang, and Yifeng Peng
Atmos. Chem. Phys., 22, 4393–4411, https://doi.org/10.5194/acp-22-4393-2022, https://doi.org/10.5194/acp-22-4393-2022, 2022
Short summary
Short summary
We identify a significantly intensified upward motion over the tropical western Pacific (TWP) and an enhanced tropical upwelling in boreal winter during 1958–2017 due to the warming of global sea surface temperatures (SSTs). Our results suggest that more tropospheric trace gases over the TWP could be elevated to the lower stratosphere, which implies that the emission from the maritime continent plays a more important role in the stratospheric processes and the global climate.
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022, https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Adam A. Scaife, Mark P. Baldwin, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Steven C. Hardiman, Peter Haynes, Alexey Yu Karpechko, Eun-Pa Lim, Shunsuke Noguchi, Judith Perlwitz, Lorenzo Polvani, Jadwiga H. Richter, John Scinocca, Michael Sigmond, Theodore G. Shepherd, Seok-Woo Son, and David W. J. Thompson
Atmos. Chem. Phys., 22, 2601–2623, https://doi.org/10.5194/acp-22-2601-2022, https://doi.org/10.5194/acp-22-2601-2022, 2022
Short summary
Short summary
Great progress has been made in computer modelling and simulation of the whole climate system, including the stratosphere. Since the late 20th century we also gained a much clearer understanding of how the stratosphere interacts with the lower atmosphere. The latest generation of numerical prediction systems now explicitly represents the stratosphere and its interaction with surface climate, and here we review its role in long-range predictions and projections from weeks to decades ahead.
Yihang Hu, Wenshou Tian, Jiankai Zhang, Tao Wang, and Mian Xu
Atmos. Chem. Phys., 22, 1575–1600, https://doi.org/10.5194/acp-22-1575-2022, https://doi.org/10.5194/acp-22-1575-2022, 2022
Short summary
Short summary
Antarctic stratospheric wave activities in September have been weakening significantly since the 2000s. Further analysis supports the finding that sea surface temperature (SST) trends over 20° N–70° S lead to the weakening of stratospheric wave activities, while the response of stratospheric wave activities to ozone recovery is weak. Thus, the SST trend should be taken into consideration when exploring the mechanism for the climate transition in the southern hemispheric stratosphere around 2000.
Sheena Loeffel, Roland Eichinger, Hella Garny, Thomas Reddmann, Frauke Fritsch, Stefan Versick, Gabriele Stiller, and Florian Haenel
Atmos. Chem. Phys., 22, 1175–1193, https://doi.org/10.5194/acp-22-1175-2022, https://doi.org/10.5194/acp-22-1175-2022, 2022
Short summary
Short summary
SF6-derived trends of stratospheric AoA from observations and model simulations disagree in sign. SF6 experiences chemical degradation, which we explicitly integrate in a global climate model. In our simulations, the AoA trend changes sign when SF6 sinks are considered; thus, the process has the potential to reconcile simulated with observed AoA trends. We show that the positive AoA trend is due to the SF6 sinks themselves and provide a first approach for a correction to account for SF6 loss.
Nicholas A. Davis, Patrick Callaghan, Isla R. Simpson, and Simone Tilmes
Atmos. Chem. Phys., 22, 197–214, https://doi.org/10.5194/acp-22-197-2022, https://doi.org/10.5194/acp-22-197-2022, 2022
Short summary
Short summary
Specified dynamics schemes attempt to constrain the atmospheric circulation in a climate model to isolate the role of transport in chemical variability, evaluate model physics, and interpret field campaign observations. We show that the specified dynamics scheme in CESM2 erroneously suppresses convection and induces circulation errors that project onto errors in tracers, even using the most optimal settings. Development of a more sophisticated scheme is necessary for future progress.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Marta Abalos, Natalia Calvo, Samuel Benito-Barca, Hella Garny, Steven C. Hardiman, Pu Lin, Martin B. Andrews, Neal Butchart, Rolando Garcia, Clara Orbe, David Saint-Martin, Shingo Watanabe, and Kohei Yoshida
Atmos. Chem. Phys., 21, 13571–13591, https://doi.org/10.5194/acp-21-13571-2021, https://doi.org/10.5194/acp-21-13571-2021, 2021
Short summary
Short summary
The stratospheric Brewer–Dobson circulation (BDC), responsible for transporting mass, tracers and heat globally in the stratosphere, is evaluated in a set of state-of-the-art climate models. The acceleration of the BDC in response to increasing greenhouse gases is most robust in the lower stratosphere. At higher levels, the well-known inconsistency between model and observational BDC trends can be partly reconciled by accounting for limited sampling and large uncertainties in the observations.
Zhihong Zhuo, Ingo Kirchner, Stephan Pfahl, and Ulrich Cubasch
Atmos. Chem. Phys., 21, 13425–13442, https://doi.org/10.5194/acp-21-13425-2021, https://doi.org/10.5194/acp-21-13425-2021, 2021
Short summary
Short summary
The impact of volcanic eruptions varies with eruption season and latitude. This study simulated eruptions at different latitudes and in different seasons with a fully coupled climate model. The climate impacts of northern and southern hemispheric eruptions are reversed but are insensitive to eruption season. Results suggest that the regional climate impacts are due to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional feedbacks.
