Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observation and modeling of high-7Be concentration events at the surface in northern Europe associated with the instability of the Arctic polar vortex in early 2003
Department of Physics and Astronomy “Augusto Righi” DIFA, Alma
Mater Studiorum University of Bologna, via Irnerio 46, 40126 Bologna (BO),
Italy
Hongyu Liu
National Institute of Aerospace, 100 Exploration Way, Hampton, VA
23666, USA
National Institute of Aerospace, 100 Exploration Way, Hampton, VA
23666, USA
Miguel Ángel Hernández-Ceballos
Department of Physics, University of Cordoba, Rabanales Campus, 14071
Cordoba, Spain
Jussi Paatero
Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki,
Finland
Darko Sarvan
Faculty of Veterinary Medicine, University of Belgrade, Bulevar
oslobođenja 18, 11000 Belgrade, Serbia
Vladimir Djurdjevic
Institute of Meteorology, Faculty of Physics, University of
Belgrade, Studentski trg 18, 11000 Belgrade, Serbia
Laura Tositti
Department of Chemistry “G. Ciamician”, Alma Mater Studiorum
University of Bologna, via Selmi 2, 40126 Bologna (BO), Italy
Jelena Ajtić
Faculty of Veterinary Medicine, University of Belgrade, Bulevar
oslobođenja 18, 11000 Belgrade, Serbia
Related authors
Liliana Guidetti, Erika Brattich, Simone Ceccherini, Michaela Imelda Hegglin, Piera Raspollini, Cecilia Tirelli, Nicola Zoppetti, and Ugo Cortesi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3231, https://doi.org/10.5194/egusphere-2025-3231, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A new ozone dataset generated using the Complete Data Fusion algorithm applied to MIPAS and IASI observation is presented, and validated against ozonesondes from WOUDC stations across multiple latitude bands. The fusion propagates limb information from the stratosphere to the troposphere, across nadir observations. The resulting dataset has enhanced numbers of degrees of freedom and reduced total errors, providing improved capability for investigating ozone stratospheric intrusion events.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Jingyi Chen, Hailong Wang, Bo Zhang, Hongyu Liu, David Painemal, Armin Sorooshian, Sheng-Lun Tai, and Christiane Voigt
EGUsphere, https://doi.org/10.22541/essoar.175376670.02806644/v1, https://doi.org/10.22541/essoar.175376670.02806644/v1, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
NASA-validated modeling shows +4K SST & +25 % gradients distinctly alter boundary layer dynamics, cloud physics in cold-air outbreaks. Warmer SST reduces cloud cover; increases size, elongation; hydrometeors shift to ice. Sharper Gradients boost liquid water (cold upwind); reduces ice; disrupts organization. Also, SST changes alter cloud-top properties via entrained airmass origin. Resolving ocean-atmosphere coupling in global models is essential for accurate cloud feedback projections.
Liliana Guidetti, Erika Brattich, Simone Ceccherini, Michaela Imelda Hegglin, Piera Raspollini, Cecilia Tirelli, Nicola Zoppetti, and Ugo Cortesi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3231, https://doi.org/10.5194/egusphere-2025-3231, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A new ozone dataset generated using the Complete Data Fusion algorithm applied to MIPAS and IASI observation is presented, and validated against ozonesondes from WOUDC stations across multiple latitude bands. The fusion propagates limb information from the stratosphere to the troposphere, across nadir observations. The resulting dataset has enhanced numbers of degrees of freedom and reduced total errors, providing improved capability for investigating ozone stratospheric intrusion events.
Tatijana Stosic, Ivana Tošić, Antonio Samuel Alves da Silva, Vladimir Djurdjević, and Borko Stosic
EGUsphere, https://doi.org/10.5194/egusphere-2025-3766, https://doi.org/10.5194/egusphere-2025-3766, 2025
This preprint is open for discussion and under review for Nonlinear Processes in Geophysics (NPG).
Short summary
Short summary
This study investigates if climate change has affected the predictability of daily precipitation in Serbia (1961–2020) using Generalized Weighted Permutation Entropy. Results show that predictability (entropy values) of mean fluctuations remains stable, but predictability of small and large fluctuations exhibits pronounced spatial and temporal variability across two climatic sub-periods. We also identify cases where changes in predictability occur independently of annual precipitation totals.
