Articles | Volume 21, issue 20
https://doi.org/10.5194/acp-21-15861-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15861-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring
Institute for Space–Earth Environmental Research, Nagoya University,
Nagoya, Aichi, Japan
Institute for Advanced Research, Nagoya University, Nagoya, Aichi,
Japan
Makoto Koike
Department of Earth and Planetary Science, Graduate School of Science,
The University of Tokyo, Tokyo, Japan
Atsushi Yoshida
Department of Earth and Planetary Science, Graduate School of Science,
The University of Tokyo, Tokyo, Japan
National Institute of Polar Research, Tachikawa, Tokyo, Japan
Nobuhiro Moteki
Department of Earth and Planetary Science, Graduate School of Science,
The University of Tokyo, Tokyo, Japan
Kouji Adachi
Department of Atmosphere, Ocean, and Earth System Modeling Research, Meteorological Research Institute, Tsukuba, Japan
Naga Oshima
Department of Atmosphere, Ocean, and Earth System Modeling Research, Meteorological Research Institute, Tsukuba, Japan
Hitoshi Matsui
Graduate School of Environmental Studies, Nagoya University, Nagoya,
Japan
Oliver Eppers
Johannes Gutenberg University of Mainz, Institute for Atmospheric
Physics, Mainz, Germany
Particle Chemistry Department, Max Planck Institute for Chemistry,
Mainz, Germany
Heiko Bozem
Johannes Gutenberg University of Mainz, Institute for Atmospheric
Physics, Mainz, Germany
Marco Zanatta
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research (AWI), Bremerhaven, Germany
LISA, UMR CNRS 7583, Université Paris-Est-Créteil, IPSL,
Créteil, France
Andreas B. Herber
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research (AWI), Bremerhaven, Germany
Related authors
Kouji Adachi, Atsushi Yoshida, Tatsuhiro Mori, Nobuhiro Moteki, Sho Ohata, Kazuyuki Kita, Yoshimi Kawai, and Makoto Koike
EGUsphere, https://doi.org/10.5194/egusphere-2025-2230, https://doi.org/10.5194/egusphere-2025-2230, 2025
Short summary
Short summary
This study measured the compositions and mixing states of individual aerosol particles collected at different altitudes over the western North Pacific by simultaneous sampling from an aircraft and a research vessel. The results showed that they were strongly influenced by Siberian Forest biomass burning and mixed with sea spray, and identified various aerosol compositions at different altitudes, sizes, and aerosol sources, highlighting a wide range of individual particle compositions.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Franz Martin Schnaiter, Claudia Linke, Eija Asmi, Henri Servomaa, Antti-Pekka Hyvärinen, Sho Ohata, Yutaka Kondo, and Emma Järvinen
Atmos. Meas. Tech., 16, 2753–2769, https://doi.org/10.5194/amt-16-2753-2023, https://doi.org/10.5194/amt-16-2753-2023, 2023
Short summary
Short summary
Light-absorbing particles from combustion processes are important contributors to climate warming. Their highly variable spectral light absorption properties need to be monitored in the field. Commonly used methods show measurement artefacts that are difficult to correct. We introduce a new instrument that is based on the photoacoustic effect. Long-term operation in the Finnish Arctic demonstrates the applicability of the new instrument for unattended light absorption monitoring.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022, https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Yange Deng, Hiroaki Fujinari, Hikari Yai, Kojiro Shimada, Yuzo Miyazaki, Eri Tachibana, Dhananjay K. Deshmukh, Kimitaka Kawamura, Tomoki Nakayama, Shiori Tatsuta, Mingfu Cai, Hanbing Xu, Fei Li, Haobo Tan, Sho Ohata, Yutaka Kondo, Akinori Takami, Shiro Hatakeyama, and Michihiro Mochida
Atmos. Chem. Phys., 22, 5515–5533, https://doi.org/10.5194/acp-22-5515-2022, https://doi.org/10.5194/acp-22-5515-2022, 2022
Short summary
Short summary
Offline analyses of the hygroscopicity and composition of atmospheric aerosols are complementary to online analyses in view of the applicability to broader sizes, specific compound groups, and investigations at remote sites. This offline study characterized the composition of water-soluble matter in aerosols and their humidity-dependent hygroscopicity on Okinawa, a receptor site of East Asian outflow. Further, comparison with online analyses showed the appropriateness of the offline method.
Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, and Atsushi Yoshida
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-95, https://doi.org/10.5194/acp-2022-95, 2022
Revised manuscript not accepted
Short summary
Short summary
In spring 2018 the research aircraft Polar 5 conducted flights in the Arctic atmosphere. The flight operation was from Station Nord in Greenland, 1700 km north of the Arctic Circle (81°43'N, 17°47'W). Using a mass spectrometer we measured more than 100 organic compounds in the air. We found a clear signature of natural organic compounds that are transported from forests to the high Arctic. These compounds have the potential to change the cloud cover and energy budget of the Arctic region.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021, https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Short summary
Reliable values of mass absorption cross sections (MACs) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by a continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation in BC in the Arctic.
Eija Asmi, John Backman, Henri Servomaa, Aki Virkkula, Maria I. Gini, Konstantinos Eleftheriadis, Thomas Müller, Sho Ohata, Yutaka Kondo, and Antti Hyvärinen
Atmos. Meas. Tech., 14, 5397–5413, https://doi.org/10.5194/amt-14-5397-2021, https://doi.org/10.5194/amt-14-5397-2021, 2021
Short summary
Short summary
Absorbing aerosols are warming the planet and accurate measurements of their concentrations in pristine environments are needed. We applied eight different absorbing-aerosol measurement methods in a field campaign at the Arctic Pallas station. The filter-based techniques were found to be the most sensitive to detect the minuscule amounts of black carbon present, showing a 40 % agreement between them. Our results help to reduce uncertainties in absorbing aerosol measurements.
Kouji Adachi, Naga Oshima, Sho Ohata, Atsushi Yoshida, Nobuhiro Moteki, and Makoto Koike
Atmos. Chem. Phys., 21, 3607–3626, https://doi.org/10.5194/acp-21-3607-2021, https://doi.org/10.5194/acp-21-3607-2021, 2021
Short summary
Short summary
Aerosol particles influence the Arctic climate by interacting with solar radiation, forming clouds, and melting surface snow and ice. Individual-particle analyses using transmission electron microscopy (TEM) and model simulations provide evidence of biomass burning and anthropogenic contributions to the Arctic aerosols by showing a wide range of compositions and mixing states depending on sampling altitude. Our results reveal the aerosol aging processes and climate influences in the Arctic.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Junji Matsushita, and Naga Oshima
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1190, https://doi.org/10.5194/acp-2020-1190, 2020
Preprint withdrawn
Short summary
Short summary
Reliable values of mass absorption cross sections (MAC) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation of BC in the Arctic.
Manuel Moser, Christiane Voigt, Oliver Eppers, Johannes Lucke, Elena De La Torre Castro, Johanna Mayer, Regis Dupuy, Guillaume Mioche, Olivier Jourdan, Hans-Christian Clemen, Johannes Schneider, Philipp Joppe, Stephan Mertes, Bruno Wetzel, Stephan Borrmann, Marcus Klingebiel, Mario Mech, Christof Lüpkes, Susanne Crewell, André Ehrlich, Andreas Herber, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2025-3876, https://doi.org/10.5194/egusphere-2025-3876, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In this study we analyzed Arctic mixed-phase clouds using airborne in-situ measurements in spring 2022. Based on microphysical properties, we show that within these clouds a distinction must be made between classic mixed-phase clouds and a mixed-phase haze regime. Instead of supercooled droplets, the haze regime contains large wet sea salt aerosols. These findings improve our understanding of Arctic low-level cloud processes.
Paul T. Griffiths, Laura J. Wilcox, Robert J. Allen, Vaishali Naik, Fiona M. O'Connor, Michael Prather, Alex Archibald, Florence Brown, Makoto Deushi, William Collins, Stephanie Fiedler, Naga Oshima, Lee T. Murray, Bjørn H. Samset, Chris Smith, Steven Turnock, Duncan Watson-Parris, and Paul J. Young
Atmos. Chem. Phys., 25, 8289–8328, https://doi.org/10.5194/acp-25-8289-2025, https://doi.org/10.5194/acp-25-8289-2025, 2025
Short summary
Short summary
The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) aimed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. We review its contribution to AR6 (Sixth Assessment Report of the Intergovernmental Panel on Climate Change) and the wider understanding of the role of these species in climate and climate change. We identify challenges and provide recommendations to improve the utility and uptake of climate model data, detailed summary tables of CMIP6 models, experiments, and emergent diagnostics.