Min-Jee Kang and Hye-Yeong Chun
Atmos. Chem. Phys., 21, 9839–9857, https://doi.org/10.5194/acp-21-9839-2021, https://doi.org/10.5194/acp-21-9839-2021, 2021
Short summary
Short summary
In winter 2019/20, the westerly quasi-biennial oscillation (QBO) phase was disrupted again by easterly winds. It is found that strong Rossby waves from the Southern Hemisphere weaken the jet core in early stages, and strong mixed Rossby–gravity waves reverse the wind in later stages. Inertia–gravity waves and small-scale convective gravity waves also provide negative forcing. These strong waves are attributed to an anomalous wind profile, barotropic instability, and slightly strong convection.
Henning Franke, Ulrike Niemeier, and Daniele Visioni
Atmos. Chem. Phys., 21, 8615–8635, https://doi.org/10.5194/acp-21-8615-2021, https://doi.org/10.5194/acp-21-8615-2021, 2021
Short summary
Short summary
Stratospheric aerosol modification (SAM) can alter the quasi-biennial oscillation (QBO). Our simulations with two different models show that the characteristics of the QBO response are primarily determined by the meridional structure of the aerosol-induced heating. Therefore, the QBO response to SAM depends primarily on the location of injection, while injection type and rate act to scale the specific response. Our results have important implications for evaluating adverse side effects of SAM.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Andrew Orr, Hua Lu, Patrick Martineau, Edwin P. Gerber, Gareth J. Marshall, and Thomas J. Bracegirdle
Atmos. Chem. Phys., 21, 7451–7472, https://doi.org/10.5194/acp-21-7451-2021, https://doi.org/10.5194/acp-21-7451-2021, 2021
Short summary
Short summary
Reanalysis datasets combine observations and weather forecast simulations to create our best estimate of the state of the atmosphere and are important for climate monitoring. Differences in the technical details of these products mean that they may give different results. This study therefore examined how changes associated with the so-called Antarctic ozone hole are represented, which is one of the most important climate changes in recent decades, and showed that they were broadly consistent.
Tiehan Zhou, Kevin DallaSanta, Larissa Nazarenko, Gavin A. Schmidt, and Zhonghai Jin
Atmos. Chem. Phys., 21, 7395–7407, https://doi.org/10.5194/acp-21-7395-2021, https://doi.org/10.5194/acp-21-7395-2021, 2021
Short summary
Short summary
Stratospheric radiative damping increases with rising CO2. Sensitivity experiments using the one-dimensional mechanistic models of the quasi-biennial oscillation (QBO) indicate a shortening of the simulated QBO period due to the enhancing of the radiative damping. This result suggests that increasing radiative damping may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity.
Simone Dietmüller, Hella Garny, Roland Eichinger, and William T. Ball
Atmos. Chem. Phys., 21, 6811–6837, https://doi.org/10.5194/acp-21-6811-2021, https://doi.org/10.5194/acp-21-6811-2021, 2021
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 21, 6627–6645, https://doi.org/10.5194/acp-21-6627-2021, https://doi.org/10.5194/acp-21-6627-2021, 2021
Short summary
Short summary
Inter-hemispheric transport is important for understanding atmospheric tracers because of the asymmetry in emissions between the Southern Hemisphere (SH) and Northern Hemisphere (NH). This study finds that the air masses from the NH extratropics to the atmosphere are about 5 times larger than those from the SH extratropics. The interplay between the Asian summer monsoon and westerly ducts triggers the cross-Equator transport from the NH to the SH in boreal summer and fall.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Luis F. Millán, Gloria L. Manney, and Zachary D. Lawrence
Atmos. Chem. Phys., 21, 5355–5376, https://doi.org/10.5194/acp-21-5355-2021, https://doi.org/10.5194/acp-21-5355-2021, 2021
Short summary
Short summary
We assess how consistently reanalyses represent potential vorticity (PV) among each other. PV helps describe dynamical processes in the stratosphere because it acts approximately as a tracer of the movement of air parcels; it is extensively used to identify the location of the tropopause and to identify and characterize the stratospheric polar vortex. Overall, PV from all reanalyses agrees well with the reanalysis ensemble mean.
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021, https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Short summary
Water vapor is the dominant greenhouse gas in the atmosphere, and El Niño is the dominant mode of variability in the ocean–atmosphere system. The connection between El Niño and water vapor above ~ 17 km is unclear, with single-model studies reaching a range of conclusions. This study examines this connection in 12 different models. While there are substantial differences among the models, all models appear to capture the fundamental physical processes correctly.
Cited articles
Adler, R. F., Huffmann, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J. Arkin, P, and Nelkin, E.,: The version-2 Global Precipitation
Climatology Project (GPCP) monthly precipitation analysis (1979–present), J.
Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Ajtić, J., Djurdjevic, V., Sarvan, D., Brattich, E., and
Hernández-Ceballos, M.A.: Analysis of extreme beryllium-7 specific
activities in surface air, Radiation & Applications, 1, 216–221,
https://doi.org/10.21175/RadJ.2016.03.040, 2016.
Ajtić, J. V., Sarvan D., Djurdjevic, V. S., Hernández-Ceballos, M.