Hazel Vernier, Demilson Quintão, Bruno Biazon, Eduardo Landulfo, Giovanni Souza, V. Amanda Santos, J. S. Fabio Lopes, C. P. Alex Mendes, A. S. José da Matta, K. Pinheiro Damaris, Benoit Grosslin, P. M. P. Maria Jorge, Maria de Fátima Andrade, Neeraj Rastogi, Akhil Raj, Hongyu Liu, Mahesh Kovilakam, Suvarna Fadnavis, Frank G. Wienhold, Mathieu Colombier, D. Chris Boone, Gwenael Berthet, Nicolas Dumelie, Lilian Joly, and Jean-Paul Vernier
EGUsphere, https://doi.org/10.5194/egusphere-2025-924, https://doi.org/10.5194/egusphere-2025-924, 2025
Preprint withdrawn
Short summary
Short summary
The eruption of Hunga Tonga-Hunga Ha'apai injected large amounts of water vapor and sea salt into the stratosphere, altering traditional views of volcanic aerosols. Using balloon-borne samplers, we collected aerosol samples and found high levels of sea salt and calcium, suggesting sulfate depletion due to gypsum formation. These findings highlight the need to consider sea salt in climate models to better predict volcanic impacts on the atmosphere and climate.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024, https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 µm were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Minjie Zheng, Hongyu Liu, Florian Adolphi, Raimund Muscheler, Zhengyao Lu, Mousong Wu, and Nønne L. Prisle
Geosci. Model Dev., 16, 7037–7057, https://doi.org/10.5194/gmd-16-7037-2023, https://doi.org/10.5194/gmd-16-7037-2023, 2023
Short summary
Short summary
The radionuclides 7Be and 10Be are useful tracers for atmospheric transport studies. Here we use the GEOS-Chem to simulate 7Be and 10Be with different production rates: the default production rate in GEOS-Chem and two from the state-of-the-art beryllium production model. We demonstrate that reduced uncertainties in the production rates can enhance the utility of 7Be and 10Be as tracers for evaluating transport and scavenging processes in global models.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Hazel Vernier, Neeraj Rastogi, Hongyu Liu, Amit Kumar Pandit, Kris Bedka, Anil Patel, Madineni Venkat Ratnam, Buduru Suneel Kumar, Bo Zhang, Harish Gadhavi, Frank Wienhold, Gwenael Berthet, and Jean-Paul Vernier
Atmos. Chem. Phys., 22, 12675–12694, https://doi.org/10.5194/acp-22-12675-2022, https://doi.org/10.5194/acp-22-12675-2022, 2022
Short summary
Short summary
The chemical composition of the stratospheric aerosols collected aboard high-altitude balloons above the summer Asian monsoon reveals the presence of nitrate/nitrite. Using numerical simulations and satellite observations, we found that pollution as well as lightning could explain some of our observations.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Matthew D. Brown, Ewan C. Crosbie, Francesca Gallo, Johnathan W. Hair, Chris A. Hostetler, Carolyn E. Jordan, Claire E. Robinson, Amy Jo Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Elizabeth B. Wiggins, Edward L. Winstead, Luke D. Ziemba, Georges Saliba, Savannah L. Lewis, Lynn M. Russell, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Peter Gaube, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 22, 2795–2815, https://doi.org/10.5194/acp-22-2795-2022, https://doi.org/10.5194/acp-22-2795-2022, 2022
Short summary
Short summary
Atmospheric particle concentrations impact clouds, which strongly impact the amount of sunlight reflected back into space and the overall climate. Measurements of particles over the ocean are rare and expensive to collect, so models are necessary to fill in the gaps by simulating both particle and clouds. However, some measurements are needed to test the accuracy of the models. Here, we measure changes in particles in different weather conditions, which are ideal for comparison with models.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Fule Zhang, Jinlong Wang, Mark Baskaran, Qiangqiang Zhong, Yali Wang, Jussi Paatero, and Jinzhou Du
Earth Syst. Sci. Data, 13, 2963–2994, https://doi.org/10.5194/essd-13-2963-2021, https://doi.org/10.5194/essd-13-2963-2021, 2021
Short summary
Short summary
Here we present a global dataset of air concentration and depositional flux measurements of atmospheric 7Be and 210Pb. The dataset could be used to better understand the transport processes of air masses and depositional processes of aerosols. This dataset not only lays a solid foundation to develop better parameterizations contributing to future modeling efforts but also supplies a basic parameter for tracing soil erosion, particle dynamics, and ocean surface process using 7Be and/or 210Pb.
Bo Zhang, Hongyu Liu, James H. Crawford, Gao Chen, T. Duncan Fairlie, Scott Chambers, Chang-Hee Kang, Alastair G. Williams, Kai Zhang, David B. Considine, Melissa P. Sulprizio, and Robert M. Yantosca
Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, https://doi.org/10.5194/acp-21-1861-2021, 2021
Short summary
Short summary
We simulate atmospheric 222Rn using the GEOS-Chem model to improve understanding of 222Rn emissions and characterize convective transport in the model. We demonstrate the potential of a customized global 222Rn emission scenario to improve simulated surface 222Rn concentrations and seasonality. We assess convective transport using observed 222Rn vertical profiles. Results have important implications for using chemical transport models to interpret the transport of trace gases and aerosols.
Betty Croft, Randall V. Martin, Richard H. Moore, Luke D. Ziemba, Ewan C. Crosbie, Hongyu Liu, Lynn M. Russell, Georges Saliba, Armin Wisthaler, Markus Müller, Arne Schiller, Martí Galí, Rachel Y.-W. Chang, Erin E. McDuffie, Kelsey R. Bilsback, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 1889–1916, https://doi.org/10.5194/acp-21-1889-2021, https://doi.org/10.5194/acp-21-1889-2021, 2021
Short summary
Short summary
North Atlantic Aerosols and Marine Ecosystems Study measurements combined with GEOS-Chem-TOMAS modeling suggest that several not-well-understood key factors control northwest Atlantic aerosol number and size. These synergetic and climate-relevant factors include particle formation near and above the marine boundary layer top, particle growth by marine secondary organic aerosol on descent, particle formation/growth related to dimethyl sulfide, sea spray aerosol, and ship emissions.
Kevin J. Sanchez, Bo Zhang, Hongyu Liu, Georges Saliba, Chia-Li Chen, Savannah L. Lewis, Lynn M. Russell, Michael A. Shook, Ewan C. Crosbie, Luke D. Ziemba, Matthew D. Brown, Taylor J. Shingler, Claire E. Robinson, Elizabeth B. Wiggins, Kenneth L. Thornhill, Edward L. Winstead, Carolyn Jordan, Patricia K. Quinn, Timothy S. Bates, Jack Porter, Thomas G. Bell, Eric S. Saltzman, Michael J. Behrenfeld, and Richard H. Moore
Atmos. Chem. Phys., 21, 831–851, https://doi.org/10.5194/acp-21-831-2021, https://doi.org/10.5194/acp-21-831-2021, 2021
Short summary
Short summary
Models describing atmospheric airflow were combined with satellite measurements representative of marine phytoplankton and other meteorological variables. These combined variables were compared to measured aerosol to identify upwind influences on aerosol concentrations. Results indicate that phytoplankton production rates upwind impact the aerosol mass. Also, results suggest that the condensation of mass onto short-lived large sea spray particles may be a significant sink of aerosol mass.