Zsófia Jurányi, Christof Lüpkes, Frank Stratmann, Jörg Hartmann, Jonas Schaefer, Anna-Marie Jörss, Alexander Schulz, Bruno Wetzel, David Simon, Eduard Gebhard, Maximilian Stöhr, Paula Hofmann, Dirk Kalmbach, Sarah Grawe, Manfred Wendisch, and Andreas Herber
Atmos. Meas. Tech., 18, 3477–3494, https://doi.org/10.5194/amt-18-3477-2025, https://doi.org/10.5194/amt-18-3477-2025, 2025
Short summary
Short summary
Understanding the lowest layers of the atmosphere is crucial for climate research, especially in the Arctic. Our study introduces the T-Bird, an aircraft-towed platform designed to measure turbulence and aerosol properties at extremely low altitudes. Traditional aircraft cannot access this region, making the T-Bird a breakthrough for capturing critical atmospheric data. Its first deployment over the Arctic demonstrated its potential to improve our understanding of polar processes.
Anna Breuninger, Philipp Joppe, Jonas Wilsch, Cornelis Schwenk, Heiko Bozem, Nicolas Emig, Laurin Merkel, Rainer Rossberg, Timo Keber, Arthur Kutschka, Philipp Waleska, Stefan Hofmann, Sarah Richter, Florian Ungeheuer, Konstantin Dörholt, Thorsten Hoffmann, Annette Miltenberger, Johannes Schneider, Peter Hoor, and Alexander L. Vogel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3129, https://doi.org/10.5194/egusphere-2025-3129, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates molecular organic aerosol composition in the upper troposphere and lower stratosphere from an airborne campaign over Central Europe in summer 2024. Via ultra-high-performance liquid chromatography and high-resolution mass spectrometry of tropospheric and stratospheric filter samples, we identified various organic compounds. Our findings underscore the significant cross-tropopause transport of biogenic secondary organic aerosol and anthropogenic pollutants.
Heiko Bozem, Philipp Joppe, Yun Li, Nicolas Emig, Armin Afchine, Anna Breuninger, Joachim Curtius, Stefan Hofmann, Sadath Ismayil, Konrad Kandler, Daniel Kunkel, Arthur Kutschka, Hans-Christoph Lachnitt, Andreas Petzold, Sarah Richter, Timo Röschenthaler, Christian Rolf, Lisa Schneider, Johannes Schneider, Alexander Vogel, and Peter Hoor
EGUsphere, https://doi.org/10.5194/egusphere-2025-3175, https://doi.org/10.5194/egusphere-2025-3175, 2025
Short summary
Short summary
Deployed on a Learjet as a tandem measurement platform during TPEx I (TropoPause composition gradients and mixing Experiment) campaign in June 2024, the new TPC-TOSS (TropoPause Composition Towed Sensor Shuttle) system delivers high-resolution in situ data on ozone, aerosol, clouds, and key weather parameters. Laboratory and in-flight tests confirmed its precision and stability. Observed gradients near the tropopause reveal active mixing and transport processes in the tropopause region.
Xiaohua Pan, Mian Chin, Ralph A. Kahn, Hitoshi Matsui, Toshihiko Takemura, Meiyun Lin, Yuanyu Xie, Dongchul Kim, and Maria Val Martin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2603, https://doi.org/10.5194/egusphere-2025-2603, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Wildfire smoke can travel thousands of kilometers, affecting air quality far from the fire itself. This study looks at how two key factors – how much smoke is emitted & how high it rises – affect how smoke spreads. Using data from a major 2008 Siberian wildfire, four computer models were tested. Results show that models often inject smoke too low & remove it too quickly, missing high-altitude smoke seen by satellites. Better estimates of smoke height are crucial to improve air quality forecasts.
Patrick Konjari, Christian Rolf, Martina Krämer, Armin Afchine, Nicole Spelten, Irene Bartolome Garcia, Annette Miltenberger, Nicolar Emig, Philipp Joppe, Johannes Schneider, Yun Li, Andreas Petzold, Heiko Bozem, and Peter Hoor
EGUsphere, https://doi.org/10.5194/egusphere-2025-2847, https://doi.org/10.5194/egusphere-2025-2847, 2025
Short summary
Short summary
We investigated how a powerful storm over southern Sweden in June 2024 transported ice particles and moist air into the normally dry stratosphere. We observed unusually high water vapor and ice levels up to 1.5 kilometers above the tropopause. Although the extra water vapor lasted only a few days to weeks, it shows how such storms can temporarily alter the upper atmosphere’s composition.
Kouji Adachi, Atsushi Yoshida, Tatsuhiro Mori, Nobuhiro Moteki, Sho Ohata, Kazuyuki Kita, Yoshimi Kawai, and Makoto Koike
EGUsphere, https://doi.org/10.5194/egusphere-2025-2230, https://doi.org/10.5194/egusphere-2025-2230, 2025
Short summary
Short summary
This study measured the compositions and mixing states of individual aerosol particles collected at different altitudes over the western North Pacific by simultaneous sampling from an aircraft and a research vessel. The results showed that they were strongly influenced by Siberian Forest biomass burning and mixed with sea spray, and identified various aerosol compositions at different altitudes, sizes, and aerosol sources, highlighting a wide range of individual particle compositions.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
Philipp Joppe, Johannes Schneider, Jonas Wilsch, Heiko Bozem, Anna Breuninger, Joachim Curtius, Martin Ebert, Nicolas Emig, Peter Hoor, Sadath Ismayil, Konrad Kandler, Daniel Kunkel, Isabel Kurth, Hans-Christoph Lachnitt, Yun Li, Annette Miltenberger, Sarah Richter, Christian Rolf, Lisa Schneider, Cornelis Schwenk, Nicole Spelten, Alexander L. Vogel, Yafang Cheng, and Stephan Borrmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-1346, https://doi.org/10.5194/egusphere-2025-1346, 2025
Short summary
Short summary
We show measurements of a filament with biomass burning influence transported by a warm conveyor belt (WCB) into the tropopause region over Europe. The pollution originates from Canadian forest fires and is transported in the lower troposphere towards Europe. The WCB transport is followed by mixing with air masses of stratospheric chemical signatures. We hypothesize that this mixing leads to a change in the vertical gradient of the potential temperature.
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data, 17, 1295–1328, https://doi.org/10.5194/essd-17-1295-2025, https://doi.org/10.5194/essd-17-1295-2025, 2025
Short summary
Short summary
This paper provides an overview of the HALO–(AC)3 aircraft campaign data sets, the campaign-specific instrument operation, data processing, and data quality. The data set comprises in situ and remote sensing observations from three research aircraft: HALO, Polar 5, and Polar 6. All data are published in the PANGAEA database by instrument-separated data subsets. It is highlighted how the scientific analysis of the HALO–(AC)3 data benefits from the coordinated operation of three aircraft.