A., and Brattich, E.: Beryllium-7 surface concentration extremes in Europe,
Facta Universitatis – Series: Physics, Chemistry and Technology, 15,
45–55, 2017.
Ajtić, J., Brattich, E., Sarvan, D., Djurdjevic, V., and
Hernández-Ceballos, M. A.: Factors affecting the 7Be surface
concentration and its extremely high occurrences over the Scandinavian
Peninsula during autumn and winter, Chemosphere, 199, 278–285,
https://doi.org/10.1016/j.chemosphere.2018.02.052, 2018.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Bianchi, S., Plastino, W., Brattich, E., Djurdjevic, V., Longo, A.,
Hernández-Ceballos, M. A., Sarvan, D., and Ajtić, J.: Analysis of
trends, periodicities, and correlations in the beryllium-7 time series in
Northern Europe, Appl. Radiat. Isot. 148, 160–167,
https://doi.org/10.1016/j.apradiso.2019.03.038, 2019.
Błażej, S. and Mietelski, J. W.: Cosmogenic 22Na, 7Be and
terrestrial 137Cs, 40K radionuclides in ground level air samples
collected weekly in Kraków (Poland) over years 2003–2006, J. Radioanal.
Nucl., 300, 747–756, https://doi.org/10.1007/s10967-014-3049-6, 2014.
Brattich, E., Hernández-Ceballos, M. A., Orza, J. A. G., Bolívar,
J. P., and Tositti, L.: The western Mediterranean basin as an aged aerosols
reservoir. Insights from an old-fashioned but efficient radiotracer. Atmos.
Environ., 141, 481–493, doi;10.1016/j.atmosenv.2016.07.022, 2016
Brattich, E., Orza, J. A. G., Cristofanelli, P., Bonasoni, P., and Tositti,
L.: Influence of stratospheric air masses on radiotracers and ozone over the
central Mediterranean, J. Geophys. Res., 122, 7164–7182, https://doi.org/10.1002/2017JD027036,
2017a.
Brattich, E., Liu, H., Tositti, L., Considine, D. B., and Crawford, J. H.: Processes controlling the seasonal variations in 210Pb and 7Be at the Mt. Cimone WMO-GAW global station, Italy: a model analysis, Atmos. Chem. Phys., 17, 1061–1080, https://doi.org/10.5194/acp-17-1061-2017, 2017b.
Brattich, E., Liu, H., Hernández-Ceballos, M. A., Paatero, J., Sarvan, D., Djurdjevic, V., Tositti, L., and Ajtic, J.: Observation and modeling of high-7Be events in Northern Europe associated with the instability of the Arctic polar vortex in early 2003, Observation and modeling of high-7Be events in Northern Europe associated with the instability of the Arctic polar vortex in early 2003, Zenodo [data set], https://doi.org/10.5281/zenodo.4117521, last access: 23 November 2021.
Carruthers, D. J., Edmunds, H. A., Lester, A. E., McHugh, C. A., and Singles,
R. J.: Use and validation of ADMS-Urban in contrasting urban and industrial
locations, Int. J. Environ. Pollut., 14, 363-374,
https://doi.org/10.1504/IJEP.2000.000558, 2000.
Chae, J-S. and Kim, G.: Large seasonal variations in fine aerosol
precipitation rates revealed using cosmogenic 7Be as a tracer, Sci.
Total Environ., 673, 1–6, https://doi.org/10.1016/j.scitotenv.2019.03.482, 2019.
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation,
Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004.
Charlton, A. J. and Polvani, L. M.: A new look at Stratospheric Sudden
Warmings. Part I: climatology and modelling benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Charlton, A. J., Polvani, L. M., Perlwitz, J., Sassi, F., Manzini, E.,
Shibata, K., Pawson, S., Nielsen, J. E., and Rind, D.: A new look at
Stratospheric Sudden Warmings. Part II: evaluation of numerical simulations.
J. Climate, 20, 470–488, https://doi.org/10.1175/JCLI3994.1, 2007.
Chen, D.: A monthly circulation climatology for Sweden and its application
to a winter temperature case study, Int. J. Climatol., 20, 1067–1076,
https://doi.org/10.1002/1097-0088(200008)20:10<1067::AID-JOC528>3.0.CO;2-Q, 2000.
Cristofanelli, P., Bonasoni, P., Collins, W., Feichter, J., Forster, C.,
James, P., Kentarchos, A., Kubik, P. W., Land, C., Meloen, J., Roelofs, G. J.,
Siegmund, P., Sprenger, M., Schnabel, C., Stohl, A., Tobler, L., Tositti,
L., Trickl, T., and Zanis, P.: Stratosphere-to-troposphere transport: A
model and method evaluation, J. Geophys. Res.-Atmos., 108, 8525, https://doi.org/10.1029/2002JD002600, 2003.
Cristofanelli, P., Bonasoni, P., Tositti, L., Bonafè, U., Calzolari, F.,
Evangelisti, F., Sandrini, S., and Stohl, A.: A 6-year analysis of
stratospheric intrusions and their influence on ozone at Mt. Cimone (2165 m above sea level), J. Geophys. Res.-Atmos., 111, D03306, https://doi.org/10.1029/2005JD006553,
2006.