Cited articles
Adler, R. F., Huffmann, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak,
J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind,
J. Arkin, P, and Nelkin, E.,: The version-2 Global Precipitation
Climatology Project (GPCP) monthly precipitation analysis (1979–present), J.
Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Ajtić, J., Djurdjevic, V., Sarvan, D., Brattich, E., and
Hernández-Ceballos, M.A.: Analysis of extreme beryllium-7 specific
activities in surface air, Radiation & Applications, 1, 216–221,
https://doi.org/10.21175/RadJ.2016.03.040, 2016.
Ajtić, J. V., Sarvan D., Djurdjevic, V. S., Hernández-Ceballos, M.
A., and Brattich, E.: Beryllium-7 surface concentration extremes in Europe,
Facta Universitatis – Series: Physics, Chemistry and Technology, 15,
45–55, 2017.
Ajtić, J., Brattich, E., Sarvan, D., Djurdjevic, V., and
Hernández-Ceballos, M. A.: Factors affecting the 7Be surface
concentration and its extremely high occurrences over the Scandinavian
Peninsula during autumn and winter, Chemosphere, 199, 278–285,
https://doi.org/10.1016/j.chemosphere.2018.02.052, 2018.
Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous
Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q. B., Liu, H. G. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res.-Atmos., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Bianchi, S., Plastino, W., Brattich, E., Djurdjevic, V., Longo, A.,
Hernández-Ceballos, M. A., Sarvan, D., and Ajtić, J.: Analysis of
trends, periodicities, and correlations in the beryllium-7 time series in
Northern Europe, Appl. Radiat. Isot. 148, 160–167,
https://doi.org/10.1016/j.apradiso.2019.03.038, 2019.
Błażej, S. and Mietelski, J. W.: Cosmogenic 22Na, 7Be and
terrestrial 137Cs, 40K radionuclides in ground level air samples
collected weekly in Kraków (Poland) over years 2003–2006, J. Radioanal.
Nucl., 300, 747–756, https://doi.org/10.1007/s10967-014-3049-6, 2014.
Brattich, E., Hernández-Ceballos, M. A., Orza, J. A. G., Bolívar,
J. P., and Tositti, L.: The western Mediterranean basin as an aged aerosols
reservoir. Insights from an old-fashioned but efficient radiotracer. Atmos.
Environ., 141, 481–493, doi;10.1016/j.atmosenv.2016.07.022, 2016
Brattich, E., Orza, J. A. G., Cristofanelli, P., Bonasoni, P., and Tositti,
L.: Influence of stratospheric air masses on radiotracers and ozone over the
central Mediterranean, J. Geophys. Res., 122, 7164–7182, https://doi.org/10.1002/2017JD027036,
2017a.
Brattich, E., Liu, H., Tositti, L., Considine, D. B., and Crawford, J. H.: Processes controlling the seasonal variations in 210Pb and 7Be at the Mt. Cimone WMO-GAW global station, Italy: a model analysis, Atmos. Chem. Phys., 17, 1061–1080, https://doi.org/10.5194/acp-17-1061-2017, 2017b.
Brattich, E., Liu, H., Hernández-Ceballos, M. A., Paatero, J., Sarvan, D., Djurdjevic, V., Tositti, L., and Ajtic, J.: Observation and modeling of high-7Be events in Northern Europe associated with the instability of the Arctic polar vortex in early 2003, Observation and modeling of high-7Be events in Northern Europe associated with the instability of the Arctic polar vortex in early 2003, Zenodo [data set], https://doi.org/10.5281/zenodo.4117521, last access: 23 November 2021.
Carruthers, D. J., Edmunds, H. A., Lester, A. E., McHugh, C. A., and Singles,
R. J.: Use and validation of ADMS-Urban in contrasting urban and industrial
locations, Int. J. Environ. Pollut., 14, 363-374,
https://doi.org/10.1504/IJEP.2000.000558, 2000.
Chae, J-S. and Kim, G.: Large seasonal variations in fine aerosol
precipitation rates revealed using cosmogenic 7Be as a tracer, Sci.
Total Environ., 673, 1–6, https://doi.org/10.1016/j.scitotenv.2019.03.482, 2019.
Chang, J. C. and Hanna, S. R.: Air quality model performance evaluation,
Meteorol. Atmos. Phys., 87, 167–196, https://doi.org/10.1007/s00703-003-0070-7, 2004.
Charlton, A. J. and Polvani, L. M.: A new look at Stratospheric Sudden
Warmings. Part I: climatology and modelling benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Charlton, A. J., Polvani, L. M., Perlwitz, J., Sassi, F., Manzini, E.,
Shibata, K., Pawson, S., Nielsen, J. E., and Rind, D.: A new look at
Stratospheric Sudden Warmings. Part II: evaluation of numerical simulations.
J. Climate, 20, 470–488, https://doi.org/10.1175/JCLI3994.1, 2007.
Chen, D.: A monthly circulation climatology for Sweden and its application
to a winter temperature case study, Int. J. Climatol., 20, 1067–1076,
https://doi.org/10.1002/1097-0088(200008)20:10<1067::AID-JOC528>3.0.CO;2-Q, 2000.