Johannes Schneider, Christiane Schulz, Florian Rubach, Anna Ludwig, Jonas Wilsch, Philipp Joppe, Christian Gurk, Sergej Molleker, Laurent Poulain, Florian Obersteiner, Torsten Gehrlein, Harald Bönisch, Andreas Zahn, Peter Hoor, Nicolas Emig, Heiko Bozem, Stephan Borrmann, and Markus Hermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3969, https://doi.org/10.5194/egusphere-2024-3969, 2025
Short summary
Short summary
IAGOS-CARIBIC operates an instrumented container laboratory on commercial regular passenger flights to obtain a long-term representative data set on the composition of the upper troposphere and lowermost stratosphere. Here we report on the development on a fully automated aerosol mass spectrometer for this project. We present technical specifications, necessary modifications for the automation, instrument calibration and comparisons, detection limits, and first in-flight data.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Kumiko Goto-Azuma, Remi Dallmayr, Yoshimi Ogawa-Tsukagawa, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Motohiro Hirabayashi, Jun Ogata, Kyotaro Kitamura, Kenji Kawamura, Koji Fujita, Sumito Matoba, Naoko Nagatsuka, Akane Tsushima, Kaori Fukuda, and Teruo Aoki
Atmos. Chem. Phys., 24, 12985–13000, https://doi.org/10.5194/acp-24-12985-2024, https://doi.org/10.5194/acp-24-12985-2024, 2024
Short summary
Short summary
We developed a continuous flow analysis system to analyze an ice core from northwestern Greenland and coupled it with an improved refractory black carbon (rBC) measurement technique. This allowed accurate high-resolution analyses of size distributions and concentrations of rBC particles with diameters of 70 nm–4 μm for the past 350 years. Our results provide crucial insights into rBC's climatic effects. We also found previous ice core studies substantially underestimated rBC mass concentrations.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Niklas Karbach, Lisa Höhler, Peter Hoor, Heiko Bozem, Nicole Bobrowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 17, 4081–4086, https://doi.org/10.5194/amt-17-4081-2024, https://doi.org/10.5194/amt-17-4081-2024, 2024
Short summary
Short summary
The system presented here can accurately generate and reproduce a stable flow of gas mixtures of known concentrations over several days using ambient air as a dilution medium. In combination with the small size and low weight of the system, this enables the calibration of hydrogen sensors in the field, reducing the influence of matrix effects on the accuracy of the sensor. The system is inexpensive to assemble and easy to maintain, which is the key to reliable measurement results.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Victoria A. Flood, Kimberly Strong, Cynthia H. Whaley, Kaley A. Walker, Thomas Blumenstock, James W. Hannigan, Johan Mellqvist, Justus Notholt, Mathias Palm, Amelie N. Röhling, Stephen Arnold, Stephen Beagley, Rong-You Chien, Jesper Christensen, Makoto Deushi, Srdjan Dobricic, Xinyi Dong, Joshua S. Fu, Michael Gauss, Wanmin Gong, Joakim Langner, Kathy S. Law, Louis Marelle, Tatsuo Onishi, Naga Oshima, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Manu A. Thomas, Svetlana Tsyro, and Steven Turnock
Atmos. Chem. Phys., 24, 1079–1118, https://doi.org/10.5194/acp-24-1079-2024, https://doi.org/10.5194/acp-24-1079-2024, 2024
Short summary
Short summary
It is important to understand the composition of the Arctic atmosphere and how it is changing. Atmospheric models provide simulations that can inform policy. This study examines simulations of CH4, CO, and O3 by 11 models. Model performance is assessed by comparing results matched in space and time to measurements from five high-latitude ground-based infrared spectrometers. This work finds that models generally underpredict the concentrations of these gases in the Arctic troposphere.
Basudev Swain, Marco Vountas, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Soheila Jafariserajehlou, Sachin S. Gunthe, Andreas Herber, Christoph Ritter, Hartmut Bösch, and John P. Burrows
Atmos. Meas. Tech., 17, 359–375, https://doi.org/10.5194/amt-17-359-2024, https://doi.org/10.5194/amt-17-359-2024, 2024
Short summary
Short summary
Aerosols are suspensions of particles dispersed in the air. In this study, we use a novel retrieval of satellite data to investigate an optical property of aerosols, the aerosol optical depth, in the high Arctic to assess their direct and indirect roles in climate change. This study demonstrates that the presented approach shows good quality and very promising potential.
Hamza Ahsan, Hailong Wang, Jingbo Wu, Mingxuan Wu, Steven J. Smith, Susanne Bauer, Harrison Suchyta, Dirk Olivié, Gunnar Myhre, Hitoshi Matsui, Huisheng Bian, Jean-François Lamarque, Ken Carslaw, Larry Horowitz, Leighton Regayre, Mian Chin, Michael Schulz, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Vaishali Naik
Atmos. Chem. Phys., 23, 14779–14799, https://doi.org/10.5194/acp-23-14779-2023, https://doi.org/10.5194/acp-23-14779-2023, 2023
Short summary
Short summary
We examine the impact of the assumed effective height of SO2 injection, SO2 and BC emission seasonality, and the assumed fraction of SO2 emissions injected as SO4 on climate and chemistry model results. We find that the SO2 injection height has a large impact on surface SO2 concentrations and, in some models, radiative flux. These assumptions are a
hiddensource of inter-model variability and may be leading to bias in some climate model results.
Sayako Ueda, Yoko Iwamoto, Fumikazu Taketani, Mingxu Liu, and Hitoshi Matsui
Atmos. Chem. Phys., 23, 10117–10135, https://doi.org/10.5194/acp-23-10117-2023, https://doi.org/10.5194/acp-23-10117-2023, 2023
Short summary
Short summary
We examine iron in atmospheric fine aerosol particles collected over the Indian Ocean during shipborne observations in November 2018. Transmission electron microscopy analysis with water dialysis shows that various types of iron (fly ash, iron oxide, and mineral dust) co-exist with ammonium sulfate and that their solubility differs depending on the iron type. Using PM2.5 bulk samples and global model simulations, we elucidate their origins, aging, and implications for present iron simulations.
Marco Zanatta, Stephan Mertes, Olivier Jourdan, Regis Dupuy, Emma Järvinen, Martin Schnaiter, Oliver Eppers, Johannes Schneider, Zsófia Jurányi, and Andreas Herber
Atmos. Chem. Phys., 23, 7955–7973, https://doi.org/10.5194/acp-23-7955-2023, https://doi.org/10.5194/acp-23-7955-2023, 2023
Short summary
Short summary
Black carbon (BC) particles influence the Arctic radiative balance. Vertical measurements of black carbon were conducted during the ACLOUD campaign in the European Arctic to study the interaction of BC with clouds. This study shows that clouds influence the vertical variability of BC properties across the inversion layer and that multiple activation and transformation mechanisms of BC may occur in the presence of low-level, persistent, mixed-phase clouds.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Franz Martin Schnaiter, Claudia Linke, Eija Asmi, Henri Servomaa, Antti-Pekka Hyvärinen, Sho Ohata, Yutaka Kondo, and Emma Järvinen
Atmos. Meas. Tech., 16, 2753–2769, https://doi.org/10.5194/amt-16-2753-2023, https://doi.org/10.5194/amt-16-2753-2023, 2023
Short summary
Short summary
Light-absorbing particles from combustion processes are important contributors to climate warming. Their highly variable spectral light absorption properties need to be monitored in the field. Commonly used methods show measurement artefacts that are difficult to correct. We introduce a new instrument that is based on the photoacoustic effect. Long-term operation in the Finnish Arctic demonstrates the applicability of the new instrument for unattended light absorption monitoring.
Cynthia H. Whaley, Kathy S. Law, Jens Liengaard Hjorth, Henrik Skov, Stephen R. Arnold, Joakim Langner, Jakob Boyd Pernov, Garance Bergeron, Ilann Bourgeois, Jesper H. Christensen, Rong-You Chien, Makoto Deushi, Xinyi Dong, Peter Effertz, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Greg Huey, Ulas Im, Rigel Kivi, Louis Marelle, Tatsuo Onishi, Naga Oshima, Irina Petropavlovskikh, Jeff Peischl, David A. Plummer, Luca Pozzoli, Jean-Christophe Raut, Tom Ryerson, Ragnhild Skeie, Sverre Solberg, Manu A. Thomas, Chelsea Thompson, Kostas Tsigaridis, Svetlana Tsyro, Steven T. Turnock, Knut von Salzen, and David W. Tarasick
Atmos. Chem. Phys., 23, 637–661, https://doi.org/10.5194/acp-23-637-2023, https://doi.org/10.5194/acp-23-637-2023, 2023
Short summary
Short summary
This study summarizes recent research on ozone in the Arctic, a sensitive and rapidly warming region. We find that the seasonal cycles of near-surface atmospheric ozone are variable depending on whether they are near the coast, inland, or at high altitude. Several global model simulations were evaluated, and we found that because models lack some of the ozone chemistry that is important for the coastal Arctic locations, they do not accurately simulate ozone there.
Kouji Adachi, Yutaka Tobo, Makoto Koike, Gabriel Freitas, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 22, 14421–14439, https://doi.org/10.5194/acp-22-14421-2022, https://doi.org/10.5194/acp-22-14421-2022, 2022
Short summary
Short summary
Ambient aerosol and cloud residual particles in the fine mode were collected at Zeppelin Observatory in Svalbard and were analyzed using transmission electron microscopy. Fractions of mineral dust and sea salt particles increased in cloud residual samples collected at ambient temperatures below 0 °C. This study highlights the variety of aerosol and cloud residual particle compositions and mixing states that influence or are influenced by aerosol–cloud interactions in Arctic low-level clouds.