Cristofanelli, P., Calzolari, F., Bonafé, U., Duchi, R., Marinoni, A.,
Roccato, F., Tositti, L., and Bonasoni, P.: Stratospheric intrusion index
(SI2) from baseline measurement data, Theor. Appl. Climatol., 97, 317–325,
https://doi.org/10.1007/s00704-008-0073-x, 2009.
Cristofanelli, P., Brattich, E., Decesari, S., Landi, T.C., Maione, M.,
Putero, D., Tositti, L., and Bonasoni, P.: Studies on environmental
radionuclides at Mt. Cimone, Chapter in: High Mountain Atmospheric Research.
The Italian Mt. Cimone WMO/GAW Global Station (2165 m a.s.l.),
SpringerBriefs in Meteorology, Springer International Publishing, Switzerland, ISBN
978-3-319-61126-6, https://doi.org/10.1007/978-3-319-61127-3, 2018.
De Cort, M., Sangiorgi, M. Hernandez Ceballos, M. A., Vanzo, S., Nweke, E.,
Tognoli, P. V., and Tollefsen, T.: REM data bank – Years 1984–2006, European
Commission, Joint Research Centre (JRC) [data set], https://doi.org/10.2905/jrc-10117-10024,
2007
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denton, M. H., Kivi, R., Ulich, T., Rodger, C. J., Clilverd, M. A., Denton,
J. S., and Lester, M.: Observed response of stratospheric and mesospheric
composition to sudden stratospheric warmings, J. Atmos. Sol., 191, 105054,
https://doi.org/10.1016/j.jastp.2019.06.001, 2019.
Dutkiewicz, V. A. and Husain, L.: Stratospheric and tropospheric components
of 7Be in surface air, J. Geophys. Res.-Atmos., 90, 5783–5788,
https://doi.org/10.1029/JD090iD03p05783, 1985.
Eastham, S. D., Weisenstein, D. K., and Barrett, S. R. H.: Development and
evaluation of the unified tropospheric-stratospheric chemistry extension
(UCX) for the global chemistry-transport model GEOS-Chem, Atmos. Environ.,
89, 52–63, https://doi.org/10.1016/j.atmosenv.2014.02.001, 2014.
Engel, A., Möbius, T., Haase, H.-P., Bönisch, H., Wetter, T., Schmidt, U., Levin, I., Reddmann, T., Oelhaf, H., Wetzel, G., Grunow, K., Huret, N., and Pirre, M.: Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003, Atmos. Chem. Phys., 6, 267–282, https://doi.org/10.5194/acp-6-267-2006, 2006.
European Commission: Commission recommendation of 8 June 2000 on the
application of Article 36 of the Euratom Treaty concerning the monitoring of
the levels of radioactivity in the environment for the purpose of assessing
the exposure of the population as a whole, available at: https://op.europa.eu/it/publication-detail/-/publication/8116b329-eb85-4bda-8d4b-e8c9e0d152c2/language-en (last access: 2 July 2021), 2000.
European Commission: Radioactivity Environmental Monitoring data bank, available at: https://data.jrc.ec.europa.eu/collection/id-0117, last access: 23 November 2021.
Gaffney, J. S., Marley, N., and Cunningham, M. M.: Natural radionuclides in
fine aerosols in the Pittsburgh area, Atmos. Environ., 38, 3191–3200,
https://doi.org/10.1016/j.atmosenv.2004.03.015, 2004.
Gelaro, R., McCarthy, W., Suárez, M.J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerasopoulos, E., Zanis, P., Stohl, A., Zerefos, C. S., Papastefanou, C.,
Ringer, W., Tobler, L., Hübener, S., Gäggeler, H. W., Kanter, H. J.,
Tositti, L., and Sandrini, S.: A climatology of 7Be at four
high-altitude stations at the Alps and the Northern Apennines, Atmos.
Environ., 35, 6347–6360, doi :10.1016/S1352-2310(01)00400-9, 2001.
Gerasopoulos, E., Zerefos, C. S., Papastefanou, C., Zanis, P., and O'Brien,
K.: Low-frequency variability of beryllium-7 surface concentrations over the
Eastern Mediterranean, Atmos. Environ., 37, 1745–1756,
https://doi.org/10.1016/S1352-2310(03)00068-2, 2003.
Getterlman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and
Birner, T. : The extratropical upper troposphere and lower stratosphere,
Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011.
Golubenko, K., Rozanov, E., Kovaltsov, G., Leppänen, A.-P., Sukhodolov, T., and Usoskin, I.: Chemistry-climate model SOCOL-AERv2-BEv1 with the cosmogenic Beryllium-7 isotope cycle, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-56, in review, 2021.
Gourdin, E., Evrard, O., Huon, S., Reyss, J.-L., Ribolzi, O., Bariac, T.,
Sengtaheuanghoung, O., and Ayrault, S.: Spatial and temporal variability of
7Be and 210Pb wet deposition during four successive monsoon storms
in a catchment of northern Laos, J. Environ. Radioact., 136, 195–205,
https://doi.org/10.1016/j.jenvrad.2014.06.008, 2014.
Grange, S. K.: Technical note: saqgetr R package, available at: https://drive.google.com/open?id=1IgDODHqBHewCTKLdAAxRyR7ml8ht6Ods (last access: 2 July 2021), 2019.