Cristofanelli, P., Bonasoni, P., Collins, W., Feichter, J., Forster, C.,
James, P., Kentarchos, A., Kubik, P. W., Land, C., Meloen, J., Roelofs, G. J.,
Siegmund, P., Sprenger, M., Schnabel, C., Stohl, A., Tobler, L., Tositti,
L., Trickl, T., and Zanis, P.: Stratosphere-to-troposphere transport: A
model and method evaluation, J. Geophys. Res.-Atmos., 108, 8525, https://doi.org/10.1029/2002JD002600, 2003.
Cristofanelli, P., Bonasoni, P., Tositti, L., Bonafè, U., Calzolari, F.,
Evangelisti, F., Sandrini, S., and Stohl, A.: A 6-year analysis of
stratospheric intrusions and their influence on ozone at Mt. Cimone (2165 m above sea level), J. Geophys. Res.-Atmos., 111, D03306, https://doi.org/10.1029/2005JD006553,
2006.
Cristofanelli, P., Calzolari, F., Bonafé, U., Duchi, R., Marinoni, A.,
Roccato, F., Tositti, L., and Bonasoni, P.: Stratospheric intrusion index
(SI2) from baseline measurement data, Theor. Appl. Climatol., 97, 317–325,
https://doi.org/10.1007/s00704-008-0073-x, 2009.
Cristofanelli, P., Brattich, E., Decesari, S., Landi, T.C., Maione, M.,
Putero, D., Tositti, L., and Bonasoni, P.: Studies on environmental
radionuclides at Mt. Cimone, Chapter in: High Mountain Atmospheric Research.
The Italian Mt. Cimone WMO/GAW Global Station (2165 m a.s.l.),
SpringerBriefs in Meteorology, Springer International Publishing, Switzerland, ISBN
978-3-319-61126-6, https://doi.org/10.1007/978-3-319-61127-3, 2018.
De Cort, M., Sangiorgi, M. Hernandez Ceballos, M. A., Vanzo, S., Nweke, E.,
Tognoli, P. V., and Tollefsen, T.: REM data bank – Years 1984–2006, European
Commission, Joint Research Centre (JRC) [data set], https://doi.org/10.2905/jrc-10117-10024,
2007
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denton, M. H., Kivi, R., Ulich, T., Rodger, C. J., Clilverd, M. A., Denton,
J. S., and Lester, M.: Observed response of stratospheric and mesospheric
composition to sudden stratospheric warmings, J. Atmos. Sol., 191, 105054,
https://doi.org/10.1016/j.jastp.2019.06.001, 2019.
Dutkiewicz, V. A. and Husain, L.: Stratospheric and tropospheric components
of 7Be in surface air, J. Geophys. Res.-Atmos., 90, 5783–5788,
https://doi.org/10.1029/JD090iD03p05783, 1985.
Eastham, S. D., Weisenstein, D. K., and Barrett, S. R. H.: Development and
evaluation of the unified tropospheric-stratospheric chemistry extension
(UCX) for the global chemistry-transport model GEOS-Chem, Atmos. Environ.,
89, 52–63, https://doi.org/10.1016/j.atmosenv.2014.02.001, 2014.
Engel, A., Möbius, T., Haase, H.-P., Bönisch, H., Wetter, T., Schmidt, U., Levin, I., Reddmann, T., Oelhaf, H., Wetzel, G., Grunow, K., Huret, N., and Pirre, M.: Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003, Atmos. Chem. Phys., 6, 267–282, https://doi.org/10.5194/acp-6-267-2006, 2006.
European Commission: Commission recommendation of 8 June 2000 on the
application of Article 36 of the Euratom Treaty concerning the monitoring of
the levels of radioactivity in the environment for the purpose of assessing
the exposure of the population as a whole, available at: https://op.europa.eu/it/publication-detail/-/publication/8116b329-eb85-4bda-8d4b-e8c9e0d152c2/language-en (last access: 2 July 2021), 2000.
European Commission: Radioactivity Environmental Monitoring data bank, available at: https://data.jrc.ec.europa.eu/collection/id-0117, last access: 23 November 2021.
Gaffney, J. S., Marley, N., and Cunningham, M. M.: Natural radionuclides in
fine aerosols in the Pittsburgh area, Atmos. Environ., 38, 3191–3200,
https://doi.org/10.1016/j.atmosenv.2004.03.015, 2004.
Gelaro, R., McCarthy, W., Suárez, M.J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerasopoulos, E., Zanis, P., Stohl, A., Zerefos, C. S., Papastefanou, C.,
Ringer, W., Tobler, L., Hübener, S., Gäggeler, H. W., Kanter, H. J.,
Tositti, L., and Sandrini, S.: A climatology of 7Be at four
high-altitude stations at the Alps and the Northern Apennines, Atmos.
Environ., 35, 6347–6360, doi :10.1016/S1352-2310(01)00400-9, 2001.
Gerasopoulos, E., Zerefos, C. S., Papastefanou, C., Zanis, P., and O'Brien,
K.: Low-frequency variability of beryllium-7 surface concentrations over the
Eastern Mediterranean, Atmos. Environ., 37, 1745–1756,
https://doi.org/10.1016/S1352-2310(03)00068-2, 2003.
Getterlman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and
Birner, T. : The extratropical upper troposphere and lower stratosphere,
Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011.
Golubenko, K., Rozanov, E., Kovaltsov, G., Leppänen, A.-P., Sukhodolov, T., and Usoskin, I.: Chemistry-climate model SOCOL-AERv2-BEv1 with the cosmogenic Beryllium-7 isotope cycle, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-56, in review, 2021.