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos Vieira, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, and Hans Verbeeck
Atmos. Chem. Phys., 22, 12331–12352, https://doi.org/10.5194/acp-22-12331-2022, https://doi.org/10.5194/acp-22-12331-2022, 2022
Short summary
Short summary
Surface ozone can decrease plant productivity and impair human health. In this study, we evaluate the change in surface ozone due to climate change over South America and Africa using Earth system models. We find that if the climate were to change according to the worst-case scenario used here, models predict that forested areas in biomass burning locations and urban populations will be at increasing risk of ozone exposure, but other areas will experience a climate benefit.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022, https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Yange Deng, Hiroaki Fujinari, Hikari Yai, Kojiro Shimada, Yuzo Miyazaki, Eri Tachibana, Dhananjay K. Deshmukh, Kimitaka Kawamura, Tomoki Nakayama, Shiori Tatsuta, Mingfu Cai, Hanbing Xu, Fei Li, Haobo Tan, Sho Ohata, Yutaka Kondo, Akinori Takami, Shiro Hatakeyama, and Michihiro Mochida
Atmos. Chem. Phys., 22, 5515–5533, https://doi.org/10.5194/acp-22-5515-2022, https://doi.org/10.5194/acp-22-5515-2022, 2022
Short summary
Short summary
Offline analyses of the hygroscopicity and composition of atmospheric aerosols are complementary to online analyses in view of the applicability to broader sizes, specific compound groups, and investigations at remote sites. This offline study characterized the composition of water-soluble matter in aerosols and their humidity-dependent hygroscopicity on Okinawa, a receptor site of East Asian outflow. Further, comparison with online analyses showed the appropriateness of the offline method.
Henry Bowman, Steven Turnock, Susanne E. Bauer, Kostas Tsigaridis, Makoto Deushi, Naga Oshima, Fiona M. O'Connor, Larry Horowitz, Tongwen Wu, Jie Zhang, Dagmar Kubistin, and David D. Parrish
Atmos. Chem. Phys., 22, 3507–3524, https://doi.org/10.5194/acp-22-3507-2022, https://doi.org/10.5194/acp-22-3507-2022, 2022
Short summary
Short summary
A full understanding of ozone in the troposphere requires investigation of its temporal variability over all timescales. Model simulations show that the northern midlatitude ozone seasonal cycle shifted with industrial development (1850–2014), with an increasing magnitude and a later summer peak. That shift reached a maximum in the mid-1980s, followed by a reversal toward the preindustrial cycle. The few available observations, beginning in the 1970s, are consistent with the model simulations.
Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, and Atsushi Yoshida
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-95, https://doi.org/10.5194/acp-2022-95, 2022
Revised manuscript not accepted
Short summary
Short summary
In spring 2018 the research aircraft Polar 5 conducted flights in the Arctic atmosphere. The flight operation was from Station Nord in Greenland, 1700 km north of the Arctic Circle (81°43'N, 17°47'W). Using a mass spectrometer we measured more than 100 organic compounds in the air. We found a clear signature of natural organic compounds that are transported from forests to the high Arctic. These compounds have the potential to change the cloud cover and energy budget of the Arctic region.
Markus Jesswein, Heiko Bozem, Hans-Christoph Lachnitt, Peter Hoor, Thomas Wagenhäuser, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 21, 17225–17241, https://doi.org/10.5194/acp-21-17225-2021, https://doi.org/10.5194/acp-21-17225-2021, 2021
Short summary
Short summary
This study presents and compares inorganic chlorine (Cly) derived from observations with the HALO research aircraft in the Antarctic late winter–early fall 2019 and the Arctic winter 2015–2016. Trend-corrected correlations from the Northern Hemisphere show excellent agreement with those from the Southern Hemisphere. After observation allocation inside and outside the vortex based on N2O measurements, results of the two campaigns reveal substantial differences in Cly within the respective vortex.
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Dirk J. L. Olivié, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys., 21, 15929–15947, https://doi.org/10.5194/acp-21-15929-2021, https://doi.org/10.5194/acp-21-15929-2021, 2021
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds but is poorly constrained in models. A total of 15 different aerosol models from AeroCom phase III have reported total aerosol absorption, and for the first time, 11 of these models have reported in a consistent experiment the contributions to absorption from black carbon, dust, and organic aerosol. Here, we document the model diversity in aerosol absorption.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Konstantinos Eleftheriadis, Stergios Vratolis, Radovan Krejci, Paul Zieger, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Yutaka Tobo, Junji Matsushita, and Naga Oshima
Atmos. Meas. Tech., 14, 6723–6748, https://doi.org/10.5194/amt-14-6723-2021, https://doi.org/10.5194/amt-14-6723-2021, 2021
Short summary
Short summary
Reliable values of mass absorption cross sections (MACs) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by a continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation in BC in the Arctic.
Eija Asmi, John Backman, Henri Servomaa, Aki Virkkula, Maria I. Gini, Konstantinos Eleftheriadis, Thomas Müller, Sho Ohata, Yutaka Kondo, and Antti Hyvärinen
Atmos. Meas. Tech., 14, 5397–5413, https://doi.org/10.5194/amt-14-5397-2021, https://doi.org/10.5194/amt-14-5397-2021, 2021
Short summary
Short summary
Absorbing aerosols are warming the planet and accurate measurements of their concentrations in pristine environments are needed. We applied eight different absorbing-aerosol measurement methods in a field campaign at the Arctic Pallas station. The filter-based techniques were found to be the most sensitive to detect the minuscule amounts of black carbon present, showing a 40 % agreement between them. Our results help to reduce uncertainties in absorbing aerosol measurements.
David D. Parrish, Richard G. Derwent, Steven T. Turnock, Fiona M. O'Connor, Johannes Staehelin, Susanne E. Bauer, Makoto Deushi, Naga Oshima, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 21, 9669–9679, https://doi.org/10.5194/acp-21-9669-2021, https://doi.org/10.5194/acp-21-9669-2021, 2021
Short summary
Short summary
The few ozone measurements made before the 1980s indicate that industrial development increased ozone concentrations by a factor of ~ 2 at northern midlatitudes, which are now larger than at southern midlatitudes. This difference was much smaller, and likely reversed, in the pre-industrial atmosphere. Earth system models find similar increases, but not higher pre-industrial ozone in the south. This disagreement may indicate that modeled natural ozone sources and/or deposition loss are inadequate.
Marco Zanatta, Andreas Herber, Zsófia Jurányi, Oliver Eppers, Johannes Schneider, and Joshua P. Schwarz
Atmos. Chem. Phys., 21, 9329–9342, https://doi.org/10.5194/acp-21-9329-2021, https://doi.org/10.5194/acp-21-9329-2021, 2021
Short summary
Short summary
Saline snow samples were collected from the sea ice in the Fram Strait. Laboratory experiments revealed that sea salt can bias the quantification of black carbon with a laser-induced incandescence technique. The maximum underestimation was quantified to reach values of 80 %–90 %. This salt-induced interference is reported here for the first time and should be considered in future studies aiming to quantify black carbon in snow in marine environments.
Linn Karlsson, Radovan Krejci, Makoto Koike, Kerstin Ebell, and Paul Zieger
Atmos. Chem. Phys., 21, 8933–8959, https://doi.org/10.5194/acp-21-8933-2021, https://doi.org/10.5194/acp-21-8933-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions in the Arctic are poorly understood largely due to a lack of observational data. We present the first direct, long-term measurements of cloud residuals, i.e. the particles that remain when cloud droplets and ice crystals are dried. These detailed observations of cloud residuals cover more than 2 years, which is unique for the Arctic and globally. This work studies the size distributions of cloud residuals, their seasonality, and dependence on meteorology.
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Mingxu Liu and Hitoshi Matsui
Atmos. Chem. Phys., 21, 5965–5982, https://doi.org/10.5194/acp-21-5965-2021, https://doi.org/10.5194/acp-21-5965-2021, 2021
Short summary
Short summary
By integrating an advanced global climate model with the latest anthropogenic emission inventory, we quantify the aerosol perturbations to regional radiative budgets due to the changes in anthropogenic emissions in China from 2008–2016. We find that aerosol–radiation interactions lead to a relatively small net radiative forcing at the top of the atmosphere but contribute largely to surface brightening in China over the past few decades.