Günther, G., Müller, R., von Hobe, M., Stroh, F., Konopka, P., and Volk, C. M.: Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003, Atmos. Chem. Phys., 8, 3655–3670, https://doi.org/10.5194/acp-8-3655-2008, 2008.
Hanna, S. R.: Uncertainties in air quality model predictions, Bound.-Layer
Meteorol., 62, 3–20, 1993.
Hernández-Ceballos, M. A., Cinelli, G., Marín Ferrer, M., Tollefsen,
T., De Felice, L., Nweke, E., Tognoli, P. V., Vanzo, S., and De Cort, M.: A
climatology of 7Be in surface air in European Union, J. Environ.
Radioactiv., 141, 62–70, https://doi.org/10.1016/j.jenvrad.2014.12.003, 2015.
Heikkilä, U., Beer, J., and Feichter, J.: Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder Minimum using the ECHAM5-HAM General Circulation Model, Atmos. Chem. Phys., 8, 2797–2809, https://doi.org/10.5194/acp-8-2797-2008, 2008.
Hernández-Ceballos, M. A., Adame, J. A., Bolívar, J. P., and De La Morena,
P.: Vertical behaviour and meteorologica properties of air masses in the
southwest of the Iberian Peninsula (1997–2007), Meteorol. Atmos. Phys., 119,
163–175, https://doi.org/10.1007/s00703-012-0225-5, 2013.
Hernández-Ceballos, M. A., Brattich, E., Cinelli, G., Ajtić, J., and
Djurdjevic, V.: Seasonality of 7Be concentrations in Europe and
influence of tropopause height, Tellus B, 68, 29534,
https://doi.org/10.3402/tellusb.v68.29534, 2016.
Hernández-Ceballos, M. A., Brattich, E., Lozano, R. L., and Cinelli, G.:
7Be behaviour and meteorological conditions associated with 7Be
peak events in Spain, J. Environ. Radioactiv., 166, 17–26,
https://doi.org/10.1016/j.jenvrad.2016.03.019, 2017
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere–troposphere exchange, Rev. Geophys., 33, 403–439, 1995.
Hoor, P., Wernli, H., Hegglin, M. I., and Bönisch, H.: Transport timescales and tracer properties in the extratropical UTLS, Atmos. Chem. Phys., 10, 7929–7944, https://doi.org/10.5194/acp-10-7929-2010, 2010.
Hsu, C.-P. F.: Air Parcel Motions during a Numerically Simulated Sudden
Stratospheric Warming, J. Atmos. Sci., 37, 2768–2792,
https://doi.org/10.1175/1520-0469(1980)037<2768:APMDAN>2.0.CO;2,
1980.
Huret, N., Pirre, M., Hauchecorne, A., Robert, C., and Catoire, V.: On the
vertical structure of the stratosphere at midlatitudes during the first
stage of the polar vortex formation and in the polar region in the presence
of a large mesospheric descent, J. Geophys. Res., 111, D6, https://doi.org/10.1029/2005JD006102, 2006.
Ioannidou, A. and Papastefanou, C.: Precipitation scavenging of 7Be
and 137Cs radionuclides in air, J. Environ. Radioactiv., 85, 121–136,
https://doi.org/10.1016/j.jenvrad.2005.06.005, 2006.
Jacob, D. J. D., Prather, M. J. M., Rasch, P. P. J., Shia, R. R.-L.,
Balkanski, Y. J., Beagley, S. R., Bergmann, D. J., Blackshear, W. T., Brown,
M., Chiba, M., Chipperfield, M. P., de Grandpré, J., Dignon, J. E.,
Feichter, J., Genthon, C., Grose, W. L., Kasibhatla, P.S., Köhler, I.,
Kritz, M. A., Law, K., Penner, J. E., Ramonet, M., Reeves, C.E., Rotman, D. A.,
Stockwell, D. Z., Van Velthoven, P. F. J., Verver, G., Wild, O., Yang H., and
Zimmermann, P.: Evaluation and intercomparison of global atmospheric
transport models using 222Rn and other short-lived tracers, J. Geophys. Res.-Atmos., 102, 5953–5970, https://doi.org/10.1029/96JD02955, 1997.
Jorba, O., Pérez, C., Rocadenbosch, F., and Baldasano, J. M. Cluster
analysis of 4-day back trajectories arriving in the Barcelona area, Spain,
from 1997 to 2002, J. Appl. Meteorol. Climatol., 43, 887–901,
https://doi.org/10.1175/1520-0450(2004)043<0887:CAODBT>2.0.CO;2,
2004.
Kang, W. and Tziperman, E.: More frequent sudden stratospheric warming
events due to enhanced MJO forcing expected in a warmer climate, J. Climate,
30, 8727–8743, https://doi.org/10.1175/JCLI-D-17-0044.1, 2017.
Kang, W. and Tziperman, E.: The MJO-SSW teleconnection: interaction between
MJO-forced waves and the midlatitude jet, Geophys. Res. Lett., 45,
4400–4409, https://doi.org/10.1029/2018GL077937, 2018.
Kivi, R., Kyrö, E., Turunen, T., Harris, N. R. P., von der Gathen, P.,
Rex, M., Anderson, S. B., and Wohltmann, I.: Ozonesonde observations in the
Arctic during 1989–2003: ozone variability and trends in the lower
stratosphere and free troposphere, J. Geophys. Res., 112, D08306,
https://doi.org/10.1029/2006JD007271, 2007.