Gourdin, E., Evrard, O., Huon, S., Reyss, J.-L., Ribolzi, O., Bariac, T.,
Sengtaheuanghoung, O., and Ayrault, S.: Spatial and temporal variability of
7Be and 210Pb wet deposition during four successive monsoon storms
in a catchment of northern Laos, J. Environ. Radioact., 136, 195–205,
https://doi.org/10.1016/j.jenvrad.2014.06.008, 2014.
Grange, S. K.: Technical note: saqgetr R package, available at: https://drive.google.com/open?id=1IgDODHqBHewCTKLdAAxRyR7ml8ht6Ods (last access: 2 July 2021), 2019.
Günther, G., Müller, R., von Hobe, M., Stroh, F., Konopka, P., and Volk, C. M.: Quantification of transport across the boundary of the lower stratospheric vortex during Arctic winter 2002/2003, Atmos. Chem. Phys., 8, 3655–3670, https://doi.org/10.5194/acp-8-3655-2008, 2008.
Hanna, S. R.: Uncertainties in air quality model predictions, Bound.-Layer
Meteorol., 62, 3–20, 1993.
Hernández-Ceballos, M. A., Cinelli, G., Marín Ferrer, M., Tollefsen,
T., De Felice, L., Nweke, E., Tognoli, P. V., Vanzo, S., and De Cort, M.: A
climatology of 7Be in surface air in European Union, J. Environ.
Radioactiv., 141, 62–70, https://doi.org/10.1016/j.jenvrad.2014.12.003, 2015.
Heikkilä, U., Beer, J., and Feichter, J.: Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder Minimum using the ECHAM5-HAM General Circulation Model, Atmos. Chem. Phys., 8, 2797–2809, https://doi.org/10.5194/acp-8-2797-2008, 2008.
Hernández-Ceballos, M. A., Adame, J. A., Bolívar, J. P., and De La Morena,
P.: Vertical behaviour and meteorologica properties of air masses in the
southwest of the Iberian Peninsula (1997–2007), Meteorol. Atmos. Phys., 119,
163–175, https://doi.org/10.1007/s00703-012-0225-5, 2013.
Hernández-Ceballos, M. A., Brattich, E., Cinelli, G., Ajtić, J., and
Djurdjevic, V.: Seasonality of 7Be concentrations in Europe and
influence of tropopause height, Tellus B, 68, 29534,
https://doi.org/10.3402/tellusb.v68.29534, 2016.
Hernández-Ceballos, M. A., Brattich, E., Lozano, R. L., and Cinelli, G.:
7Be behaviour and meteorological conditions associated with 7Be
peak events in Spain, J. Environ. Radioactiv., 166, 17–26,
https://doi.org/10.1016/j.jenvrad.2016.03.019, 2017
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere–troposphere exchange, Rev. Geophys., 33, 403–439, 1995.
Hoor, P., Wernli, H., Hegglin, M. I., and Bönisch, H.: Transport timescales and tracer properties in the extratropical UTLS, Atmos. Chem. Phys., 10, 7929–7944, https://doi.org/10.5194/acp-10-7929-2010, 2010.
Hsu, C.-P. F.: Air Parcel Motions during a Numerically Simulated Sudden
Stratospheric Warming, J. Atmos. Sci., 37, 2768–2792,
https://doi.org/10.1175/1520-0469(1980)037<2768:APMDAN>2.0.CO;2,
1980.
Huret, N., Pirre, M., Hauchecorne, A., Robert, C., and Catoire, V.: On the
vertical structure of the stratosphere at midlatitudes during the first
stage of the polar vortex formation and in the polar region in the presence
of a large mesospheric descent, J. Geophys. Res., 111, D6, https://doi.org/10.1029/2005JD006102, 2006.
Ioannidou, A. and Papastefanou, C.: Precipitation scavenging of 7Be
and 137Cs radionuclides in air, J. Environ. Radioactiv., 85, 121–136,
https://doi.org/10.1016/j.jenvrad.2005.06.005, 2006.
Jacob, D. J. D., Prather, M. J. M., Rasch, P. P. J., Shia, R. R.-L.,
Balkanski, Y. J., Beagley, S. R., Bergmann, D. J., Blackshear, W. T., Brown,
M., Chiba, M., Chipperfield, M. P., de Grandpré, J., Dignon, J. E.,
Feichter, J., Genthon, C., Grose, W. L., Kasibhatla, P.S., Köhler, I.,
Kritz, M. A., Law, K., Penner, J. E., Ramonet, M., Reeves, C.E., Rotman, D. A.,
Stockwell, D. Z., Van Velthoven, P. F. J., Verver, G., Wild, O., Yang H., and
Zimmermann, P.: Evaluation and intercomparison of global atmospheric
transport models using 222Rn and other short-lived tracers, J. Geophys. Res.-Atmos., 102, 5953–5970, https://doi.org/10.1029/96JD02955, 1997.
Jorba, O., Pérez, C., Rocadenbosch, F., and Baldasano, J. M. Cluster
analysis of 4-day back trajectories arriving in the Barcelona area, Spain,
from 1997 to 2002, J. Appl. Meteorol. Climatol., 43, 887–901,
https://doi.org/10.1175/1520-0450(2004)043<0887:CAODBT>2.0.CO;2,
2004.
Kang, W. and Tziperman, E.: More frequent sudden stratospheric warming
events due to enhanced MJO forcing expected in a warmer climate, J. Climate,
30, 8727–8743, https://doi.org/10.1175/JCLI-D-17-0044.1, 2017.