Daniela Krampe, Frank Kauker, Marie Dumont, and Andreas Herber
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-100, https://doi.org/10.5194/tc-2021-100, 2021
Manuscript not accepted for further review
Short summary
Short summary
Reliable and detailed Arctic snow data are limited. Evaluation of the performance of atmospheric reanalysis compared to measurements in northeast Greenland generally show good agreement. Both data sets are applied to an Alpine snow model and the performance for Arctic conditions is investigated: Simulated snow depth evolution is reliable, but vertical snow profiles show weaknesses. These are smaller with an adapted parametrisation for the density of newly fallen snow for harsh Arctic conditions.
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247, https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
Short summary
This study identifies the main drivers of the formation and transformation processes of submicron particles and highlights that the thick coating of rBC was a result of active conversion of hygroscopic inorganic salts leading to fine aerosol pollution. Consequently, we suggest BC particles as a key contributor to PM2.5 mass increase, which implies that BC reduction is an effective mitigation against haze pollution as well as climate change in Northeast Asia.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Kouji Adachi, Naga Oshima, Sho Ohata, Atsushi Yoshida, Nobuhiro Moteki, and Makoto Koike
Atmos. Chem. Phys., 21, 3607–3626, https://doi.org/10.5194/acp-21-3607-2021, https://doi.org/10.5194/acp-21-3607-2021, 2021
Short summary
Short summary
Aerosol particles influence the Arctic climate by interacting with solar radiation, forming clouds, and melting surface snow and ice. Individual-particle analyses using transmission electron microscopy (TEM) and model simulations provide evidence of biomass burning and anthropogenic contributions to the Arctic aerosols by showing a wide range of compositions and mixing states depending on sampling altitude. Our results reveal the aerosol aging processes and climate influences in the Arctic.
Miklós Szakáll, Michael Debertshäuser, Christian Philipp Lackner, Amelie Mayer, Oliver Eppers, Karoline Diehl, Alexander Theis, Subir Kumar Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 21, 3289–3316, https://doi.org/10.5194/acp-21-3289-2021, https://doi.org/10.5194/acp-21-3289-2021, 2021
Short summary
Short summary
The freezing of cloud drops is promoted by ice-nucleating particles immersed in the drops. This process is essential to understand ice and subsequent precipitation formation in clouds. We investigated the efficiency of several particle types to trigger immersion freezing with two single-drop levitation techniques: a wind tunnel and an acoustic levitator. The evaluation accounted for different conditions during our two series of experiments, which is also applicable to future comparison studies.
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14, https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Different approaches to retrieve the optical-equivalent snow grain size using satellite, airborne, and ground-based observations were evaluated and compared to modeled data. The study is focused on low Sun and partly rough surface conditions encountered North of Greenland in March/April 2018. We proposed an adjusted airborne retrieval method to reduce the retrieval uncertainty.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Jinfeng Yuan, Robin Lewis Modini, Marco Zanatta, Andreas B. Herber, Thomas Müller, Birgit Wehner, Laurent Poulain, Thomas Tuch, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Chem. Phys., 21, 635–655, https://doi.org/10.5194/acp-21-635-2021, https://doi.org/10.5194/acp-21-635-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols contribute substantially to climate warming due to their unique light absorption capabilities. We performed field measurements at a central European background site in winter and found that variability in the absorption efficiency of BC particles is driven mainly by their internal mixing state. Our results suggest that, at this site, knowing the BC mixing state is sufficient to describe BC light absorption enhancements due to the lensing effect in good approximation.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
Kine Onsum Moseid, Michael Schulz, Trude Storelvmo, Ingeborg Rian Julsrud, Dirk Olivié, Pierre Nabat, Martin Wild, Jason N. S. Cole, Toshihiko Takemura, Naga Oshima, Susanne E. Bauer, and Guillaume Gastineau
Atmos. Chem. Phys., 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020, https://doi.org/10.5194/acp-20-16023-2020, 2020
Short summary
Short summary
In this study we compare solar radiation at the surface from observations and Earth system models from 1961 to 2014. We find that the models do not reproduce the so-called
global dimmingas found in observations. Only model experiments with anthropogenic aerosol emissions display any dimming at all. The discrepancies between observations and models are largest in China, which we suggest is in part due to erroneous aerosol precursor emission inventories in the emission dataset used for CMIP6.
Sho Ohata, Tatsuhiro Mori, Yutaka Kondo, Sangeeta Sharma, Antti Hyvärinen, Elisabeth Andrews, Peter Tunved, Eija Asmi, John Backman, Henri Servomaa, Daniel Veber, Makoto Koike, Yugo Kanaya, Atsushi Yoshida, Nobuhiro Moteki, Yongjing Zhao, Junji Matsushita, and Naga Oshima
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1190, https://doi.org/10.5194/acp-2020-1190, 2020
Preprint withdrawn
Short summary
Short summary
Reliable values of mass absorption cross sections (MAC) of black carbon (BC) are required to determine mass concentrations of BC at Arctic sites using different types of filter-based absorption photometers. We successfully estimated MAC values for these instruments through comparison with independent measurements of BC by continuous soot monitoring system called COSMOS. These MAC values are consistent with each other and applicable to study spatial and temporal variation of BC in the Arctic.
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020, https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Short summary
A first assessment is made of the historical and future changes in air pollutants from models participating in the 6th Coupled Model Intercomparison Project (CMIP6). Substantial benefits to future air quality can be achieved in future scenarios that implement measures to mitigate climate and involve reductions in air pollutant emissions, particularly methane. However, important differences are shown between models in the future regional projection of air pollutants under the same scenario.
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
Kouji Adachi, Naga Oshima, Zhaoheng Gong, Suzane de Sá, Adam P. Bateman, Scot T. Martin, Joel F. de Brito, Paulo Artaxo, Glauber G. Cirino, Arthur J. Sedlacek III, and Peter R. Buseck
Atmos. Chem. Phys., 20, 11923–11939, https://doi.org/10.5194/acp-20-11923-2020, https://doi.org/10.5194/acp-20-11923-2020, 2020
Short summary
Short summary
Occurrences, size distributions, and number fractions of individual aerosol particles from the Amazon basin during the GoAmazon2014/5 campaign were analyzed using transmission electron microscopy. Aerosol particles from natural sources (e.g., mineral dust, primary biological aerosols, and sea salts) during the wet season originated from the Amazon forest and long-range transports (the Saharan desert and the Atlantic Ocean). They commonly mix at an individual particle scale during transport.
W. Richard Leaitch, John K. Kodros, Megan D. Willis, Sarah Hanna, Hannes Schulz, Elisabeth Andrews, Heiko Bozem, Julia Burkart, Peter Hoor, Felicia Kolonjari, John A. Ogren, Sangeeta Sharma, Meng Si, Knut von Salzen, Allan K. Bertram, Andreas Herber, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020, https://doi.org/10.5194/acp-20-10545-2020, 2020
Short summary
Short summary
Black carbon is a factor in the warming of the Arctic atmosphere due to its ability to absorb light, but the uncertainty is high and few observations have been made in the high Arctic above 80° N. We combine airborne and ground-based observations in the springtime Arctic, at and above 80° N, with simulations from a global model to show that light absorption by black carbon may be much larger than modelled. However, the uncertainty remains high.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Cited articles
Adachi, K., Oshima, N., Ohata, S., Yoshida, A., Moteki, N., and Koike, M.:
Compositions and mixing states of aerosol particles by aircraft observations
in the Arctic springtime, 2018, Atmos. Chem. Phys., 21, 3607–3626,
https://doi.org/10.5194/acp-21-3607-2021, 2021.
Arctic Monitoring and Assessment Programme (AMAP): AMAP Assessment 2015:
Black carbon and ozone as Arctic climate forcers, Oslo, Norway, 1–116, 2015.
Bozem, H., Hoor, P., Kunkel, D., Köllner, F., Schneider, J., Herber, A.,
Schulz, H., Leaitch, W. R., Aliabadi, A. A., Willis, M. D., Burkart, J., and
Abbatt, J. P. D.: Characterization of transport regimes and the polar dome
during Arctic spring and summer using in situ aircraft measurements, Atmos.
Chem. Phys., 19, 15049–15071, https://doi.org/10.5194/acp-19-15049-2019,
2019.
Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M.,
McComiskey, A., Brioude, J., Cooper, O. R., Stohl, A., Aikin, K. C., de
Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R.-S., Gore, W., Holloway,
J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H.,
Murphy, D. M., Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A.,
Peischl, J., Pierce, R. B., Pilewskie, P., Quinn, P. K., Ryerson, T. B.,
Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H.,
Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and
Wollny, A. G.: Characteristics, sources, and transport of aerosols measured
in spring 2008 during the aerosol, radiation, and cloud processes affecting
Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423–2453,
https://doi.org/10.5194/acp-11-2423-2011, 2011.
Burba, G. G., McDermitt, D. K., Anderson, D. J., Furtaw, M. D., and Eckles,
R.: Novel design of an enclosed CO2/H2O gas analyser for eddy covariance
flux measurements, Tellus B, 62, 743–748,
https://doi.org/10.1111/j.1600-0889.2010.00468.x, 2010.
Donth, T., Jäkel, E., Ehrlich, A., Heinold, B., Schacht, J., Herber, A.,
Zanatta, M., and Wendisch, M.: Combining atmospheric and snow radiative
transfer models to assess the solar radiative effects of black carbon in the
Arctic, Atmos. Chem. Phys., 20, 8139–8156,
https://doi.org/10.5194/acp-20-8139-2020, 2020.
Ehrlich, A., Wendisch, M., Lüpkes, C., Buschmann, M., Bozem, H.,
Chechin, D., Clemen, H. C., Dupuy, R., Eppers, O., Hartmann, J., Herber, A.,
Jäkel, E., Järvinen, E., Jourdan, O., Kästner, U., Kliesch, L.
L., Köllner, F., Mech, M., Mertes, S., Neuber, R., Ruiz-Donoso, E.,
Schnaiter, M., Schneider, J., Stapf, J., and Zanatta, M.: A comprehensive in
situ and remote sensing data set from the Arctic CLoud Observations Using
airborne measurements during polar Day (ACLOUD) campaign, Earth Syst. Sci.
Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, 2019.
Evangeliou, N., Balkanski, Y., Hao, W. M., Petkov, A., Silverstein, R. P.,
Corley, R., Nordgren, B. L., Urbanski, S. P., Eckhardt, S., Stohl, A.,
Tunved, P., Crepinsek, S., Jefferson, A., Sharma, S., Nøjgaard, J. K.,
and Skov, H.: Wildfires in northern Eurasia affect the budget of black
carbon in the Arctic – a 12 year retrospective synopsis (2002–2013),
Atmos. Chem. Phys., 16, 7587–7604,
https://doi.org/10.5194/acp-16-7587-2016, 2016.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Flanner, M. G.: Arctic climate sensitivity to local black carbon, J.
Geophys. Res.-Atmos., 118, 1840–1851, https://doi.org/10.1002/jgrd.50176,
2013.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.:
Present-day climate forcing and response from black carbon in snow, J.
Geophys. Res.-Atmos., 112, 1–17, https://doi.org/10.1029/2006JD008003,
2007.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, version 2 (MERRA-2), J. Clim., 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerbig, C., Schmitgen, S., Kley, D., Volz-Thomas, A., Dewey, K., and Haaks,
D.: An improved fast response vacuum–UV resonance fluorescence CO
instrument, J. Geophys. Res., 104, 1699–1704,
https://doi.org/10.1029/1998JD100031, 1999.
Herber, A., Bozem, H., Hendricks, S., Holzinger, R., Jäkel, E., Koike,
M., Neuber, R., Petzold, A., and Stratmann, F.: Raw data of POLAR 5 campaign
PAMARCMIP 2018, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.899508,
2019.
Herber, A. B., Haas, C., Stone, R. S., Bottenheim, J. W., Liu, P., Li,
S.-M., Staebler, R. M., Strapp, J. W., and Dethloff, K.: Regular airborne
surveys of Arctic sea ice and atmosphere, Eos, 93, 41–42,
https://doi.org/10.1029/2012EO040001, 2012.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G.,
Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T.
C., Dawidowski, L., Kholod, N., Kurokawa, J. I., Li, M., Liu, L., Lu, Z.,
Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014)
anthropogenic emissions of reactive gases and aerosols from the Community
Emission Data System (CEDS), Geosci. Model Dev., 11, 369–408,
https://doi.org/10.5194/gmd-11-369-2018, 2018.
IPCC: Climate Change 2021: The Physical Science Basis, Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge Univ. Press, Cambridge, UK, in press, 2021.
Ishii, M., Shouji, A., Sugimoto, S., and Matsumoto, T.: Objective analyses
of sea-surface temperature and marine meteorological variables for the 20th
century using ICOADS and the Kobe Collection, Int. J. Climatol., 25,
865–879, https://doi.org/10.1002/joc.1169, 2005.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N.,
Jones, L., Morcrette, J. J., Razinger, M., Schultz, M. G., Suttie, M., and
Van Der Werf, G. R.: Biomass burning emissions estimated with a Global Fire
Assimilation System based on observed fire radiative power, Biogeosciences,
9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kawai, H., Yukimoto, S., Koshiro, T., Oshima, N., Tanaka, T., Yoshimura, H.,
and Nagasawa, R.: Significant improvement of cloud representation in the
global climate model MRI-ESM 2, Geosci. Model Dev., 12, 2875–2897.
https://doi.org/10.5194/gmd-12-2875-2019, 2019.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Kiyotoshi, T.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Koch, D. and Hansen, J.: Distant origins of Arctic black carbon: A Goddard
Institute for Space Studies Model E experiment, J. Geophys. Res., 110,
D04204, https://doi.org/10.1029/2004JD005296, 2005.
Kodros, J. K., Hanna, S. J., Bertram, A. K., Leaitch, W. R., Schulz, H.,
Herber, A. B., Zanatta, M., Burkart, J., Willis, M. D., Abbatt, J. P. D.,
and Pierce, J. R.: Size-resolved mixing state of black carbon in the
Canadian high Arctic and implications for simulated direct radiative effect,
Atmos. Chem. Phys., 18, 11345–11361,
https://doi.org/10.5194/acp-18-11345-2018, 2018.
Koike, M., Goto-Azuma, K., Kondo, Y., Matsui, H., Mori, T., Moteki, N.,
Ohata, S., Okamoto, H., Oshima, N., Sato, K., Takano, T., Tobo, Y., Ukita,
J., and Yoshida, A.: Studies on Arctic aerosols and clouds during the ArCS
project, Polar Sci., 27, 100621, https://doi.org/10.1016/j.polar.2020.100621, 2021.
Kondo, Y., Sahu, L., Kuwata, M., Miyazaki, Y., Takegawa, N., Moteki, N.,
Imaru, J., Han, S., Nakayama, T., Oanh, N. T. K., Hu, M., Kim, Y. J., and
Kita, K.: Stabilization of the mass absorption cross section of black carbon
for filter-based absorption photometry by the use of a heated inlet, Aerosol
Sci. Tech., 43, 741–756, https://doi.org/10.1080/02786820902889879, 2009.
Kondo, Y., Matsui, H., Moteki, N., Sahu, L., Takegawa, N., Kajino, M., Zhao,
Y., Cubison, M. J., Jimenez, J. L., Vay, S., Diskin, G. S., Anderson, B.,
Wisthaler, A., Mikoviny, T., Fuelberg, H. E., Blake, D. R., Huey, G.,
Weinheimer, A. J., Knapp, D. J., and Brune, W. H.: Emissions of black
carbon, organic, and inorganic aerosols from biomass burning in North
America and Asia in 2008, J. Geophys. Res., 116, D08204,
https://doi.org/10.1029/2010JD015152, 2011a.
Kondo, Y., Sahu, L., Moteki, N., Khan, F., Takegawa, N., Liu, X., Koike, M.,
and Miyakawa, T.: Consistency and traceability of black carbon measurements
made by laser-induced incandescence, thermal-optical transmittance, and
filter-based photo-absorption techniques, Aerosol Sci. Tech., 45, 295–312,
https://doi.org/10.1080/02786826.2010.533215, 2011b.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont,
Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell,
D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma,
M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and Van Vuuren, D.