Koch, D. M., Jacob, D. J., and Graustein, W. C.: Vertical transport in
tropospheric aerosols as indicated by 7Be and 210Pb in a chemical
tracer model, J. Geophys. Res.-Atmos., 101, 18651–18666,
https://doi.org/10.1029/96JD01176, 1996.
Lal, D. and Peters, B.: Cosmic ray produced radioactivity on the earth, in: Cosmic Rays II, edited by: Sitte, K., Springer, Berlin, Heidelberg, 551–612,
1967.
Lee, H. N., Tositti, L., Zheng, X., and Bonasoni, P.: Analyses and
comparisons of 7Be, 210Pb and activity ratio 7Be 210Pb
with ozone observations at two GAW stations from high mountains, J. Geophys.
Res.-Atmos., 112, 1–11, https://doi.org/10.1029/2006JD007421, 2007.
Leppänen, A.-P.: Deposition of naturally occurring 7Be and
210Pb in Northern Finland, J. Environ. Radioactiv., 208–209, 105995,
https://doi.org/10.1016/j.jenvrad.2019.105995, 2019.
Leppänen, A.-P., Pacini, A. A., Usoskin, I. G., Aldahan, A., Echer, E.,
Evangelista, H., Klemola, S., Kovaltsov, G. A., Mursula, K., and Possnert,
G.: Cosmogenic 7Be in air: a complex mixture of production and
transport, J. Atmos. Sol., 72, 1036–1043, https://doi.org/10.1016/j.jastp.2010.06.006,
2010.
Leppänen, A.-P., Usoskin, I. G., Kovaltsov, G. A., and Paatero, J.: Cosmogenic 7Be and 22Na in Finland: Production, observed periodicities and the connection to climatic phenomena, J. Atmos. Sol. Terr. Phys., 74, 16–180, https://doi.org/10.1016/j.jastp.2011.10.017, 2012.
Leppänen, A.-P and Paatero, J.: 7Be in Finland during the 1999–2001 solar maximum and 2007–2009 solar minimum, J. Atmos. Sol. Terr. Phys., 97, 1–10, https://doi.org/10.1016/j.jastp.2013.01.007, 2013.
Limpasuvan, V., Thompson, D. W. J., and Hartmann, D. L.: The Life Cycle of the
Northern Hemisphere Sudden Stratospheric Warmings, J. Climate, 17, 2584–2596,
https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2,
2004.
Lin, J. T. and McElroy, M. B.: Impacts of boundary layer mixing on
pollutant vertical profiles in the lower troposphere: Implications to
satellite remote sensing, Atmos. Environ., 44, 1726–1739,
https://doi.org/10.1016/j.atmosenv.2010.02.009, 2010.
Lin, S.-J. and Rood, R. B.: Multidimensional Flux-Form Semi-Lagrangian
Transport Schemes, Mon. Weather Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2,
1996.
Linderson, M.-L.: Objective classification of atmospheric circulation over
Southern Scandinavia, Int. J. Climatol., 21, 155–169, https://doi.org/10.1002/joc.604,
2001.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from
210Pb and 7Be on wet deposition and transport in a global
three-dimensional chemical tracer model driven by assimilated meteorological
fields, J. Geophys. Res.-Atmos., 106, 12109–12128,
https://doi.org/10.1029/2000JD900839, 2001.
Liu, H., Considine, D. B., Horowitz, L. W., Crawford, J. H., Rodriguez, J. M., Strahan, S. E., Damon, M. R., Steenrod, S. D., Xu, X., Kouatchou, J., Carouge, C., and Yantosca, R. M.: Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, 2016.
Madhu, V.: Effects of sudden stratospheric warming events on the
distribution of total column ozone over polar and middle latitude regions, Open J. Mar. Sci., 6, 2, https://doi.org/10.4236/ojms.2016.62025, 2016.
Mari, C., Jacob, D. J., and Bechtold, P.: Transport and scavenging of soluble
gases in a deep convective cloud, J. Geophys. Res.-Atmos., 105,
22255–22267, https://doi.org/10.1029/2000JD900211, 2000.
Masarik, J. and Beer, J.: Simulation of particle fluxes and cosmogenic
nuclide production in the Earth's atmosphere, J. Geophys. Res., 104,
12099–12111, https://doi.org/10.1029/1998JD200091, 1999.
Mattsson, R., Paatero, J., and Hatakka, J.: Automatic Alpha/Beta Analyser
for Air Filter Samples – Absolute Determination of Radon Progeny by
Pseudo-coincidence Techniques, Radiat. Prot. Dosim., 63, 133–139,
https://doi.org/10.1093/oxfordjournals.rpd.a031520, 1996.
Matthewmann, N. J., Esler, J. G., Charlton-Perez, A. J., and Polvani, L.: A new
look at stratospheric sudden warmings. Part III: polar vortex evolution and
vertical structure, J. Climate, 22, 1566–1585, https://doi.org/10.1175/2008JCLI2365.1, 2009.
Mitchell, D. M., Gray, L. J., and Anstey, J: The influence of stratospheric
vortex displacements and splits on surface climate, J. Climate, 26, 2668–2682,
https://doi.org/10.1175/JCLI-D-12-00030.1, 2013.