Kang, W. and Tziperman, E.: The MJO-SSW teleconnection: interaction between
MJO-forced waves and the midlatitude jet, Geophys. Res. Lett., 45,
4400–4409, https://doi.org/10.1029/2018GL077937, 2018.
Kivi, R., Kyrö, E., Turunen, T., Harris, N. R. P., von der Gathen, P.,
Rex, M., Anderson, S. B., and Wohltmann, I.: Ozonesonde observations in the
Arctic during 1989–2003: ozone variability and trends in the lower
stratosphere and free troposphere, J. Geophys. Res., 112, D08306,
https://doi.org/10.1029/2006JD007271, 2007.
Koch, D. M., Jacob, D. J., and Graustein, W. C.: Vertical transport in
tropospheric aerosols as indicated by 7Be and 210Pb in a chemical
tracer model, J. Geophys. Res.-Atmos., 101, 18651–18666,
https://doi.org/10.1029/96JD01176, 1996.
Lal, D. and Peters, B.: Cosmic ray produced radioactivity on the earth, in: Cosmic Rays II, edited by: Sitte, K., Springer, Berlin, Heidelberg, 551–612,
1967.
Lee, H. N., Tositti, L., Zheng, X., and Bonasoni, P.: Analyses and
comparisons of 7Be, 210Pb and activity ratio 7Be 210Pb
with ozone observations at two GAW stations from high mountains, J. Geophys.
Res.-Atmos., 112, 1–11, https://doi.org/10.1029/2006JD007421, 2007.
Leppänen, A.-P.: Deposition of naturally occurring 7Be and
210Pb in Northern Finland, J. Environ. Radioactiv., 208–209, 105995,
https://doi.org/10.1016/j.jenvrad.2019.105995, 2019.
Leppänen, A.-P., Pacini, A. A., Usoskin, I. G., Aldahan, A., Echer, E.,
Evangelista, H., Klemola, S., Kovaltsov, G. A., Mursula, K., and Possnert,
G.: Cosmogenic 7Be in air: a complex mixture of production and
transport, J. Atmos. Sol., 72, 1036–1043, https://doi.org/10.1016/j.jastp.2010.06.006,
2010.
Leppänen, A.-P., Usoskin, I. G., Kovaltsov, G. A., and Paatero, J.: Cosmogenic 7Be and 22Na in Finland: Production, observed periodicities and the connection to climatic phenomena, J. Atmos. Sol. Terr. Phys., 74, 16–180, https://doi.org/10.1016/j.jastp.2011.10.017, 2012.
Leppänen, A.-P and Paatero, J.: 7Be in Finland during the 1999–2001 solar maximum and 2007–2009 solar minimum, J. Atmos. Sol. Terr. Phys., 97, 1–10, https://doi.org/10.1016/j.jastp.2013.01.007, 2013.
Limpasuvan, V., Thompson, D. W. J., and Hartmann, D. L.: The Life Cycle of the
Northern Hemisphere Sudden Stratospheric Warmings, J. Climate, 17, 2584–2596,
https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2,
2004.
Lin, J. T. and McElroy, M. B.: Impacts of boundary layer mixing on
pollutant vertical profiles in the lower troposphere: Implications to
satellite remote sensing, Atmos. Environ., 44, 1726–1739,
https://doi.org/10.1016/j.atmosenv.2010.02.009, 2010.
Lin, S.-J. and Rood, R. B.: Multidimensional Flux-Form Semi-Lagrangian
Transport Schemes, Mon. Weather Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2,
1996.
Linderson, M.-L.: Objective classification of atmospheric circulation over
Southern Scandinavia, Int. J. Climatol., 21, 155–169, https://doi.org/10.1002/joc.604,
2001.
Liu, H., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from
210Pb and 7Be on wet deposition and transport in a global
three-dimensional chemical tracer model driven by assimilated meteorological
fields, J. Geophys. Res.-Atmos., 106, 12109–12128,
https://doi.org/10.1029/2000JD900839, 2001.
Liu, H., Considine, D. B., Horowitz, L. W., Crawford, J. H., Rodriguez, J. M., Strahan, S. E., Damon, M. R., Steenrod, S. D., Xu, X., Kouatchou, J., Carouge, C., and Yantosca, R. M.: Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641–4659, https://doi.org/10.5194/acp-16-4641-2016, 2016.
Madhu, V.: Effects of sudden stratospheric warming events on the
distribution of total column ozone over polar and middle latitude regions, Open J. Mar. Sci., 6, 2, https://doi.org/10.4236/ojms.2016.62025, 2016.
Mari, C., Jacob, D. J., and Bechtold, P.: Transport and scavenging of soluble
gases in a deep convective cloud, J. Geophys. Res.-Atmos., 105,
22255–22267, https://doi.org/10.1029/2000JD900211, 2000.
Masarik, J. and Beer, J.: Simulation of particle fluxes and cosmogenic
nuclide production in the Earth's atmosphere, J. Geophys. Res., 104,
12099–12111, https://doi.org/10.1029/1998JD200091, 1999.
Mattsson, R., Paatero, J., and Hatakka, J.: Automatic Alpha/Beta Analyser
for Air Filter Samples – Absolute Determination of Radon Progeny by
Pseudo-coincidence Techniques, Radiat. Prot. Dosim., 63, 133–139,
https://doi.org/10.1093/oxfordjournals.rpd.a031520, 1996.
Matthewmann, N. J., Esler, J. G., Charlton-Perez, A. J., and Polvani, L.: A new
look at stratospheric sudden warmings. Part III: polar vortex evolution and
vertical structure, J. Climate, 22, 1566–1585, https://doi.org/10.1175/2008JCLI2365.1, 2009.