P.: Historical (1850–2000) gridded anthropogenic and biomass burning
emissions of reactive gases and aerosols: Methodology and application,
Atmos. Chem. Phys., 10, 7017–7039,
https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lampert, A., Hartmann, J., Pätzold, F., Lobitz, L., Hecker, P., Kohnert,
K., Larmanou, E., Serafimovich, A., and Sachs, T.: Comparison of Lyman-alpha
and LI-COR infrared hygrometers for airborne measurement of turbulent
fluctuations of water vapour, Atmos. Meas. Tech., 11, 2523–2536,
https://doi.org/10.5194/amt-11-2523-2018, 2018.
Matsui, H.: Development of a global aerosol model using a two-dimensional
sectional method: 1. Model design, J. Adv. Model. Earth Sy., 9, 1921–1947,
https://doi.org/10.1002/2017MS000936, 2017.
Matsui, H. and Liu, M.: Importance of supersaturation in Arctic black carbon
simulations, J. Clim., 34, 7843–7856,
https://doi.org/10.1175/JCLI-D-20-0994.1, 2021.
Matsui, H. and Mahowald, N.: Development of a global aerosol model using a
two-dimensional sectional method: 2, Evaluation and sensitivity simulations,
J. Adv. Model. Earth Sy., 9, 1887–1920,
https://doi.org/10.1002/2017MS000937, 2017.
Matsui, H., Kondo, Y., Moteki, N., Takegawa, N., Sahu, L. K., Zhao, Y.,
Fuelberg, H. E., Sessions, W. R., Diskin, G., Blake, D. R., Wisthaler, A.,
and Koike, M.: Seasonal variation of the transport of black carbon aerosol
from the Asian continent to the Arctic during the ARCTAS aircraft campaign,
J. Geophys. Res., 116, D05202 https://doi.org/10.1029/2010JD015067, 2011.
Matsui, H., Hamilton, D. S., and Mahowald, N. M.: Black carbon radiative
effects highly sensitive to emitted particle size when resolving
mixing-state diversity, Nat. Commun., 9, 3446,
https://doi.org/10.1038/s41467-018-05635-1, 2018.
Miyazaki, Y., Kondo, Y., Sahu, L. K., Imaru, J., Fukushima, N., and Kanno,
A.: Performance of a Newly Designed Continuous Soot Monitoring System
(COSMOS), J. Environ. Monitor., 10, 1195–1201, 2008.
Mori, T., Kondo, Y., Ohata, S., Zhao, Y., Sinha, P. R., and Oshima, N.,
Matsui, H., Moteki, N., and Koike, M.: Seasonal variation of wet deposition
of black carbon in Arctic Alaska, J. Geophys. Res.-Atmos., 125,
e2019JD032240, https://doi.org/10.1029/2019JD032240, 2020.
Moteki, N. and Kondo, Y.: Dependence of laser-induced incandescence on
physical properties of black carbon aerosols: Measurements and theoretical
interpretation, Aerosol Sci. Tech., 44, 663–675,
https://doi.org/10.1080/02786826.2010.484450, 2010.
Moteki, N., Kondo, Y., Oshima, N., Takegawa, N., Koike, M., Kita, K.,
Matsui, H., and Kajino, M.: Size dependence of wet removal of black carbon
aerosols during transport from the boundary layer to the free troposphere,
Geophys. Res. Lett., 39, L13802, https://doi.org/10.1029/2012GL052034, 2012.
Moteki, N., Mori, T., Matsui, H., and Ohata, S.: Observational constraint of
in-cloud supersaturation for simulations of aerosol rainout in atmospheric
models, npj Clim. Atmos. Sci., 2, 6,
https://doi.org/10.1038/s41612-019-0063-y, 2019.
Nakoudi, K., Ritter, C., Böckmann, C., Kunkel, D., Eppers, O., Rozanov,
V., Mei, L., Pefanis, V., Jäkel, E., Herber, A., Maturilli, M., and
Neuber, R.: Does the intra-arctic modification of long-range transported
aerosol affect the local radiative budget? (A case study), Remote Sens., 12, 2112,
https://doi.org/10.3390/rs12132112, 2020.
Ogren, J. A., Wendell, J., Andrews, E., and Sheridan, P. J.: Continuous
light absorption photometer for long-term studies, Atmos. Meas. Tech., 10,
4805–4818, https://doi.org/10.5194/amt-10-4805-2017, 2017.
Ohata, S., Moteki, N. Mori, T., Koike, M., and Kondo, Y.: A key process
controlling the wet removal of aerosols: new observational evidence, Sci.
Rep., 6, 34113, https://doi.org/10.1038/srep34113, 2016.
Ohata, S., Kondo, Y., Moteki, N., Mori, T., Yoshida, A., Sinha, P. R., and
Koike, M.: Accuracy of black carbon measurements by a filter-based
absorption photometer with a heated inlet, Aerosol Sci. Tech., 53,
1079–1091, https://doi.org/10.1080/02786826.2019.1627283, 2019.
Ohata, S., Mori, T., Kondo, Y., Sharma, S., Hyvärinen, A., Andrews,
E., Tunved, P., Asmi, E., Backman, J., Servomaa, H., Veber, D., Eleftheriadis, K., Vratolis, S., Krejci, R., Ziieegeer, P., Koike, M., Kanaya, Y., Yoshida, A., Moteki, N., Zhao, Y., Tobo, Y., Matsushita, J., and Oshima, N.: Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic, Atmos. Meas. Tech., in press, 2021a.
Ohata, S., Yoshida, A., Moteki, N., and Koike, M.: Number concentrations, mass concentrations, mass-averaged diameters, and median shell-to-core ratios of black carbon aerosols obtained by aircraft measurements during the PAMARCMiP 2018, 1.01, Arctic Data archive System (ADS), Japan [data set],
https://doi.org/10.17592/001.2019121712, 2021b.
Oshima, N., Kondo, Y., Moteki, N., Takegawa, N., Koike, M., Kita, K.,
Matsui, H., Kajino, M., Nakamura, H., Jung, J. S., and Kim, Y. J.: Wet
removal of black carbon in Asian outflow: Aerosol Radiative Forcing in East
Asia (A-FORCE) aircraft campaign, J. Geophys. Res., 117, D03204,
https://doi.org/10.1029/2011JD016552, 2012.
Oshima, N., Koike, M., Kondo, Y., Nakamura, H., Moteki, N., Matsui, H.,
Takegawa, N., and Kita, K.: Vertical transport mechanisms of black carbon
over East Asia in spring during the A-FORCE aircraft campaign, J. Geophys.
Res.-Atmos., 118, 13175–13198, https://doi.org/10.1002/2013JD020262, 2013.
Oshima, N., Yukimoto, S., Deushi, M., Koshiro, T., Kawai, H., Tanaka, T. Y.,
and Yoshida, K.: Global and Arctic effective radiative forcing of
anthropogenic gases and aerosols in MRI-ESM 2.0, Prog. Earth
Planet. Sci., 7, 38, https://doi.org/10.1186/s40645-020-00348-w, 2020.
Park, R. J., Jacob, D. J., Palmer, P. I., Clarke, A. D., Weber, R. J.,
Zondlo, M. A., Eisele, F. L., Bandy, A. R., Thornton, D. C., Sachse, G. W.,
and Bond, T. C.: Export efficiency of black carbon aerosol in continental
outflow: Global implications, J. Geophys. Res., 110, D11205,
https://doi.org/10.1029/2004JD005432, 2005.
Raut, J. C., Marelle, L., Fast, J. D., Thomas, J. L., Weinzierl, B., Law, K.
S., Berg, L. K., Roiger, A., Easter, R. C., Heimerl, K., Onishi, T.,
Delanoë, J., and Schlager, H.: Cross-polar transport and scavenging of
Siberian aerosols containing black carbon during the 2012 ACCESS summer
campaign, Atmos. Chem. Phys., 17, 10969–10995,
https://doi.org/10.5194/acp-17-10969-2017, 2017.
Sahu, L. K., Kondo, Y., Moteki, N., Takegawa, N., Zhao, Y., Cubison, M. J.,
Jimenez, J. L., Vay, S., Diskin, G. S., Wisthaler, A., Mikoviny, T., Huey,
L. G., Weinheimer, A. J., and Knapp, D. J.: Emission characteristics of
black carbon in anthropogenic and biomass burning plumes over California
during ARCTAS-CARB 2008, J. Geophys. Res.-Atmos., 117, 1–20,
https://https://doi.org/10.1029/2011JD017401, 2012.
Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T.
K., Bian, H., Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen,
T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Penner,
J. E., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K.,
and Zhang, K.: Black carbon vertical profiles strongly affect its radiative
forcing uncertainty, Atmos. Chem. Phys., 13, 2423–2434,
https://doi.org/10.5194/acp-13-2423-2013, 2013.
Scharffe, D., Slemr, F., Brenninkmeijer, C. A. M., and Zahn, A.: Carbon
monoxide measurements onboard the CARIBIC passenger aircraft using UV
resonance fluorescence, Atmos. Meas. Tech., 5, 1753–1760,
https://doi.org/10.5194/amt-5-1753-2012, 2012.
Schulz, H., Zanatta, M., Bozem, H., Leaitch, W. R., Herber, A. B., Burkart,
J., Willis, M. D., Kunkel, D., Hoor, P. M., Abbatt, J. P. D., and Gerdes,
R.: High Arctic aircraft measurements characterising black carbon vertical
variability in spring and summer, Atmos. Chem. Phys., 19, 2361–2384,
https://doi.org/10.5194/acp-19-2361-2019, 2019.
Schwarz, J. P., Spackman, J. R., Gao, R. S., Watts, L. A., Stier, P.,
Schulz, M., Davis, S. M., Wofsy, S. C., and Fahey, D. W.: Global-scale black
carbon profiles observed in the remote atmosphere and compared to models,
Geophys. Res. Lett., 37, L18812, https://doi.org/10.1029/2010GL044372, 2010.
Schwarz, J. P., Samset, B. H., Perring, A. E., Spackman, J. R., Gao, R. S.,
Stier, P., Schulz, M., Moore, F. L., Ray, E. A., and Fahey, D. W.:
Global-scale seasonally resolved black carbon vertical profiles over the
Pacific, Geophys. Res. Lett., 40, 5542–5547,
https://doi.org/10.1002/2013GL057775, 2013.
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Glob. Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G.,
Fiore, A. M., Hess, P., Koch, D. M., MacKenzie, I. A., Sanderson, M. G.,
Schultz, M. G., Schulz, M., Stevenson, D. S., Teich, H., Textor, C., Wild,
O., Bergmann, D. J., Bey, I., Bian, H., Cuvelier, C., Duncan, B. N.,
Folberth, G., Horowitz, L.W., Jonson, J., Kaminski, J. W., Marmer, E., Park,
R., Pringle, K. J., Schroeder, S., Szopa, S., Takemura, T., Zeng, G.,
Keating, T. J., and Zuber, A.: A multi-model assessment of pollution
transport to the Arctic, Atmos. Chem. Phys., 8, 5353–5372,
https://doi.org/10.5194/acp-8-5353-2008, 2008.
Sinha, P. R., Kondo, Y., Koike, M., Ogren, J. A., Jefferson, A., Barrett, T.
E., Sheesley, R. J., Ohata, S., Moteki, N., Coe, H., Liu, D., Irwin, M.,
Tunved, P., Quinn, P. K., and Zhao, Y.: Evaluation of ground-based black
carbon measurements by filter-based photometers at two Arctic sites, J.
Geophys. Res.-Atmos., 122, 3544–3572, https://doi.org/10.1002/2016JD025843,
2017.
Spackman, J. R., Gao, R. S., Neff, W. D., Schwarz, J. P., Watts, L. A.,
Fahey, D. W., Holloway, J. S., Ryerson, T. B., Peischl, J., and Brock, C.
A.: Aircraft observations of enhancement and depletion of black carbon mass
in the springtime Arctic, Atmos. Chem. Phys., 10, 9667–9680,
https://doi.org/10.5194/acp-10-9667-2010, 2010.
Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P.,
Kopeikin, V. M., and Novigatsky, A. N.: Black carbon in the Arctic: the
underestimated role of gas flaring and residential combustion emissions,
Atmos. Chem. Phys., 13, 8833–8855,
https://doi.org/10.5194/acp-13-8833-2013, 2013.
Stone, R. S., Herber, A., Vitale, V., Mazzola, M., Lupi, A., Schnell, R. C.,
Dutton, E. G., Liu, P. S. K., Li, S. M., Dethloff, K., Lampert, A., Ritter,
C., Stock, M., Neuber, R., and Maturilli, M.: A three-dimensional
characterization of Arctic aerosols from airborne Sun photometer
observations: PAM-ARCMIP, April 2009, J. Geophys. Res., 115, D13203,
https://doi.org/10.1029/2009JD013605, 2010.
Tomikawa, Y. and Sato, K.: Design of the NIPR trajectory model, Polar
Meteorol. Glaciol., 19, 120–137, 2005.
Tuzet, F., Dumont, M., Lafaysse, M., Picard, G., Arnaud, L., Voisin, D.,
Lejeune, Y., Charrois, L., Nabat, P., and Morin, S.: A multilayer physically
based snowpack model simulating direct and indirect radiative impacts of
light-absorbing impurities in snow, The Cryosphere, 11, 2633–2653,
https://doi.org/10.5194/tc-11-2633-2017, 2017.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chan,
Y., Rogers, B. M., Mu, M., Van Marle, M. J. E., Morton, D. C., Collatz, G.
J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates
during 1997–2016, Earth Syst. Sci. Data, 9, 697–720,
https://doi.org/10.5194/essd-9-697-2017, 2017.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M.,
Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and
Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon
in the Arctic in winter-spring: implications for radiative forcing, Atmos.
Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011,
2011.
Warneke, C., Bahreini, R., Brioude, J., Brock, C. A., de Gouw, J. A., Fahey,
D. W., Froyd, K. D., Holloway, J. S., Middlebrook, A., Miller, L., Montzka,
S., Murphy, D. M., Peischl, J., Ryerson, T. B., Schwarz, J. P., Spackman, J.
R., and Veres, P.: Biomass burning in Siberia and Kazakhstan as an important
source for haze over the Alaskan Arctic in April 2008, Geophys. Res. Lett.,
36, L02813, https://doi.org/10.1029/2008GL036194, 2009.
Wendisch, M., Brückner, M., Burrows, J. P., Crewell, S., Dethloff, K.,
Ebell, K., Lüpkes, C., Macke, A., Notholt, J., Quass, J., Rinke, A., and
Tegen, I.: Understanding causes and effects of rapid warming in the Arctic,
EOS, 98, 22–26, https://doi.org/10.1029/2017EO064803, 2017.
Wesche, C., Steinhage, D., and Nixdorf, U.: Polar aircraft Polar 5 and Polar
6 operated by the Alfred Wegener Institute, J. Large-Scale Res.
Facil., 2, A87, https://doi.org/10.17815/jlsrf-2-153, 2016.
Xu, J.-W., Martin, R. V., Morrow, A., Sharma, S., Huang, L., Leaitch, W. R.,
Burkart, J., Schulz, H., Zanatta, M., Willis, M. D., Henze, D. K., Lee, C.
J., Herber, A. B., and Abbatt, J. P. D.: Source attribution of Arctic black
carbon constrained by aircraft and surface measurements, Atmos. Chem. Phys.,
17, 11971–11989, https://doi.org/10.5194/acp-17-11971-2017, 2017.
Yoshida, A., Moteki, N., Ohata, S., Mori, T., Koike, M., Kondo, Y., Matsui,
H., Oshima, N., Takami, A., and Kita, K.: Abundances and microphysical
properties of light-absorbing iron oxide and black carbon aerosols over East
Asia and the Arctic, J. Geophys. Res.-Atmos., 125, e2019JD032301,
https://doi.org/10.1029/2019JD032301, 2020.
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model version 2.0, MRI–ESM
2.0: Description and basic evaluation of the physical component, J.
Meteorol. Soc. Jpn., 97, 931–965, https://doi.org/10.2151/jmsj.2019-051,
2019.
Short summary
Vertical profiles of black carbon (BC) in the Arctic were measured during the PAMARCMiP aircraft-based experiment in spring 2018 and compared with those observed during previous aircraft campaigns in 2008, 2010, and 2015. Their differences were explained primarily by the year-to-year variation of biomass burning activities in northern midlatitudes over Eurasia. Our observations provide a bases to evaluate numerical model simulations that assess the BC radiative effects in the Arctic spring.
Vertical profiles of black carbon (BC) in the Arctic were measured during the PAMARCMiP...
Altmetrics
Final-revised paper
Preprint