Müller, M., Neuber, R., Fierli, F., Hauchecorne, A., Vömel, H., and Oltmans, S. J.: Stratospheric water vapour as tracer for Vortex filamentation in the Arctic winter 2002/2003, Atmos. Chem. Phys., 3, 1991–1997, https://doi.org/10.5194/acp-3-1991-2003, 2003.
Müller, R., Tilmes, S., Grooß, J.-U., Engel, A., Oelhaf, H.,
Wetzel, G., Huret, N., Pirre, M., Catoire, V., Toon, G., and Nakjima, H.: Impact of mesospheric intrusions on ozone-tracer relations in the
stratospheric polar vortex, J. Geophys. Res., 112, D23307, https://doi.org/10.1029/2006JD008315, 2007.
Muñoz, C., Schultz, D., and Vaughan, G.: A midlatitude climatology and
interannual variability of 200- and 500-hPa cutoff lows, J. Climate, 33,
2201–2222, https://doi.org/10.1175/JCLI-D-19-0497.1, 2020.
NCEP/NWS/NOAA/U.S. Department of Commerce: NCEP FNL Operational Model Global
Tropospheric Analyses, continuing from July 1999, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory, https://doi.org/10.5065/D6M043C6 (last access: 23 November 2021),
2000.
Pacini, A. A., Usoskin, I. G., Mursula, K., Echer, E., and Evangelista, H.:
Signature of a sudden stratospheric warming in the near-ground 7Be
flux, Atmos. Environ., 113, 27–31, https://doi.org/10.1016/j.atmosenv.2015.04.065,
2015.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.:
Natural and transboundary pollution influences on sulfate-nitrate-ammonium
aerosols in the United States: Implications for policy, J. Geophys. Res.-Atmos., 109, D15, https://doi.org/10.1029/2003JD004473, 2004.
Peethani, S., Sharma, N., and Pathakoti, M.: Effect of tropospheric and
stratospheric temperatures on tropopause height, Remote Sens. Lett., 5,
933–940, https://doi.org/10.1080/2150704X.2014.973078, 2014.
Peters, D. H. W., Vargin, P., Gabriel, A., Tsvetkova, N., and Yushkov, V.: Tropospheric forcing of the boreal polar vortex splitting in January 2003, Ann. Geophys., 28, 2133–2148, https://doi.org/10.5194/angeo-28-2133-2010, 2010.
Piñero García, F., Ferro García, M. A., and Azahra, M.:
7Be behaviour in the atmosphere of the city of Granada January 2005 to
December 2009, Atmos. Environ., 47, 84–91,
https://doi.org/10.1016/j.atmosenv.2011.11.034, 2012.
Pinheiro, H. R., Hodges, K. I., Gan, M. A., and Ferreira, N. J.: A new perspective
of the climatological features of upper-level cut-off lows in the Southern
Hemisphere, Clim. Dyn., 48, 541–559, https://doi.org/10.1007/s00382-016-3093-8, 2016.
Poluianov, S. V., Kovaltsov, G. A., Mishev, A. L., and Usoskin, I. G.: Production of
cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl
in the atmosphere: altitudinal profiles of yield functions, J. Geophys.
Res., 121, 8125–8136, https://doi.org/10.1002/2016JD025034, 2016.
Portmann, R., Sprenger, M., and Wernli, H.: The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018), Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, 2021.
Potgieter, M. S.: Solar modulation of cosmic rays, Living Rev. Sol. Phys.,
10, 3, https://doi.org/10.12942/lrsp-2013-3, 2013.
Putero, D., Cristofanelli, P., Sprenger, M., Škerlak, B., Tositti, L., and Bonasoni, P.: STEFLUX, a tool for investigating stratospheric intrusions: application to two WMO/GAW global stations, Atmos. Chem. Phys., 16, 14203–14217, https://doi.org/10.5194/acp-16-14203-2016, 2016.
Salminen-Paatero, S., Thölix, L., Kivi, R., and Paatero, J.: Nuclear
contamination sources in surface air of Finnish Lapland in 1965–2011
studied by means of 137Cs, 90Sr, and total beta activity, Environ.
Sci. Pollut. Res., 26, 21511–21523, https://doi.org/10.1007/s11356-019-05451-0, 2019.
Salvador, P., Artíñano, B., Querol, X., and Alastuey, A.: A combined
analysis of backward trajectories and aerosol chemistry to characterise
long-range transport episodes of particulate matter: The Madrid air basin, a
case study, Sci. Tot. Environ., 390, 495–506,
https://doi.org/10.1016/j.scitotenv.2007.10.052, 2008.
Sangiorgi, M., Hernández Ceballos, M. A., Iurlaro, G., Cinelli, G., and de Cort, M.: 30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb) – an open door to boost environmental radioactivity research, Earth Syst. Sci. Data, 11, 589–601, https://doi.org/10.5194/essd-11-589-2019, 2019.
Sarvan, D., Stratimirović, Đ., Blesić, S., Djurdjevic, V., Miljković, V., and Ajtić, J.: Dynamics of beryllium-7 specific activity in relation to meteorological variables, tropopause height, teleconnection indices and sunspot number, Physica A, 469, 813–823, https://doi.org/10.1016/j.physa.2016.11.040, 2017.