Mitchell, D. M., Gray, L. J., and Anstey, J: The influence of stratospheric
vortex displacements and splits on surface climate, J. Climate, 26, 2668–2682,
https://doi.org/10.1175/JCLI-D-12-00030.1, 2013.
Müller, M., Neuber, R., Fierli, F., Hauchecorne, A., Vömel, H., and Oltmans, S. J.: Stratospheric water vapour as tracer for Vortex filamentation in the Arctic winter 2002/2003, Atmos. Chem. Phys., 3, 1991–1997, https://doi.org/10.5194/acp-3-1991-2003, 2003.
Müller, R., Tilmes, S., Grooß, J.-U., Engel, A., Oelhaf, H.,
Wetzel, G., Huret, N., Pirre, M., Catoire, V., Toon, G., and Nakjima, H.: Impact of mesospheric intrusions on ozone-tracer relations in the
stratospheric polar vortex, J. Geophys. Res., 112, D23307, https://doi.org/10.1029/2006JD008315, 2007.
Muñoz, C., Schultz, D., and Vaughan, G.: A midlatitude climatology and
interannual variability of 200- and 500-hPa cutoff lows, J. Climate, 33,
2201–2222, https://doi.org/10.1175/JCLI-D-19-0497.1, 2020.
NCEP/NWS/NOAA/U.S. Department of Commerce: NCEP FNL Operational Model Global
Tropospheric Analyses, continuing from July 1999, Research Data Archive at
the National Center for Atmospheric Research, Computational and Information
Systems Laboratory, https://doi.org/10.5065/D6M043C6 (last access: 23 November 2021),
2000.
Pacini, A. A., Usoskin, I. G., Mursula, K., Echer, E., and Evangelista, H.:
Signature of a sudden stratospheric warming in the near-ground 7Be
flux, Atmos. Environ., 113, 27–31, https://doi.org/10.1016/j.atmosenv.2015.04.065,
2015.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.:
Natural and transboundary pollution influences on sulfate-nitrate-ammonium
aerosols in the United States: Implications for policy, J. Geophys. Res.-Atmos., 109, D15, https://doi.org/10.1029/2003JD004473, 2004.
Peethani, S., Sharma, N., and Pathakoti, M.: Effect of tropospheric and
stratospheric temperatures on tropopause height, Remote Sens. Lett., 5,
933–940, https://doi.org/10.1080/2150704X.2014.973078, 2014.
Peters, D. H. W., Vargin, P., Gabriel, A., Tsvetkova, N., and Yushkov, V.: Tropospheric forcing of the boreal polar vortex splitting in January 2003, Ann. Geophys., 28, 2133–2148, https://doi.org/10.5194/angeo-28-2133-2010, 2010.
Piñero García, F., Ferro García, M. A., and Azahra, M.:
7Be behaviour in the atmosphere of the city of Granada January 2005 to
December 2009, Atmos. Environ., 47, 84–91,
https://doi.org/10.1016/j.atmosenv.2011.11.034, 2012.
Pinheiro, H. R., Hodges, K. I., Gan, M. A., and Ferreira, N. J.: A new perspective
of the climatological features of upper-level cut-off lows in the Southern
Hemisphere, Clim. Dyn., 48, 541–559, https://doi.org/10.1007/s00382-016-3093-8, 2016.
Poluianov, S. V., Kovaltsov, G. A., Mishev, A. L., and Usoskin, I. G.: Production of
cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl
in the atmosphere: altitudinal profiles of yield functions, J. Geophys.
Res., 121, 8125–8136, https://doi.org/10.1002/2016JD025034, 2016.
Portmann, R., Sprenger, M., and Wernli, H.: The three-dimensional life cycles of potential vorticity cutoffs: a global and selected regional climatologies in ERA-Interim (1979–2018), Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, 2021.
Potgieter, M. S.: Solar modulation of cosmic rays, Living Rev. Sol. Phys.,
10, 3, https://doi.org/10.12942/lrsp-2013-3, 2013.
Putero, D., Cristofanelli, P., Sprenger, M., Škerlak, B., Tositti, L., and Bonasoni, P.: STEFLUX, a tool for investigating stratospheric intrusions: application to two WMO/GAW global stations, Atmos. Chem. Phys., 16, 14203–14217, https://doi.org/10.5194/acp-16-14203-2016, 2016.
Salminen-Paatero, S., Thölix, L., Kivi, R., and Paatero, J.: Nuclear
contamination sources in surface air of Finnish Lapland in 1965–2011
studied by means of 137Cs, 90Sr, and total beta activity, Environ.
Sci. Pollut. Res., 26, 21511–21523, https://doi.org/10.1007/s11356-019-05451-0, 2019.
Salvador, P., Artíñano, B., Querol, X., and Alastuey, A.: A combined
analysis of backward trajectories and aerosol chemistry to characterise
long-range transport episodes of particulate matter: The Madrid air basin, a
case study, Sci. Tot. Environ., 390, 495–506,
https://doi.org/10.1016/j.scitotenv.2007.10.052, 2008.
Sangiorgi, M., Hernández Ceballos, M. A., Iurlaro, G., Cinelli, G., and de Cort, M.: 30 years of European Commission Radioactivity Environmental Monitoring data bank (REMdb) – an open door to boost environmental radioactivity research, Earth Syst. Sci. Data, 11, 589–601, https://doi.org/10.5194/essd-11-589-2019, 2019.