Simpkins, G.: Tropics to stratosphere, Nat. Clim. Change, 7, 624,
https://doi.org/10.1038/nclimate3385, 2017.
Sofieva, V. F., Kalakoski, N., Verronen, P. T., Päivärinta, S.-M., Kyrölä, E., Backman, L., and Tamminen, J.: Polar-night O3, NO2 and NO3 distributions during sudden stratospheric warmings in 2003–2008 as seen by GOMOS/Envisat, Atmos. Chem. Phys., 12, 1051–1066, https://doi.org/10.5194/acp-12-1051-2012, 2012.
Sonnemann, G.R., Grygalashvyly, M., and Berger, U.: Impact of a
stratospheric warming event in January 2001 on the minor constituents in the
MLT region calculated on the basis of a new 3D-model LIMA of the dynamics
and chemistry of the middle atmosphere, J. Atmos. Sol.-Terr. Phys., 68,
2012–2025, https://doi.org/10.1016/j.jastp.2006.04.005, 2006.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Sýkora, I., Holý, K., Jeskovský, M., Müllerov, M., Bulko,
M., and Povinec, P. P.: Long-term variations of radionuclides in the
Bratislava air, J. Environ. Radioactiv., 166, 27–35,
https://doi.org/10.1016/j.jenvrad.2016.03.004, 2017.
Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., and Riese, M.: Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere, Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, 2015.
Terzi, L. and Kalinowski, M. B.: World-wide seasonal variation of 7Be
related to large-scale atmospheric circulation dynamics, J. Environ.
Radioactiv., 178–179, 1–15, https://doi.org/10.1016/j.jenvrad.2017.06.031, 2017.
Tilmes, S., Müller, R., Engel, A., Rex, M., Russell III, J. M.: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992
and 2005, Geophys. Res. Lett., 33, 20, https://doi.org/10.1029/2006GL026925, 2006.
Tositti, L., Hübener, S., Kanter, H. J., Ringer, W., Sandrini, S., and
Tobler, L.: Intercomparison of sampling and measurement of 7Be in air
at four high-altitude locations in Europe, Appl. Rad. Isot., 61, 1497–1502,
https://doi.org/10.1016/j.apradiso.2004.04.003, 2004.
Tositti, L., Brattich, E., Cinelli, G., and Baldacci, D.: 12 years of
7Be and 210Pb in Mt. Cimone and their correlation with
meteorological parameters, Atmos. Environ., 87, 108–122, https://doi.org/10.1016/j.atmosenv.2014.01.014, 2014.
Usoskin, I. G. and Kovaltsov, G. A.: Production of cosmogenic 7Be
isotope in the atmosphere: Full 3-D modeling, J. Geophys. Res., 113, D12107,
https://doi.org/10.1029/2007JD009725, 2008.
Usoskin, I. G, Field, C. V., Schmidt, G. A., Leppänen, A.-P., Aldahan, A.,
Kovaltsov, G. A., Possnert, G., and Ungar, R. K.: Short-term production and
synoptic influences on atmospheric 7Be concentrations, J. Geophys. Res.-Atmos., D6, 114, https://doi.org/10.1029/2008JD011333, 2009.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wargan, K. and Coy, L.: Strengthening of the tropopause inversion layer
during the 2009 Sudden Stratospheric Warming: a MERRA-2 study, J. Atmos.
Sci., 73, 1871–1887, https://doi.org/10.1175/JAS-D-15-0333.1, 2016.
Waugh, D. W., Sobel, A. H., and Polvani, L. M.: What is the polar vortex and how
does it influence weather?, B. Am. Meteorol. Soc., 98, 37–44,
https://doi.org/10.1175/BAMS-D-15-00212.1, 2017.
Webber, W. R., Higbie, P. R., and McCracken, K. G.: Production of the
cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the
Earth's atmosphere by solar and galactic cosmic rays, J. Geophys. Res., 112,
A10, https://doi.org/10.1029/2007JA012499, 2007.
Wesely, M. L.: Parameterization of surface resistance to gaseous dry
deposition in regional numerical models, Atmos. Environ., 16, 1293–1304, 1989.
Yu, K., Keller, C. A., Jacob, D. J., Molod, A. M., Eastham, S. D., and Long, M. S.: Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology, Geosci. Model Dev., 11, 305–319, https://doi.org/10.5194/gmd-11-305-2018, 2018.
Zanis, P., Schuepbach, E., Gäggeler, H. W., Hübener, S., and Tobler,
L.: Factors controlling beryllium-7 at Jungfraujoch in Switzerland, Tellus,
51, 789e805, 1999.
Zhang, B., Liu, H., Crawford, J. H., Chen, G., Fairlie, T. D., Chambers, S., Kang, C.-H., Williams, A. G., Zhang, K., Considine, D. B., Sulprizio, M. P., and Yantosca, R. M.: Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport, Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, 2021.
Short summary
In this study we analyse the output of a chemistry and transport model together with observations of different meteorological and compositional variables to demonstrate the link between sudden stratospheric warming and transport of stratospheric air to the surface in the subpolar regions of Europe during the cold season. Our findings have particular implications for atmospheric composition since climate projections indicate more frequent sudden stratospheric warming under a warmer climate.
In this study we analyse the output of a chemistry and transport model together with...
Altmetrics
Final-revised paper
Preprint