Sarvan, D., Stratimirović, Đ., Blesić, S., Djurdjevic, V., Miljković, V., and Ajtić, J.: Dynamics of beryllium-7 specific activity in relation to meteorological variables, tropopause height, teleconnection indices and sunspot number, Physica A, 469, 813–823, https://doi.org/10.1016/j.physa.2016.11.040, 2017.
Simpkins, G.: Tropics to stratosphere, Nat. Clim. Change, 7, 624,
https://doi.org/10.1038/nclimate3385, 2017.
Sofieva, V. F., Kalakoski, N., Verronen, P. T., Päivärinta, S.-M., Kyrölä, E., Backman, L., and Tamminen, J.: Polar-night O3, NO2 and NO3 distributions during sudden stratospheric warmings in 2003–2008 as seen by GOMOS/Envisat, Atmos. Chem. Phys., 12, 1051–1066, https://doi.org/10.5194/acp-12-1051-2012, 2012.
Sonnemann, G.R., Grygalashvyly, M., and Berger, U.: Impact of a
stratospheric warming event in January 2001 on the minor constituents in the
MLT region calculated on the basis of a new 3D-model LIMA of the dynamics
and chemistry of the middle atmosphere, J. Atmos. Sol.-Terr. Phys., 68,
2012–2025, https://doi.org/10.1016/j.jastp.2006.04.005, 2006.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and
Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Sýkora, I., Holý, K., Jeskovský, M., Müllerov, M., Bulko,
M., and Povinec, P. P.: Long-term variations of radionuclides in the
Bratislava air, J. Environ. Radioactiv., 166, 27–35,
https://doi.org/10.1016/j.jenvrad.2016.03.004, 2017.
Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., and Riese, M.: Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere, Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, 2015.
Terzi, L. and Kalinowski, M. B.: World-wide seasonal variation of 7Be
related to large-scale atmospheric circulation dynamics, J. Environ.
Radioactiv., 178–179, 1–15, https://doi.org/10.1016/j.jenvrad.2017.06.031, 2017.
Tilmes, S., Müller, R., Engel, A., Rex, M., Russell III, J. M.: Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992
and 2005, Geophys. Res. Lett., 33, 20, https://doi.org/10.1029/2006GL026925, 2006.
Tositti, L., Hübener, S., Kanter, H. J., Ringer, W., Sandrini, S., and
Tobler, L.: Intercomparison of sampling and measurement of 7Be in air
at four high-altitude locations in Europe, Appl. Rad. Isot., 61, 1497–1502,
https://doi.org/10.1016/j.apradiso.2004.04.003, 2004.
Tositti, L., Brattich, E., Cinelli, G., and Baldacci, D.: 12 years of
7Be and 210Pb in Mt. Cimone and their correlation with
meteorological parameters, Atmos. Environ., 87, 108–122, https://doi.org/10.1016/j.atmosenv.2014.01.014, 2014.
Usoskin, I. G. and Kovaltsov, G. A.: Production of cosmogenic 7Be
isotope in the atmosphere: Full 3-D modeling, J. Geophys. Res., 113, D12107,
https://doi.org/10.1029/2007JD009725, 2008.
Usoskin, I. G, Field, C. V., Schmidt, G. A., Leppänen, A.-P., Aldahan, A.,
Kovaltsov, G. A., Possnert, G., and Ungar, R. K.: Short-term production and
synoptic influences on atmospheric 7Be concentrations, J. Geophys. Res.-Atmos., D6, 114, https://doi.org/10.1029/2008JD011333, 2009.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wargan, K. and Coy, L.: Strengthening of the tropopause inversion layer
during the 2009 Sudden Stratospheric Warming: a MERRA-2 study, J. Atmos.
Sci., 73, 1871–1887, https://doi.org/10.1175/JAS-D-15-0333.1, 2016.
Waugh, D. W., Sobel, A. H., and Polvani, L. M.: What is the polar vortex and how
does it influence weather?, B. Am. Meteorol. Soc., 98, 37–44,
https://doi.org/10.1175/BAMS-D-15-00212.1, 2017.
Webber, W. R., Higbie, P. R., and McCracken, K. G.: Production of the
cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the
Earth's atmosphere by solar and galactic cosmic rays, J. Geophys. Res., 112,
A10, https://doi.org/10.1029/2007JA012499, 2007.
Wesely, M. L.: Parameterization of surface resistance to gaseous dry
deposition in regional numerical models, Atmos. Environ., 16, 1293–1304, 1989.
Yu, K., Keller, C. A., Jacob, D. J., Molod, A. M., Eastham, S. D., and Long, M. S.: Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology, Geosci. Model Dev., 11, 305–319, https://doi.org/10.5194/gmd-11-305-2018, 2018.
Zanis, P., Schuepbach, E., Gäggeler, H. W., Hübener, S., and Tobler,
L.: Factors controlling beryllium-7 at Jungfraujoch in Switzerland, Tellus,
51, 789e805, 1999.
Zhang, B., Liu, H., Crawford, J. H., Chen, G., Fairlie, T. D., Chambers, S., Kang, C.-H., Williams, A. G., Zhang, K., Considine, D. B., Sulprizio, M. P., and Yantosca, R. M.: Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport, Atmos. Chem. Phys., 21, 1861–1887, https://doi.org/10.5194/acp-21-1861-2021, 2021.
Short summary
In this study we analyse the output of a chemistry and transport model together with observations of different meteorological and compositional variables to demonstrate the link between sudden stratospheric warming and transport of stratospheric air to the surface in the subpolar regions of Europe during the cold season. Our findings have particular implications for atmospheric composition since climate projections indicate more frequent sudden stratospheric warming under a warmer climate.
In this study we analyse the output of a chemistry and transport model together with...
Altmetrics
Final-revised paper
Preprint